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Olfactory ensheathing cells (OECs) have become a popular candidate for the transplant-mediated repair of the
damaged CNS. In this review a description is made of the origins of these cells and a historical development of
their purification and maintenance in culture. In addition, we illustrate the cellular and molecular
characteristics of OECs and emphasise that although they share many properties with Schwann cells, they
possess several inherent differences which may allow them to be more beneficial for CNS repair. In summary,
OECs are distinct glial cells and the detailed understanding of their biological and molecular properties is
essential in ensuring their clinical efficacy after cell transplantation. This article is part of a Special Issue
entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
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Introduction

Characteristics of OECs

The glial cells of the olfactory bulb were first identified by Golgi
(1875) and Blanes (1898). Initially, they were considered to be
Schwann cells of the olfactory system due to their location within the
olfactory mucosa and olfactory bulb (Gasser, 1956; De Lorenzo, 1957)
however, it soon became apparent that they were a distinct glial cell
type. One of the first indications of their unusual properties came from
an immunohistochemical study of olfactory nerves using antibodies to
glial fibrillary acidic protein (GFAP), a marker generally considered to
define astrocytes. These so-called olfactory nerve Schwann cells
expressed GFAP leading to the suggestion that they also resembled
astrocytes (Barber and Lindsay, 1982), a finding which was confirmed
by others in vitro (Denis-Donini and Stenoz, 1988) and in vivo
(Doucette, 1984). Subsequently three studies that followed reported
that glial cells from the olfactory system expressed the low affinity
NGF receptor/217c (Ran1), now known as p75NTR (Pixley, 1992;
Ramón-Cueto and Nieto-Sampedro, 1992; Barnett et al., 1993),
typically a marker for non-myelin forming Schwann cells (Jessen et
al., 1990). These studies shared a recurrent theme in that the cells
were described as antigenically and morphologically very heteroge-
neous. In fact, variations in expression of GFAP led to the idea that
olfactory glia comprised of both astrocyte-like cells and Schwann cell-
like cells (Pixley, 1992; Franceschini and Barnett, 1996).

One of the complexities of understanding the biology of olfactory
glial cells has been the variable methods used to purify them. In the
study of Pixley (1992), a non-purified, mixed cell population was
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enzymatically dissociated from the olfactory mucosa of newborn rats
and two types of cells were identified, termed Schwann cell-like
olfactory nerve glial cells and astrocyte-like olfactory nerve glial cells.
Both cell types expressed GFAP and S100β but the Schwann cell-like
olfactory nerve glial cells resembled peripheral nerve Schwann cells
due to their spindle-like morphology and p75NTR expression. Astro-
cyte-like olfactory nerve glial cells, however, had a greater volume of
cytoplasm around their nucleus with denser GFAP immunoreactivity
and morphologically resembled astrocytes grown in serum-free
media. These cells were also less abundant than Schwann cell-like
olfactory nerve glial cells (Pixley, 1992). Schwann cell-like olfactory
nerve glial cells have also been isolated from newborn rat olfactory
bulbs (Chuah and Au, 1993). Similar astrocyte-like and Schwann cell-
like cells were identified in post natal day 7 rat olfactory bulbs and
polysialyated (PSA)-E-N-CAM (polysialylated (“embryonic”) form of
neural cell adhesion molecule) was shown to be a marker for these
astrocyte-like cells (Barnett et al., 1993; Franceschini and Barnett,
1996, Fig. 1). In this study, cells were purified using the oligodendro-
cyte 4 (O4) antibody and fluorescence activated cell sorting, but over
timemainly p75NTR positive spindle-shaped cells developed in culture
(Franceschini and Barnett, 1996). Terminology from these early
studies assigned olfactory bulb ensheathing cells (OBECs) to cells
isolated from olfactory bulbs to distinguish them from olfactory nerve
ensheathing cells (ONECs), however this classification is no longer
used and the cells are now collectively referred to as olfactory
ensheathing cells (OECs) or olfactory ensheathing glia (OEG); theywill
be referred to as OECs for the purpose of this review.

