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Abstract Autotaxin is a member of the phosphodiesterase fam-
ily of enzymes, (NPP2). It is an important secreted protein found
in conditioned medium from adipocytes. It also has a putative
role in the metastatic process. Based on these observation, fur-
ther validation of this potential target was necessary, apart from
the classical biochemical ones. The construction of a knock out
mouse strain for ATX was started. In this paper, we report the
generation of a mouse line displaying an inactivated ATX gene
product. The KO line was designed in order to generate a func-
tional inactivation of the protein. In this respect, the threonine
residue T210 was replaced by an alanine (T210A) leading to a
catalytically inactive enzyme. If the experimental work was
straight forward, we disappointedly discovered at the final stage
that the breeding of heterozygous animals, ATX �/+, led to the
generation of a Mendelian repartition of wild-type and heterozy-
gous, but no homozygous were found, strongly suggesting that
the ATX deletion is lethal at an early stage of the development.
This was confirmed by statistical analysis. Although other re-
ported the same lethality for attempted ATX�/� mice genera-
tion [van Meeteren, L.A., Ruurs, P., Stortelers, C., Bouwman,
P., van Rooijen, M.A., Pradère, J.P., Pettit, T.R., Wakelam,
M.J.O., Saulnier-Blache, J.S., Mummery, C.L., Moolenar,
W.H. and Jonkers, J. (2006) Autotaxin, a secreted lysophospho-
lipase D, is essential for blood vessel formation during develop-
ment, Mol. Cell. Biol. 26, 5015–5022; Tanaka, M., Okudaira,
S., Kishi, Y., Ohkawa, R., Isei, S., Ota, M., Noji, S., Yatomi,
Y., Aoki, J., and Arai, H. (2006) Autotaxin stabilizes blood ves-
sels and is required for embryonic vasculature by producing lyso-
phosphatidic acid, J. Biol. Chem. 281, 25822–25830], they used
more drastic multiple exon deletions in the ATX gene, while we
chose a single point mutation. To our knowledge, the present
work is the first showing such a lethality in any gene after a point
mutation in an enzyme catalytic site.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

ATX is a lyso-phospholipase D enzyme originally described

as a motility factor [1]. Since the discover, by others [2,3] and
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by us [4] that this enzyme catalyzes a lyso-phospholipase D

(LPD) activity leading to the transformation of lyso-phosphat-

ildylcholine into LPA, the role of this protein seemed to be

central in some key metabolic deregulations (see Moolenaar

for reviews [5,6]), particularly since it is over-expressed in the

conditioned medium of adipocytes in culture [7]. ATX could

be the main enzymatic source for the production of LPA,

the role of which in metastasis has just been demonstrated

[8]. Furthermore, it is known for quite some times that the

LPA concentration is proportional to the metastasis progres-

sion, and therefore to cancer prognosis (see Jansen et al. [9]

for complete references). Finally, even more direct evidences

associated the expression of ATX with breast cancer invasive-

ness [10,11].

While making other attempts to provide more validation in

term of involvement of this enzyme in diabesity [12], we at-

tempted to knock-out the gene in mouse. This would have pro-

vide us with further validation towards the therapeutical use of

this new target, beside biochemical [4] and pharmacological

studies [13].

ATX has been described in the past as a motility factor [14].

