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SUMMARY

Vascular endothelial growth factor (VEGF) and Angio-
poietin 1 (Ang1) are both potent proangiogenic fac-
tors, but, whereas VEGF causes vascular permeabil-
ity, Ang1 stabilizes blood vessels and protects them
from VEGF-induced plasma leakage. The antivas-
cular permeability mechanisms deployed by Ang1
are still undefined. Here, we demonstrate that Ang1
halts the ability of VEGF to induce the phosphoryla-
tion-dependent redistribution of the adhesion mole-
cule VE-cadherin, thereby rescuing the endothelial
barrier function. Ang1 inhibits the activation of Src
by VEGF, the most upstream component of the path-
way linking VEGF receptors to VE-cadherin internali-
zation. Indeed, Ang1 promotes the activation of mDia
through RhoA, resulting in the association of mDia
with Src. This ultimately deprives VEGF receptors of
an essential molecule required for promoting the dis-
ruption of endothelial cell-cell contacts and paracel-
lular permeability.

INTRODUCTION

Vascular endothelial growth factor (VEGF) and Angiopoietin

1 (Ang1) play essential and complementary roles in vascular de-

velopment during embryogenesis. Whereas VEGF is required for

the formation of the initial vascular plexus early in development,

Ang1 is necessary for the subsequent vascular remodeling into

mature blood vessels (Ferrara et al., 1996; Suri et al., 1996).

Both VEGF and Ang1 share the ability to promote endothelial

survival, proliferation, and migration, by acting on their cognate

cell-surface tyrosine-kinase receptors, VEGFR2 (Flk1, KDR)

and Tie2 (Tek), respectively (Jones et al., 2001). Aligned with their

proangiogenic roles, overexpression of VEGF and Ang1 in the

mouse skin results in greatly enhanced tissue vascularity (Suri

et al., 1998). However, whereas VEGF causes vascular perme-

ability and tissue edema, Ang1 contributes to the stabilization

and the maturation of growing blood vessels (Senger et al.,

1983; Thurston et al., 1999). Furthermore, Ang1 administration

or overexpression in the dermal compartment can protect from

the potentially lethal actions of VEGF as a consequence of un-

controlled plasma leakage (Thurston et al., 2000).

The absence of either Ang1 or Tie2 expression leads to severe

defects in blood vessel formation during mouse development
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characterized by a lack of the periendothelial support (Dumont

et al., 1994; Suri et al., 1996). However, Ang1 reduces plasma

leakage and strengthens adult vasculature integrity even in the

absence of these mural cells (Uemura et al., 2002). In this regard,

Ang1 can potently block VEGF-induced endothelial permeability

in vitro (Gamble et al., 2000), suggesting that their opposing

effects on vascular leakage may be exerted through their direct

stimulation of endothelial cells. The molecular mechanisms

underlying these clearly distinct, counteracting effects of VEGF

and Ang1 on vascular permeability are still undefined. We show

here that Ang1 interferes with the ability of VEGF to disrupt the en-

dothelial barrier by preventing Src activation, which is an obliga-

tory component of the pathway by which VEGF provokes vascular

permeability (Eliceiri et al., 1999; Gavard and Gutkind, 2006; Weis

et al., 2004). At the molecular level, we provide evidence that this

process involves the activation of RhoA by Ang1 and the conse-

quent association of mDia, a RhoA downstream target, with Src,

thereby preventing the activation of Src by the VEGF receptor

VEGFR2. Ultimately, by uncoupling Src to VEGFR2, Ang1 may in-

terfere with the ability of VEGF to initiate the activation of a Src-

dependent intracellular signaling route that culminates in the

serine phosphorylation-dependent internalization of VE-cadherin

and the disassembly of interendothelial adherens junctions, thus

preventing VEGF-induced endothelial permeability.

