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3p22.1p21.31 microdeletion identifies CCK
as Asperger syndrome candidate gene and
shows the way for therapeutic strategies in
chromosome imbalances
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Abstract

Background: In contrast to other autism spectrum disorders, chromosome abnormalities are rare in Asperger
syndrome (AS) or high-functioning autism. Consequently, AS was occasionally subjected to classical positional
cloning. Here, we report on a case of AS associated with a deletion of the short arm of chromosome 3. Further in
silico analysis has identified a candidate gene for AS and has suggested a therapeutic strategy for manifestations of
the chromosome rearrangement.

Results: Using array comparative genomic hybridization, an interstitial deletion of 3p22.1p21.31 (~2.5 Mb in size) in
a child with Asperger’s syndrome, seborrheic dermatitis and chronic pancreatitis was detected. Original bioinformatic
approach to the prioritization of candidate genes/processes identified CCK (cholecystokinin) as a candidate gene for AS.
In addition to processes associated with deleted genes, bioinformatic analysis of CCK gene interactome indicated that
zinc deficiency might be a pathogenic mechanism in this case. This suggestion was supported by plasma zinc
concentration measurements. The increase of zinc intake produced a rise in zinc plasma concentration and
the improvement in the patient’s condition.

Conclusions: Our study supported previous linkage findings and had suggested a new candidate gene in AS.
Moreover, bioinformatic analysis identified the pathogenic mechanism, which was used to propose a therapeutic
strategy for manifestations of the deletion. The relative success of this strategy allows speculating that therapeutic or
dietary normalization of metabolic processes altered by a chromosome imbalance or genomic copy number variations
may be a way for treating at least a small proportion of cases of these presumably incurable genetic conditions.
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Background
Asperger syndrome (AS) is a neurodevelopmental condi-
tion clinically and genetically linked to autism spectrum
disorders (ASD), manifesting as appreciable difficulties
in social interaction and nonverbal communication with
restricted and repetitive patterns of behavior and inter-
ests [1, 2]. Although chromosomal abnormalities and

genomic copy number variations are common in ASD
[3–9], genome variations are occasionally reported in in-
dividuals with AS [10, 11]. Such rarity of chromosomal
rearrangements hinders the application of classical pos-
itional cloning [12]. In the available literature, only ex-
ceptional cases of individual chromosome imbalances
(i.e. deletions, duplications, translocations, supernumer-
ary marker chromosomes, and gonosomal aneuploidy)
or chromosomal syndromes (i.e. 3q26.33-3q27.2 micro-
deletion and Klinefelter syndromes) have been associated
with AS [10, 11, 13–20]. Since occasional chromosome
studies and genome-wide analyses of AS yielded conflicting
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results [21–23], the search for candidate genes of this ASD
remains to be pursued.
Recently, we have used several array comparative gen-

omic hybridization (CGH) platforms for studying Rus-
sian cohort of children with ASD and/or intellectual
disability (described previously [4, 24–26]). Additionally,
an original bioinformatic technology [27, 28] was used
to determine functional consequences of genomic rear-
rangements and pathogenetic mechanisms. In a case of
AS, a deletion of the short arm of chromosome 3 was
detected.

Results and discussion
An interstitial deletion of 3p22.1p21.31 (2.456 Mb in
size) in a child with Asperger’s syndrome, seborrheic
dermatitis and chronic pancreatitis was detected (Fig. 1).
According to the available literature, these chromosomal
regions were never deleted in in children with ASD.
However, previous linkage analyses have mapped AS to
3p21-3p24 [21]. The deletion encompassed 4 genes asso-
ciated with autosomal recessive diseases, none of which
was observed in the index case. To evaluate functional
consequences of the gene loss, we have further analyzed
these genes using an original bioinformatic methodology
[28]. The selection of brain areas for gene prioritization
through gene expression profiling was made according
to Amaral et al. [29], who had summarized brain regions
affected in ASD. In silico gene expression profiling of
deleted genes using BioGPS [30] have indicated that
CCK is the most likely candidate gene for AS. Although
NKTR and HHATL have also indicated an increased ex-
pression in brain areas of interest, CCK has shown the
highest expression (prioritization score) (Fig. 2). CCK
encodes cholecystokinin, a brain/gut peptide inducing
the pancreatic enzyme release and gallbladder con-
traction. In brain functioning, CCK role remains un-
clear. However, it is suggested to be involved in a

variety of neuropsychiatric disorders [31] and normal
or pathological eating behavior [32, 33]. Genomic
copy number variations of CCK have never been as-
sociated with ASD.
Currently, analyses of chromosome abnormalities in