Indeed, autotaxin was suspected to act through a putative

receptor, before the discovery of its lyso-PLD catalytic activ-

ity. Hence, the presence of a RGD motif in the sequence

pointed to the possibility that the protein itself might also

act as a ligand or a partner to another protein. We therefore

suspected that the deletion of a part of the protein might have

deleterious effect on the mouse development. Since previous

data evidenced that the point mutation inside the catalytic site

(threonine 210 to alanine) leads to a catalytically inactive en-

zyme [15,16], we decided to reproduce this point mutation

in vivo in order to circumvent any deleterious effect that the

ATX gene classical disruption approach may have. Despite

many difficulties in generating ATX targeted ES cells, we final-

ly only succeeded in generating heterozygous mice with a single

loss of ATX gene, whereas no homozygous mice were pro-

duced. This strongly suggests that the ATX T > A210 mutation

is lethal at the homozygous stage.
2. Materials and methods

2.1. Construction of the targeting vector
Targeting vector construction and knock-in strategy has been de-

signed and performed by genOway (Lyon, France). Genomic clones
containing the murine Atx locus were isolated from a 129S6/SvEvTac
RPCI-22 BAC genomic library by using probe corresponding to the
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Targeted mutation of the Atx gene produces a null mutation. The Atx locus (containing the exons 4–8) and the targeting construct
(containing the neomycin Tk(PGK-NeoTK) cassette with flanking segments homologous to the locus) are shown in schematic format. The
transcriptional orientation of neomycin-TK cassette and the Atx locus are delineated by arrows. The probe used in all the Southern blot analysis is a
1.0-kb fragment located in a region overlapping exon 7. B: BgIII site; K: KnpI site; P: PacI site, S: SacI site, W: SwaI site. The arrow head
corresponds to the LoxP site.
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murine Atx exons 1 and 2: two BAC clones (130B15 and 287J20) con-
taining Atx locus have been isolated. The genomic organization of the
targeted locus was determined by subcloning BglII–SacI genomic
fragment into the pZErO�-2 vector (Invitrogen, Carlsbad, CA). The
6.6-kb BglII–SacI genomic insert was sequenced and Atx sequence
was generated. The genomic clone (containing introns V–VIII) was
used to construct the targeting vector. Briefly, a 1.3-kb SwaI–PacI
fragment comprising Atx exons 6 and 7 and a 4.6-kb PacI–SacI frag-
ment located downstream of the Atx seventieth exon, were used to
flank a NEO-tk cassette (LoxP site-PGK promoter-Neo-tk fusion
cDNA-LoxP site) (as shown in Fig. 1); a negative (DTA) selection cas-
sette was introduced at the 5 0 of the short arm of homology. A
T > A210 point mutation was introduced into the Atx exon 7 using
QuikChange� II site-directed mutagenesis kit (Stratagene, La Jolla,
CA).

Furthermore, we cloned from 129S6/Sv mouse brain the ATX cod-
ing region into pcDNA3 vector and introduced by directed mutagene-
sis the T > A210 mutation. We further used the two vectors, wild-type
and mutated one, for expression in COS cells. As an internal control,
we used a pcDNA3 vector containing the ATX sequence largely de-
leted from amino acids 202 to 363, which corresponds to the deletion
of the whole catalytic site.

2.2. Screening of Atx targeted ES cell clones
AvrII-linearized targeting vector was transfected into 129SvPas ES

cells (genOway, Lyon, France) according to genOway’s modified elec-
troporation procedures (i.e. 108 ES cells in presence of 100 lg of line-
arized plasmid, 260 V, 500 lF). Positive selection was started 48 h after
electroporation, by addition of 200 lg/ml of G418 (150 lg/ml of active
component, Life Technologies, Inc.). Three hundred and thirty-one
resistant clones were isolated and amplified in 96-well plates. The
duplicates of 96-well plates were made. The set of plates containing
ES cell clones amplified on gelatin were screened by PCR and further
confirmed by Southern blot. 5 0 PCR screening conditions were:
GW735 primer hybridizes the Atx intron 5 (5 0-GGCGACAGCC-
ACATTGAGTGACAC-30), and GW736 primer is specific for the
Neo-Tk selection cassette (5 0-CGGTGGATGTGGAATGTGTGCG-
3 0). PCR conditions are 94 �C/5 min, 35 cycles of (92 �C/30 s, 62 �C/
30 s, 68 �C/4 min 30 s) and then 68 �C/10 min, which results in a
2046-bp band for the mutated allele; PCR reaction is performed using
Long Expand High Fidelity polymerase (Roche�) and reaction buffer
3. The 3 0 PCR screening conditions were: GW686 primer is specific for
the neomycin-tk selection cassette (5 0-GGTGGAGAGGCTATTC-
GGCTATGAC-3 0), and GW773 primer is specific for the Atx intron
7 (5 0-CTCCTGCCTCCACATTCCTTCCCTG-3 0). PCR conditions
are 94 �C/2 min, 35 cycles of (94 �C/30 s, 65 �C/30 s, 68 �C/6 min) and
then 68 �C/7 min, which results in a 6096-bp band for the mutated al-
lele; PCR reaction is performed using Long Expand High Fidelity
polymerase (Roche�) and reaction buffer 3. Briefly, for Southern blot
analysis, genomic DNA was digested with SpeI–KpnI and then hybrid-
ized with a 1.0-kb internal probe; Atx+/� clones give rise to an 11.3-kb
wild-type signal and 8.1-kb + 5.3-kb targeted signals. The presence of
the T > A210 point mutation was confirmed by sequencing the 5 0 PCR
amplicon. Four clones (#4E6, 4G1, 3B4 and 3D1) were identified, by
both PCR and Southern blot as targeted at the Atx locus (Fig. 2).