OECs have also been successfully cultured from adult (2.5 month
old) rat olfactory bulb and were found to maintain both their
ultrastructure and immunocytochemical properties shown in vivo,
and their ability to ensheath neurites (Ramón-Cueto and Nieto-
Sampedro, 1992, 1994; Ramón-Cueto et al., 1993). Their overall
phenotype was reported to be 98.5% p75NTR positive, multiform
process bearing cells suggesting a tendency towards one type of
olfactory glia (Ramón-Cueto et al., 1993). However, in a separate study,
cells cultured from adult rat olfactory bulbswere found to display both
astrocyte-like and Schwann cell-like morphologies. These subpopula-
tions of cells displayeddifferentmigratory properties in vitro and could
spontaneously transform from one type into another (Huang et al.,
2008). It has been suggested that these Schwann cell-like OECs and
astrocyte-like OECs may differ in other ways too. For example, it was
observed that cultures from adult olfactory nerve rootlets had a lower
proportion of PSA-(E)-N-CAM positive OECs when compared to cells
isolated from the nervefibre layer of the adult olfactory bulb (Kumar et
al., 2005), which correlated with a lower ability to support dorsal root
neurite outgrowth. This suggests that PSA-(E)-N-CAM positive
Fig. 1. Purified OECs can be seen to express PSA-E-NCAM (green) together with
astrocyte-like cells are less supportive of neurite outgrowth than
Schwann cell-like OECs; though it was shown indirectly that these
cellswere still better thanother glial andnon-glial cell types (Kumar et
al., 2005). However, these two OEC phenotypes have not been
extensively studied by many other groups and therefore it is difficult
to make firm conclusions about the role of such antigenic variants.

It is generally believed that OEC function in vivo is to ensheath
olfactory receptor axons and to guide the regenerating axonsback to the
olfactory bulb during normal cell turnover, or after damage (Grazaidei
and Monti-Graziadie, 1979, 1978; Doucette 1984; Raisman 1985). The
olfactory receptor axons are nonmyelinated and they are organized in a
similar manner to axons in an early stage of embryonic development in
the peripheral nervous system i.e. axons which are grouped together
within a single bundle wrapped by the glial cell cytoplasm. This
“embryonic like” relationship remains unchanged throughout life. In
contrast, although Schwann cells bundle many axons initially in the
adult peripheral nerves, they usually ensheath non-myelinated axons
with sheet like wrappings of cytoplasm which isolate axons from each
other (Gasser, 1956; reviewed in Farbman, 1992). Interestingly, as the
olfactory nerves develop, the number of axons ensheathed by OECs
increase, whilst in other developing peripheral nerves the number of
axons decrease (Fraher, 1982; Webster et al., 1973). Furthermore, the
expression of PSA-(E)-N-CAM has been associated with areas of tissue
involved in plasticity and cell reshaping under physiological conditions
(Miragall et al., 1988;Caubit et al., 1993). Together, thesedata lead to the
suggestion that OECs may remain in an embryonic state and studies
have supported the view that OECs display morphological plasticity
using time lapse (Van Den Pol and Santarelli, 2003) and after the
addition of cAMP and endothelin-1 (Vincent et al., 2003).

Other studies have demonstrated differences in expression of
markers between OECs generated from the nerve (present in the
lamina propria, LP) and OECs generated from the olfactory bulb (OB)
of neonatal mice (Au and Roskams, 2003). As OECs exit from the
olfactory epithelium they display distinct and variable expression of
p75NTR, S100β, GFAP, and labelling with the O4 antibody; character-
istic markers of bulb OECs. LP-OECs also express a unique combination
of developmentally important proteins, namely CD44, β1 integrin,
P200, Notch 3, NG2, VEGF (Vascular endothelial growth factor),
PACAP (Pituitary adenylate cyclase activating polypeptide) and CREB
binding protein (CBP/p300), which have not been previously reported
in olfactory bulb derived OECs (Au and Roskams, 2003). When a more
detailed immunohistochemical study of the mouse olfactory bulb
layer was made, differences were seen in expression of p75NTR,
neuropeptide Y, GFAP and S100β, suggesting that different antigenic
and morphological cells segregate this tissue into superficial and deep
sublaminae (Au et al., 2002). It has also been reported that the glial
p75NTR (red, A) but also express PSA-E-NCAM alone (B). Scale bar=20 μm.