AS have suggested several candidate genes: NIPA1 [11],
MINK1 and MINK2 [14], ZFP536 [18], LFNG [19].
Genome-wide association and linkage studies have not
found a clear signal at a gene for AS [21–23]. Therefore,
one can suggest that a discovery of a new AS candidate
gene is a valuable contribution to ASD research.
To gain further insights into the CCK-mediated mech-

anisms of the disease and confirm its involvement in
ASD, we have addressed CCK interactome (protein
interaction network) (Fig. 3). The analysis has revealed a
likely mechanism for clinical manifestations. Firstly, al-
terations to CCK are more likely to result in abnormal
eating behavior and pancreatic problem [34]. The latter
has been manifested as pancreatitis in the index patient.
Additionally, we have hypothesized that an alteration to
key element of this protein interaction network/pathway
(Fig. 3) is likely to result not only in general malabsorp-
tion, but also in reduced absorption of calcium and zinc.
This hypothesis was based on the fact that interactome
parts related to calcium/ zinc metabolism (i.e. formation
of (pro-)insulin-zinc-calcium complexes and MEP1A-
and MEP1B-mediated zinc ion binding) were likely to be
“disconnected” from cholecystokinin receptor pathway
or CCK-mediated food intake because of “CCK removal”.
Biochemically, low zinc plasma zinc concentration was
revealed. Calcium concentrations were normal. It is
noteworthy, that zinc deficiency is constantly reported
to feature ASD [35–37]. Therefore, it was not surprising
that AS and other phenotypic manifestations of the dele-
tions were etiologically related to zinc malabsorption/
deficiency. Consequently, increasing the zinc intake pro-
duced a rise in zinc plasma concentration coupled with

Fig. 1 Schematic overview of the deletion of the short arm of chromosome 3 (3p22.1p21.31) depicted using UCSC Genome Browser (Human
Feb. 2009 (GRCh37/hg19 assembly), http://genome-euro.ucsc.edu/index.html) showing OMIM (Online Mendelian Inheritance in Man) genes
(genes associated with OMIM disorders are shown in green)
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the improvement in the patient’s condition (for more details
see Case report). It is to note that such psychopharmaco-
logical interventions are not common in ASD [38, 39].
Combining molecular cytogenetic whole genome scan

(i.e. array CGH or chromosomal microarray analysis)
with in silico approaches to uncover molecular and cel-
lular mechanisms of genomic diseases in a personalized
manner has been proposed earlier [40–42]. In this study,

the potential of this emerging technology has been in-
creased inasmuch as data on a chromosome abnormality
was used not only for diagnostic issues, but also for de-
veloping a therapeutic strategy. More importantly, since
chromosome syndromes and genomic disorders are gen-
erally considered incurable, new perspectives on treating
at least a small proportion of cases associated with single
molecular defects altered by genomic copy number

Fig. 2 Gene expression profiles of deleted genes in brain areas known to be involved in ASD pathophysiology (according to [29]); data was retrieved
from BioGPS (http://biogps.org [30])

Fig. 3 CCK interctome (protein interaction network). Using irregular geometric shapes/cartoons, interctome parts related to different pathways
and/or molecular functions are depicted: Ca2+-calcium metabolism; Ca2+ and Zn2+-(pro-)insulin-zinc-calcium complexes; cholecystokinins-interactome
part related to cholecystokinin receptor pathway (i.e. CCK-regulated food intake); metalloproteases (carboxypeptidase)-interactome part related to the
pathway of biosynthesis of peptide hormones and neurotransmitters (including insulin) being a likely link between CCK-regulated food intake pathways
and zinc metabolism; metalloproteases (Zn2+ binding)-interactome parts related to MEP1A- and MEP1B-mediated zinc ion binding, which interact with
CCK. The interactome was processed by Cytoscape software (Version: 3.1.1) [48]
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variations/chromosomal imbalances appear to be highly
attractive. Therefore, in addition to all the benefits, which
may derive from clinical and research applications of
chromosomal microarray-based technologies (given in
details in [43]), a new one can be added to the list.