2.3. Generation of Chimera mice and breeding scheme
One floxed mutated Atx ES cell clone (namely #3B4) was microin-

jected into C57BL/6 blastocysts, and gave rise to male chimeras with
a significant ES cell contribution (as determined by an Agouti coat
color). After mating with C57Bl/6 females, germ line transmission
was confirmed by the genotyping of tail DNA offsprings using PCR
and Southern blot analysis. Floxed heterozygous animals were
screened as described in previous chapter (Fig. 3). F1 male heterozy-
gous animals were bred with C57/Bl6 CMV-Cre expressing female
mice in order to remove the LoxP-flanked Neo cassette. Offsprings
were genotyped by PCR and Southern blot in order to ensure the
Neo cassette removal. PCR screening conditions are: the GW741 pri-
mer is specific for the 3 0 region of intron 6 (5 0-CCTACAT-
GAGGCCTGTGTACCCTACAAAAG-3 0), and the GW742 primer
is specific for intron 7 (5 0-GTCTGAGTTTCATCCCAGAACCCG-
TATG-3 0). PCR conditions are 94 �C/2 min, 35 cycles of (94 �C/30 s,



Fig. 2. PCR screening on 5 0 and 3 0 end of homologous recombination event. The PCR screening on 5 0 and 3 0 end of homologous recombination
event is shown for ES cell clones #4E5, #4E6, #4G1, #3B4, #3B10 and #3D1. The 2046-bp and 6096-bp bands signify appropriated targeted
disruption of mAtx locus on 5 0 and 3 0 end targeting event, respectively. Southern blot analysis of positive and wild-type ES cell clones. Digestion of
genomic DNA with KpnI–SpeI resulted in the following diagnostic fragment: wild-type allele of 11.3-kb band, appropriate targeting of theAtx locus
of 8.1- and 5.3-kb band.

Fig. 3. PCR screening analysis of the offspring of Atx-mutated mice. The PCR screening analysis of the offspring of Atx-mutated mice displaying the
floxed Neo cassette mice with CMV-Cre expressing mice. They were performed on biopsy tails of the pups. The 600-bp band corresponds to the
mutated Atx Neo excised allele, the 470-bp band corresponds to the Atx wild-type allele, while the 3700-bp band corresponds to the mutated Atx
floxed allele.
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65 �C/30 s, 68 �C/4 min) and then 68 �C/7 min, which results in a 470-
bp wild-type signal, a 600-bp Neo excised signal and 3700-bp floxed
signal; PCR reaction is performed using Long Expand High Fidelity
polymerase (Roche�) and reaction buffer 2. Briefly, for Southern blot
analysis, genomic DNA was digested with KpnI–SpeI and then hybrid-
ized with a 1.0-kb internal probe; Atx+/� clones produced an 11.3-kb
wild-type signal and 6.1-kb + 5.3-kb targeted Neo-excised signals. F1
male and female heterozygous animals were interbred to obtain Atx-
mutant mice. Animals were screened by PCR and Southern blot anal-
ysis as described above (Fig. 4).
2.4. Mutated autotoxin expression and measure of autotoxin catalytic
activity