4 J.R. Higginson, S.C. Barnett / Experimental Neurology 229 (2011) 2–9
cells in the olfactory bulb and mucosa are very similar in terms of
proportions, morphology, rate of proliferation and expression of
markers that change over time (Jani and Raisman, 2004; Richter et al.,
2008). However, another study showed that there are fewer GFAP
positive cells in the olfactory mucosa and that p75NTR positive cells
from the mucosa proliferate for longer than those from the olfactory
bulb when placed in identical culture conditions (Au and Roskams,
2003). Proliferation of OECs appears to be variable in culture, this is
quite apparent when comparing different studies, which could relate
to the age of the donor animal (neonate versus adult), as well as the
species from which the tissue is taken. This has been discussed in
detail in two recent reviews (Kawaja et al., 2009; Tetzlaff et al., 2010).
OECs and Schwann cells

It is true that OECs share many properties with Schwann cells and
this has been discussed in many reviews (Ramón-Cueto and Valverde,
1994; Franklin and Barnett, 1997, 2000; Wewetzer et al., 2002;
Franssen et al., 2007; Kocsis et al., 2009). However, whilst there is no
doubt that there are striking similarities between these two cell types
(Barnett et al., 2001; Thompson et al., 2000) there are also some very
distinct differences, which were identified by looking at the way OECs
and Schwann cells interact with astrocytes. From studies using cells
purified from the neonatal olfactory bulb in vitro (Lakatos et al., 2000)
and in vivo (Santos-Silva et al., 2007; Shields et al., 2000) it has been
demonstrated that OECs, but not neonatal Schwann cells, can mingle
with astrocytes and that the addition of Schwann cell conditioned
media to OEC/astrocyte cultures causes boundary formation between
the two cell types. The mechanism which regulates this difference is
still unknown but several molecules appear to play a role including
FGF2, N-cadherin, heparin sulphate proteoglycans and ephrins (Fair-
less et al., 2005; Santos-Silva et al., 2007; Afshari et al., 2010). From
these studies it is apparent that Schwann cells secrete a factor(s) that
prevent OECs frommingling with astrocytes, suggesting the secretory
profile of each of these cell types is different (Fig. 2).

Interestingly, a study using cells purified from adult rats showed
that a soluble factor secreted bymeningeal cells affected Schwann cell
clustering but not OEC cell clustering (Franssen et al., 2009),
illustrating that these two cell types have differences in several
biological properties and that these differences are seen in OECs
isolated from neonatal or adult sources. It is likely that these distinct
properties reflect the fact that OECs, unlike Schwann cells, naturally
exist in a CNS environment and can coexist with astrocytes in the
adult brain (Doucette, 1984, 1990; Raisman 1985).
Fig. 2. In confrontation assays, purified OECs mingle with astrocytes (A), however after treat
type (B). The boundary is highlighted by a dotted line. OECs are labelled for p75NTR (green
Generation and purification of OECs

Due to the ability of OECs to support continual outgrowth of
olfactory receptor axons throughout life, their potential benefits in
cell transplantation to repair the injured spinal cord have been the
subject of a considerable amount of research over the past decade and
have been discussed in other articles within this journal. It is clear that
there is variability in the reparative potential of OECs and it is thought
that this discrepancy depends on many factors. Differences in the
efficiency of purifying OECs and the resultant proportion of contam-
inating cells in the culture are likely to be a factor, which will be
discussed in more detail later. Moreover, the age, gender and species
from which the cells are taken may also introduce variability, as will
culture conditions, such as differences in media components and
growth factors. In order to produce enough cells that will survive long
enough in vivo to have some beneficial effect, cells must go through
several passages prior to transplantation and the number of passages
may also influence cell behaviour (Au et al., 2007).

The majority of research to date has been carried out using
rodent olfactory tissue, but OECs have also been purified from dogs,
pigs, primates and humans (Rubio et al., 2008; Techangamsuwan
et al., 2008, 2009; Lim et al., 2010). A variety of different
purification methods have been implemented and OECs can be
cultured from both peripheral and central olfactory tissue. Interest-
ingly it has been reported that primate OECs grow particularly well
in serum containing medium for more than two months and do not
senesce nor spontaneously immortalise (Rubio et al., 2008). Recent
reviews by Kawaja et al., and Tetzlaff et al., provided an extensive
critical analysis on the subject of OEC purification, the age and
species on the donor tissue, and methods to culture cells which all
may influence their biological properties; therefore we will only
briefly discuss purification techniques here (Kawaja et al., 2009;
Tetzlaff et al., 2010).