Conclusion
In conclusion, molecular cytogenetic and in silico analyses
of a deletion of the short arm of chromosome 3 in
a patient with AS, seborrheic dermatitis, and chronic
pancreatitis have supported previous linkage findings and
have implicated CCK as a new candidate gene for AS. Fur-
thermore, we were able to propose the pathogenic mech-
anism, which allowed to develop a more-or-less successful
therapeutic strategy. Accordingly, we speculate that either
therapeutic or dietary normalization of metabolic pro-
cesses produced by chromosome imbalances or genomic
copy number variations might be a way for treating at
least a small proportion of individuals suffering from these
presumably incurable genetic conditions.

Methods
Case report
The proband is the only child of unrelated parents. His
father meets DSM-IV criteria for social phobia. Family
history is otherwise negative for ASD but two maternal
uncles had a history of alcohol abuse. The boy was born
by cesarean delivery at 39 weeks after a pregnancy
marked by bleeding events during the first trimester.
Neonatal measurements were within normal limits. His
birth weight was 3200 g. His length was 52 cm. The boy
had a prolonged period of neonatal jaundice and high
muscle tone. Early motor milestones were delayed. He
had good head control at age of 3 months; he rolled over
at 6 months, sat up at 8 months, began to stand at 9
months. He started walking unsteadily without support
at 15 months and had poor motor coordination until 5
years of age. He spoke his first words at 11 months, used
sentences by 30 months. He knew the letters at this age.
At the age of 4 years, he learned to read all by himself,
had excellent memory for poems and was able to per-
form easy calculations. However he was often awkward
in social situations and showed no interest to other
children usually playing at a distance from others. At the
age of 8 years, physical examination showed no minor
abnormalities except large ears, flattened midface and
ocular hypotelorism. The boy had low weight 21.5 kg
(10th percentile) and poor subcutaneous fat. His height
was 128 cm, and head circumference was 53 cm (aver-
age). He suffered from seborrheic dermatitis and fre-
quent respiratory infections. Biliary dyskinesia and
chronic pancreatitis were diagnosed by a gastroenterolo-
gist. Special diet and pancreatic enzyme supplements
were inefficient. The patient also had a mitral valve

regurgitation, nephroptosis and myopia. He was quite
clumsy and had motor stereotypic hand movements re-
ferred to shaking hands during agitation. His social
interaction was impaired. Direct eye gaze feedback was
rare. Limited use of gestures and the phobia of commu-
nicating with people during mealtimes were noted. Boy’s
interests were focused on computer and he was making
a substantial progress in this activity. The proband
showed an IQ within the normal range (110) and ful-
filled DSM-IV criteria for Asperger syndrome. Cytogen-
etic analyses showed normal karyotypes in the index
patient and his parents. Biochemical studies showed a
reduced plasma zinc concentration (6.5 μmol/L) and
normal serum calcium concentration (2.4 mmol/L). Ac-
cordingly, zinc gluconate per os for the normalization of
the plasma concentration were proposed. Three months
after its administration, boy’s weight increased to 23.1 kg
and seborrheic dermatitis disappeared. Communication
became more intense and stereotyped movements were
rarer. The patient did not experienced further episodes
of pancreatitis. Plasma zinc concentration reached normal
levels (14.3 μmol/L).

Molecular cytogenetics (Array CGH)
Array CGH was performed using BAC and oligonucleo-
tide array CGH: Human BAC Array-System, Perkin
Elmer and NimbleGen 135 K whole genome tiling array,
respectively. BAC-array CGH was performed using cus-
tomized Constitutional Chip®4.0 (Human BAC Array-
System, Perkin Elmer, USA) as described earlier [25, 44].
The resolution of the BAC-array was estimated as
0.3–05 Mb. Oligonucleotide array CGH was performed
using NimbleGen 135 K whole genome tiling array as
previously described [45, 46]. Sample was labeled using
Cy3-dUTP whereas reference DNA was labeled by Cy5-
dUTP. Hybridization was done according to the manu-
facturer’s instructions (NimbleGen Arrays User’s Guide
CGH and CGH/LOH Arrays v9.1, Roche NimbleGen,
Madison, WI, USA). Scanning and image acquisition has
been processed in the same way as for BAC-Perkin
Elmer Array [25, 45].

Bioinformatics
Genomic, epigenomic, proteomic and metabolomic data
was analyzed as described previously [27, 28, 47]. Each
deleted gene was addressed using clinical, genomic
(browsers and gene ontology databases), epigenetic (gene
expression), proteomic, interactomic (database + soft-
ware) and metabolomic databases. Interactomic data was
visualized and processed using Cytoscape software
(Version: 3.1.1) [48]. The technology of prioritization
of candidate genes/processes was originally described
in details in [28].
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