Standard transfection procedures were used in a further set of exper-
iments. Using Lipofectamin, we transfected several batches of cells.
The cells were cultured for a further 24 h. Transfected COS-7 cells were
washed twice with phosphate-buffered saline to remove serum and
incubated (5 ml for a 10-cm diameter plate; 1 ml for a 3-cm diameter
plate) in serum-free DMEM at 37 �C in a humidified atmosphere con-
taining 5% CO2. The conditioned media were separated from the cells
centrifuged to eliminate cell debris, and stored at �20 �C until further
use [4]. The fractions were then concentrated and submitted either to
SDS–PAGE electrophoresis and Western blot using an anti ATX anti-
body. Both ATX catalytic activities were measured on this material
either the phosphodiesterase or the lysophospholipase D ones, with a
colorimetric assay or a thin layer chromatographic assay, respectively,
[4]. In brief, the phosphodiesterase activity of ATX was measured by
using pNPPP as substrate in test using a modification of the method
of Razzell and Khorana (15). Samples (100 ll) were incubated in 96-
well plate with p-nitrophenyl phenylphosphonate at a 5 mM final con-
centration in a 50 mM Tris–HCl, pH 9.0 buffer. After 30 min at 37 �C,
reactions were stopped by addition of 100 ll of 0.1 M NaOH. The pro-
duction of p-nitrophenol was kinetically quantified by reading the
absorbance at 410 nm using a Pherastar plate reader (BMG, Germany)
with the appropriate controls. Lysophospholipase D activity was mea-
sured by conversion of radiolabeled LPC into radiolabeled LPA. A
solution of [14C] palmitoyl-lysophosphatidylcholine (Perkin-Elmer Life
Sciences; 55.8 mCi/mmol) at 0.0025 lCi/lL in DMEM supplemented
with 1% free fatty acid BSA was first prepared, and 20 lL of this solu-
tion was incubated with 500 ll of thawed CM plus 1 ll of sodium
orthovanadate (0.5 mM) for 90 min at 37 �C. At the end of the incuba-



Fig. 4. Southern blot analysis of the offspring of Atx floxed mice with CMV-Cre expressing mice. Digestion of tail DNA by KpnI–SpeI resulted in
the following diagnostic fragment: wild-type band of 11.3-kb, Neo excised allele bands of 6.1- and 5.3-kb.
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tion period, phospholipids were extracted with 500 ll of 1-butanol,
evaporated, spotted on a silica gel 60 TLC glass plate (Merck), and
separated using CHCl3/MeOH/NH4OH (60:35:8) as the migration sol-
vent. The plates were autoradio-graphed overnight at �80 �C using a
Biomax-MS film (Kodak) to localize radiolabeled LPA spots, which
were scraped and counted with 3 ml of scintillation mixture.
3. Results and discussion

L1ES cell clone #3D1-40 bearing the Atx-mutated allele and

transfected with CRE expressing plasmid in order to remove

the LoxP flanked Neo selection cassette, was injected into

121 blastocysts in order to generate Neo-excised Atx knock-

in chimeras. It gave rise to the generation of two male chimeras

with a 40% chimerism rate. As no agouti mouse was generated

from a total of 8 F1 litters, we decided to inject the parental ES

cell clones B4, 3D1 and 4G1 harbouring the mutated allele and

containing the Neo cassette. This approach was conducted in

order to overcome any problem that could have been occurred

because of the second round of electroporation of the ES.

Three parental ES cell clones (#3B4, 3D1 and 4G1) bearing

the mutated Atx allele were injected into 75 blastocysts. Only

ES cell clone #3B4 gave rise to seven pups. Three male chime-

ras, were identified with chimerism rates of 90%, 80% and 60%.

These chimeras were then mated with CMV-Cre expressing

C57Bl/6 females in order achieve to the Neo cassette deletion

in vivo. Breeding of the ES cell clone #3B4 chimeras resulted

in the generation of 65 mice from which 40 were agouti (17

males and 23 females). PCR screening revealed they were all

wild-type. At that stage, since the size of the litters was not

unusual, it seemed that the modification of the ATX locus
Table 1
Summary of mutated autotaxin homozygous breeding

Mating pairs Attempt # Pups Stillborns

Triad 1 1 6 0
2 8 1
3 9 1
4 8 0

Triad 2 1 5 0
2 7 0
3 9 0

Note: each triads were composed of 1 male and 2 females, all heterozygous fo
m: male; f: female.
did not cause any mortality. We hypothesized that the cause

of the failure was the slow growing of the ATX mutated ES

cells or a potential mixture between the targeted ES cells and

wild-type ES cells. More blastocysts were injected with a new

lot of ES cells, re-implanted in three gestating females. One

out of these three females gave birth again to seven pups.