In some studies limited purification procedures have been carried
out, for example the generation of cells from embryonic day 18 rat
embryos by careful dissection of the olfactory nerve layer of the
olfactory bulb (Doucette, 1993). This technique was based on the
observation thatOECs are the only cells present in this tissue during this
period of development. Purification of adult OECs can also be achieved
byexploiting thedifferential adhesion ofOECs andother cellswithin the
bulb such as fibroblasts and astrocytes. After enzymatic andmechanical
dissociation of the outer olfactory nerve layer, cells were seeded onto
uncoated plastic plates. The cells that remained in suspension after 1–
2 h were found to be N95% p75NTR and S100β positive. This technique
was modified slightly whereby cells were allowed to adhere for 48 h
ment with Schwann cell conditioned media, a boundary is formed between the two cell
) and astrocytes are labelled for GFAP (red). Scale bar=20 μm.

image of Fig.�2
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prior to the culture of cells in the supernatant and cultureswere found to
be 93.2% p75NTR positive (Nash et al., 2001).

A different method was undertaken by Roskams et al., to purify
OECs from neonatal mouse lamina propria, in which contaminating
fibroblasts were removed with two rounds of Thy1.1 complement
lysis (Au and Roskams, 2003). Another approach used to purify adult
OECs is to immunopan using anti-p75NTR, since OECs express p75NTR

in culture (Ramón-Cueto and Nieto-Sampedro, 1994). This method
positively selects for p75NTR expressing cells by seeding them onto
dishes coated with p75NTR IgG. We have recently established a
another system for purifying OECs from neonatal rat olfactory bulb by
selecting for p75NTR positive cells using magnetic nanoparticles and
found that this generates a highly pure population of OECs
(summarised in Fig. 3). OECs can also be purified from neonatal rat
olfactory bulb by fluorescence activated cell sorting and using
antibodies for both p75NTR and the O4 antibody. Since the O4
antibody can label oligodendrocytes, another antibody, anti-galacto-
cerebroside (GalC) is usually included in the sort in order to select for
the O4 positive and GalC negative cell population, thus removing
these O4 positive oligodendrocytes (Barnett et al., 1993). Further-
more, a study by Wewetzer et al., investigating the expression of the
O4 antibody in unpurified cultured OECs from neonatal olfactory bulb
concluded that, rather than being a glial specific marker, the O4
Fig. 3. Summary of themethod to purify OECs without FACS using the p75NTR antibody and th
transplantation and biology on interaction with astrocytes is the same, suggesting that the
antibody was in fact expressed by olfactory receptor neurons and
expression in OECs was due to the fact that OECs phagocytosed O4
positive axonal fragments (Wewetzer, et al., 2005). However, this
does not explain the expression of O4 antibody on cells cultured in
vitro for several weeks, following p75NTR sorting (our observations,
Fig. 4). A study carried out several years previously, showed that the
introduction of FGF2 to the growth media enhanced expression of the
O4 antibody in cultured OECs and that the marker was retained for
several weeks (Alexander et al., 2002, Fig. 4). In the Wewetzer study,
cells were cultured in DMEM containing 10% FCS, without any
additional growth factors, which may explain their findings. Whilst
their data convincingly shows phagocytosis of O4 positive axonal
fragments, this could be an additional function of OECs in vivo but
does it not eliminate the possibility that the O4 antibody is expressed
endogenously.

It is clear, as highlighted by a recent review by Kawaja and
colleagues, that many of the markers used to determine OEC purity
(p75NTR, S100β and GFAP) are also expressed by Schwann cells
(Kawaja et al., 2009). This author has suggested that smooth muscle
actin and calponin are OEC specific (Boyd et al., 2006; Jahed et al.,
2007) however, two independent reports cannot confirm this
observation and contaminating non neural cells often express
calponin and smooth muscle actin (Ibanez et al., 2007; Tomé et al.,
e EasySep™ kit from Stem Cell technologies. Purification is good and results obtained on
magnetic nanoparticles do not affect OEC function.