Three male chimera were identified with better chimerism rate

than previously, i.e. 85%, 90% and 95%. The three males were

mated with three wild-type C57/Bl6 females each. This breed-

ing resulted in the generation of 12 agoutis mice (10 males, 2

females) derived from the 90% chimera. These 12 agoutis F1

mice were screened by Southern blot for heterozygous charac-

terization. Three males and one female were identified there-

fore suggesting the germline transmission of the mutation

and suggesting that the failure in obtaining heterozygous mice

from the previous chimeras should be linked to an impaired

ability of the ATX-targeted ES cells to colonize the blastocyst

and to give to germline transmission. Such germline transmis-

sion was unexpected when compared to other KO projects

developed concomitantly using the same batch of ES cells.

Two of the males were used to produce the F2 generation as

above. These males were mated with 2 CMV-Cre-expressing

129v mice each. This resulted in the generation of 47 mice

(26 males and 21 females) which were screened for the Cre-

mediated excision by PCR and Southern blot. As expected,

PCR revealed a band shift from 3.7 kb to 0.6 kb suggesting

the Cre-mediated excision of the targeted allele as illustrated

on Fig. 4 for six animals. The animals analyzed in lanes 1

and 5 harboured the Cre-mediated excision. At the end of this

process, out of 51 pups, 15 heterozygous animals were identi-

fied (11 males and 5 females). Two of these heterozygous males
Wild types Heterozygous Homozygous

5 (1m + 4f) 1 (1m) Nil
2 (1m + 1f) 5 (2m + 3f) Nil
3 (1m + 2f) 5 (2m + 3f) Nil
5 (2m + 3f) 3 (2m + 1f) Nil

3 (1m + 2f) 2 (1m + 1f) Nil
3 (2m + 1f) 4 (3m + 1f) Nil

1 (1f) 8 (4m + 4f) Nil

r autotaxin mutation. The attempts were separated by at least 3 weeks.



Table 2
F3 genotypes representation v2 analysis

Hypothesis Theoretical number of animals Real number of animals Calculated
v2 values

Table
v2 values

+/+ +/� �/� +/+ +/� �/�
Viable homozygous 13 25 12 22 28 0 18.59 5.99 (5%)

9.21 (1%)
Embryonic lethal
homozygous

17 33 N/A 22 28 0 2.23 3.84 (5%)
6.63 (1%)
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were mated with the 4 heterozygous females. These breeding

resulted in the generation of seven litters of 5–9 pups each.

All of them were tail-genotyped. No homozygous, ATX�/�,

animals were born (see Table 1 for details). Considering these

results as well as results obtained before, we hypothesized that

the ATX deletion was lethal. In order to evaluate statistically

this possibility, a v2 test was summarized in Table 2.

Such lethality features in deleted mice strain have been scar-

cely reported in the literature: the main ones were retinalde-

hyde dehydrogenase-3 [17], the ribosomal protein S19 [18],

MAPK [19], Acetyl-CoA carboxylase 1 [20], hexokinase I

[21] and a review on attempts around checkpoint-associated

proteins, i.e. ATR, chk1, Mad2, NBS, BRCA1 and 2 or Rad5

[22]. Furthermore, Argraves and Drake reviewed a large panel

of lethal situations due to the knock-out of vascular-related

genes in mice [23]. They signed the importance of the pathway

in which the target gene has been modified or deleted. Con-

cerning ATX, such a result was deceptive but not really sur-

prising, since the catalytic activity of ATX might provide the

major source for lyso-phosphatidic acid from lyso-phosphati-

dylcholine. The cellular responses to LPA are remarkably di-

verse from cell proliferation and survival to induction of

neurite retraction and inhibition of gap functional communica-
Fig. 5. Expression and catalytic activity of the recombinant autotaxin wild-
D202–363) were constructed in pcDNA3 vectors. COS cells were transfected a
of the mutated proteins and for their activity, either lysophospholipase D or
from wild-type (wt), ATX T210A (three lanes) and ATX D202–363. (B) L
biological sources; right panel: lysophospholipase D activities (open symbo
symbols: ATX T210A -transfected cell-derived conditioned media and close
tion (see Moolenaar [5] and Contos et al. [24] for reviews). De-

spite this, the targeted, concomitant deletion of one or two

LPA receptors has been reported [25,26]. Surprisingly, the

lpa1�/� strain presented a series of strong altered traits in their

phenotypes, including a 50% neonatal lethality [25], while the

double KO lpa1�/�/lpa2�/� strain did not present additional

phenotypic traits. The lpa3�/� obtention shaded some light

on the possible implication of LPA in embryo implantation

[27]. Indeed, such a feature points at a possible key role

of LPA into nidification and/or implantation through one of

the LPA receptors. On the other hand, the implication of

ATX in the blood vessel development was also reported [28]

and also might explain the early lack of embryonic implanta-

tion and/or development. Conversely, the early death of em-

bryos, or even the lack of development thereof is also an a

posteriori proof that ATX plays a key role in the production

of LPA. Autotaxin might well be the unique source of LPA

at least at early stages of the embryonic life. Previous KO at-

tempts of ATX in mice have been very recently reported

[29,30]. While there are evidences that ATX is circulating in

blood [31] and that LPA production is massively – if not un-

iquely – by ATX catalytic activity, the role of the ATX poly-

peptide per se is still not clear. Indeed, initial works have
type and mutants in COS cells. Two mutants (ATX T210A and ATX
nd the conditioned media of these cells were checked for the production
phosphodiesterase. (A) Western blot analysis of the conditioned media
eft panel: phosphodiesterase activities using the same preparations as
ls: ATX wild-type -transfected cell-derived conditioned media; shaded
symbols: ATX D202–363-transfected cell-derived conditioned media).
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been published according to which ATX might be a motility

factor before the lysoPLD catalytic activity was discovered

(i.e. before 2002 [2,3]). This fact was at least in part because

ATX, a.k.a. NPP2, a nucleotide pyrophosphatase at that time,

catalyzed poorly such enzymatic activity and also be cause it

bears a RGD sequence, a well-describe motif of association

with integrin, although indirect evidence was also brought by

the fact that T306A ATX, an catalytic inactive enzyme

[15,16], was not able to show any motility capacity.

ATX KO strategy was therefore clearly important in demon-

strating or infirming this observation (i.e. if ATX polypeptide

was a motility factor by its structure or by its lysoPLD cata-

lytic activity). Tanaka et al. [30] showed that the ablation of

the ATX polypeptide was lethal to the embryo. The initiation

codon and first 45 amino acids, in their strategy, was replaced

by a lacZ sequence, impairing the expression of the whole

ATX polypeptide. van Meeteren et al. [29], chose to be more

restrictive in their construct, they took off the region of the

ATX comprised between exons 5 and 8, a region which encom-

pass the catalytic site of the enzyme. In the present approach,

to the contrary of the other reported KO strategies, we decided

to maintain the expression of the whole polypeptide, albeit in a

catalytic inactive form (the T209A mutant [15,16]).

Despite the fact that the introduction of the mutation in ES

cells led to lethality, strongly suggesting that this mutated

ATX was indeed the reason for this lethality, the formal proof

that the mutated ATX was expressed at early stages of the em-

bryo development was not shown here, while it was reported in

the literature that ATX protein is detectable only after 9.5 days

in mouse embryos [32]. Indeed, the ES1 cells were screened in

RT-PCR for the detection of ATX mRNA. It was still not

detectable after 40 cycles, strongly suggesting that ATX

mRNA were not present in these cells. Only an indirect dem-

onstration that the ATX mutant was indeed expressed in cells

could be done. As reported in Fig. 5, COS cells transfected

with either the wild-type or two mutated ATX (T210A and

D202–363) were shown to be able to express the proteins as de-

tected by our anti-ATX antibody. Nevertheless, no catalytic

activity was detectable in the conditioned media of these cells,

controlled by identical experiments with the wild-type enzyme,

as already reported in the literature [15,16]. These results dem-

onstrate one more time the lethality of the ATX�/� embryos.

This demonstrates for the first time that ATX-dependent LPA

production is due to the catalytic activity of the enzyme. This

is, to our knowledge, the first knockout mice model bearing a

single aminoacid mutation that is lethal. It is a wonderful dem-

onstration that the catalytic activity of ATX is key to the nor-

mal mouse foetal development. It also strongly suggests that

ATX is the major, if not the only – source of lysophosphatidyl

acid. Alternative technology will have to be assessed, as condi-

tional knockout after, e.g. tetracycline treatments, or targeted

KO in organs (e.g. adipose tissues) after breeding of specific

Cre-bearing animals with our strain expression the floxed

ATX.
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