image of Fig.�3


Fig. 4. (A-D) The O4 antibody is continually expressed on purified OECs after passage and for many weeks. Purified OECs can possess a flat phenotype (A, C) and a more spindle
phenotype (B, D). It has been suggested that the flatter OECs are entering senescence, however these cells continue to proliferate after passage in the optimal mitogen mix. Scale
bar=20 μm.
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2007; Toft et al., submitted). In fact, the main confirmation that OECs
and Schwann cells are different comes from studying their interac-
tions with astrocytes which has been discussed in the above sections.
Interestingly, if the cells are purified using the O4 antibody or p75NTR

antisera by fluorescence activated cell sorting or with magnetic
nanoparticles conjugated to anti-p75NTR (Fig. 3) we have found that
OECs still maintain the ability tomingle with astrocytes (Lakatos et al.,
2000). This phenotypic difference strengthens the argument that
current purification techniques can purify OECs effectively and may
lead to the discovery of further genetic and phenotypic variation that
will allow us to distinguish between OECs and Schwann cells. There
has been some suggestion that current purification techniques could
select for specific subtypes of OECs, when perhaps a more mixed
population of cells would be more beneficial in vivo. However, this
idea was dismissed when it was reported that OECs appeared to
rapidly change through many phenotypes over time, thus confirming
their morphological plasticity (Vincent et al., 2003; Van Den Pol and
Santarelli, 2003).

In order for OECs to be a candidate for transplant-mediated repair,
it is necessary to produce enough purified cells quickly prior to
transplantation, however this may take several weeks following cell
purification. It should be emphasised that if the purification of OECs
from the olfactory mucosa or bulb is not carried out, a large number of
other cell types will be isolated and propagated in culture, including
fibroblast-like cells, mesenchymal stem cells, connective cells,
immune cells and pericytes (Barnett and Chang, 2004; Tomé et al.,
2009; Lindsay et al., 2010). The effect these contaminating cell types
may exert on CNS repair after transplantation with OECs has not been
systematically examined. It is therefore important to culture cells in
optimal conditions which are conducive to both rapid and long-term
proliferation as well as maintenance of cell-specific characteristics
including morphology and antigenic properties. It has been shown
that porcine OECs had a reduced capacity to remyelinate the rat spinal
cord after injury the longer they were kept in culture (Radtke et al.,
2010). The limited lifespan of primary cells in culture can be partially
overcome by addition of growth factors or in the case of human cells,
recent studies have used genetic manipulation to increase their
proliferative capacity but also for the generation of a clonal cell line, a
method which will be discussed later.

Initially serum-free conditioned media from type I astrocytes
(astrocyte conditioned medium) (Noble and Murray, 1984) was
found to be mitogenic for neonatal rat OECs but this proliferative
capacity is short-lived (Alexander et al., 2002). Astrocyte conditioned
medium was found to contain an isoform of neuregulin-1 (NRG-1),
which is mitogenic and a survival factor for OECs (Pollock et al., 1999).
Another source of neuregulin often used in OEC growth media is
semipurified bovine pituitary extract, a crude source of GGF (glial
growth factor) together with other growth factors e.g. FGF2 (DeMello
et al., 2007). A systematic study was carried out to investigate the
culture requirements of neonatal rat OECs and resulted in the idea
that a combination of several mitogens was found to be optimal
(Alexander et al., 2002; Yan et al., 2001). One such mixture of defined
media, termed olfactory mitogen mediumwas devised that contained
FGF2, forskolin, neuregulin beta 1 and 10 % astrocyte conditioned
medium. It was found that culturing OECs in this defined medium
allowed the cells to be maintained in vitro without losing their

image of Fig.�4
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antigenic characteristics. Cells cultured in serum alone stop prolifer-
ating after 3–4 weeks in culture, whereas cells maintained in FGF2,
forskolin, neuregulin beta 1 and 10 % astrocyte conditioned medium
can proliferate for up to 9 weeks (Alexander et al., 2002). The
molecular functions of the aforementioned different mitogens are
partially understood through work which was carried out in Schwann
cells. Forskolin upregulates expression of ErbB neuregulin receptors
and elevates intracellular cAMP levels. The addition of forskolin has
been shown to potentiate the mitogenic capacity of neuregulin and
these mitogens act synergistically to enhance and prolong activation
of the ERK/MAPK and Akt signalling pathways (Fregien et al., 2005;
Monje et al., 2006; Rahmatullah et al., 1998). Whilst expression of
p75NTR remains constant in all culture conditions, with serum alone,
cells have been shown to lose expression of glial markers such as the
O4 antibody and PSA-(E)-N-CAM. Expression of the O4 antibody
depends on FGF2 exposure and PSA-(E)-N-CAM expression is
dependent upon specific culture conditions (Franceschini and Barnett,
1996). A separate study confirmed the finding that the combination of
Hrg (a neuregulin beta-1 isoform) and FGF2 is mitogenic for adult
OECs (Yan et al., 2001). The inconsistencies surrounding proliferative
abilities of OEC culture therefore should be considered when
comparing data from different studies.

Less is known about the correct culture conditions for maintaining
OECs from species other than rat. Mouse OECs appear to have similar
requirements to rat OECs with pituitary extract and forskolin added to
the culture media (Au and Roskams, 2003; Richter et al., 2008),
although we found that mouse OECs could not be maintained and
expanded in culture in rat optimal mitogen media (unpublished
observations). Canine OECs were found to respond to heregulin-1γ
(Bock et al., 2007), whilst growth of porcine OECs in culturewas found
to be enhanced by forskolin. However, unlike cells cultured from other
species, p75NTR was down regulated after 4 weeks in culture in
porcine OECs (Radtke et al., 2010). Adult primate OECs were
successfully cultured for an extended period of time in media
containing serum and did not require additional growth factors,
whilst retaining OEC-specific markers (Rubio et al., 2008). This
apparent contradiction of what we had previously learned from
rodent studies highlights the complex nature of culturing OECs from
different species.

Purity of OECs for cell transplantation of CNS injury

If we are to use OECs for transplantation strategies in the clinic it
will be necessary to grow large numbers of pure human cells from
autologous sources. It was possible to grow human OECs from adult
human olfactory bulb tissue although reports about their growth in
culture are variable. In one study their response to growth factors was
short-lived resulting in a reduced lifespan in culture (Barnett et al.,
2000), but this is perhaps due to cell senescence as has been suggested
for adult rat cells (Rubio et al., 2008). However, other studies have
used human mucosal derived-OECs in rat models of SCI (Gorrie et al.,
2010) and in clinical trials (Féron et al., 2005; Mackay-Sim et al.,
2008) in which they describe good propagation of human cells using
NT3 (Bianco et al., 2004). Recent work has been carried out on the
transgenic expression of BMI1/TERT to generate an immortalised
clonal human OEC cell line. The BMI1/TERT transgene can be excised
after culture expansion, prior to transplantation in order to revert cells
back to their former primary cell replicative state. This deimmorta-
lisation step is necessary to eliminate adverse effects of uncontrolled
proliferation. Reversible immortalisation of human OECs has been
shown in young (13 years) and elderly donor tissue, which is
encouraging for the future of autologous transplantation, however,
deimmortalisation was not possible in all cultures raising questions
about the safety of this procedure (García-Escudero et al., 2010; Lim et
al., 2010). It has also been suggested that OECs should be isolated from
olfactory mucosal biopsies since this method is a less invasive
protocol for obtaining tissue. In fact cells prepared from mucosal
biopsies were successfully grown up in large numbers for transplan-
tation in a clinical trial (Féron et al., 2005). However, this is a very
complex tissue and recent evidence suggests that mesenchymal stem
cells as well as OECs could be isolated from this procedure (Tomé
et al., 2009; Delorme et al., 2009; Lindsay et al., 2010).

There have been several reports suggesting that mixed popula-
tions of OECs and other cells, such as meningeal fibroblasts, are better
for transplantation than purified OECs alone (Lakatos et al., 2003;
Barnett and Chang 2004). Interestingly, it has been shown that OECs
mingle with meningeal fibroblasts in culture whereas Schwann cells
do not (Franssen et al., 2009). Furthermore, it has been reported that a
50:50 ratio of OECs with olfactory nerve fibroblast-like cells, rather
than pure OECs produces optimal transplant-mediated repair (Li et al.,
1998). However a recent study by Toft et al., has systematically
analysed the effect of transplanting purified cell populations vs. mixed
cell populations and found that purified OECs and Schwann cells
induced less astrocyte reactivity following transplantation into a rat
model of SCI when compared to cultures of mixed mucosa or
combinations of fibroblasts with OECs or Schwann cells (Toft et al.,
submitted).

Summary

OECs are distinct glial cells that have certain properties in common
with Schwann cells but also possess other unique characteristics that
may bestow advantages for CNS repair. Although it has been shown
from rat models of SCI or even after transplantation into human
patients that OECs can influence CNS repair albeit to a minor extent, it
is clear that there are inconsistencies. Furthermore, it is also apparent
that whilst OEC transplantation alone would not be sufficient to repair
the damaged CNS, it may provide part of a more complex strategy.
Thus, a thorough and extensive knowledge of the biological and
molecular properties of OECs and the differences that can occur
during their culture should be more closely assessed in order to
ensure their clinical efficacy after cell transplantation.
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