RESULTS

Ang1 Counteracts VEGF-Induced Endothelial
Permeability, but Not VEGF Proangiogenic Signaling
As previously described, the subcutaneous administration of

VEGF caused dermal vascular permeability accompanied by an

increase in VEGFR2 activation (Figure 1A) (Lee et al., 2007; Thur-

ston et al., 2000). Remarkably, coinjection with Ang1 prevented

VEGF-induced blood vessel leakiness and plasma leakage, which

was assessed by the extravasation of Evans Blue dye in mice

(Figures 1B and 1C). To begin investigating the molecular mecha-

nisms underlying the protective effect of Ang1 against VEGF-

induced vascular leakage, we first confirmed that Ang1 can di-

rectly block the ability of VEGF to induce endothelial permeability

in vitro. Indeed, we observed that the pretreatment of endothelial

cells with Ang1 for 30 min efficiently prevented the disruption of

the endothelial barrier function caused by VEGF, as judged by

the passage of FITC-dextran through the endothelial monolayer

(Figure 1D). However, both VEGF and Ang1 can promote the pro-

liferation and migration of endothelial cells when used alone or in

combination (Figures 1E and 1F). Importantly, the stimulation with
evelopmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc. 25
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Figure 1. Ang1 Counteracts VEGF-Induced Endothelial Permeability, but Not VEGF Proangiogenic Signaling

(A) Mice were injected subdermally with PBS or with VEGF (50 ng/250 ml) for 1 hr. Tissue sections were stained for pY1054 VEGFR2 (pVEGFR2) and were analyzed

by confocal microscopy. Similarly, costaining with CD31 and pVEGFR2 or control antibodies (donkey anti-rabbit) was performed. The scale bars are 10 mm.

(B) Representative pictures of corresponding skin samples after local injection of 250 ml PBS, VEGF (50 ng), Ang1 (50 ng), or a combination of reagents for 1 hr.

(C) The Evans Blue extravasation from the blood vessels was quantified by spectrometry (OD620 nm), n = 7 mice. The median is represented on this scatter plot.

(D) FITC-dextran permeability was determined in overnight-starved, 3-day-old mouse endothelial cell (SVEC) monolayers unstimulated (�) or treated for 30 min

with 50 ng/ml VEGF, Ang1, or VEGF after Ang1 treatment (at the indicated times). The data represent FITC-dextran permeability expressed as a fold increase ±

SEM with respect to untreated starved cells.

(E) 24 hr-starved endothelial monolayers were left in serum-free (�) media or were stimulated overnight (+, 50 ng/ml) by VEGF and Ang1 alone or in combination.

Samples were then incubated with BrdU (10 mM, 4 hr) and were processed for staining and counting. The graph represents the percentage ± SEM of cells showing

BrdU-positive nuclei staining.

(F) Endothelial migration was assessed by wound closure of endothelial monolayers treated as described in (E). Data represent the ratio ± SEM between treated

and control samples of the distance filled in the wound by endothelial cells.

(G) Overnight-starved, 3-day-old SVEC monolayers (�) were stimulated (+, 50 ng/ml) with VEGF (5 min), Ang1 (30 min), and a combination of the two (Ang1 +

VEGF, 25 + 5 min). VEGFR1 and Tie2 tyrosine phosphorylation (p) levels were monitored in VEGFR1 and Tie2 immunoprecipitations, and VEGFR2 activation

was assessed by western blots for pY1054 VEGFR2 in total cell lysates. VEGFR1 and two western blots usually show two major bands (200 and 250 kDa).

(H) Cells were processed as described in (G). AKT, ERK, and FAK activation was estimated by using appropriate phosphospecific antibodies, and total AKT,

ERK2, and FAK were examined in the same samples.

ANOVA test: ***, p < 0.001; **, p < 0.01; *, p < 0.05.
Ang1, which caused the tyrosine phosphorylation of its receptor,

Tie2, did not affect the activation of VEGFR1 and VEGFR2 by

VEGF, nor their ability to enhance the phosphorylation of Akt,

ERK1/2, and the focal adhesion kinase, three shared downstream

signaling events initiated by VEGF and Ang1 (Figures 1G and 1H).

Thus, Ang1 can specifically block VEGF-induced permeability,

without altering VEGF-initiated proangiogenic signaling.

Ang1 Prevents VEGF-Induced VE-Cadherin S665
Phosphorylation-Dependent Internalization
Recent evidence suggests that VEGF increases endothelial per-

meability by triggering the destabilization of adherens junctions,
26 Developmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc.
a process that involves the removal of adhesive molecules from

the surface of endothelial cells (Gavard and Gutkind, 2006; Weis

et al., 2004). Notably, VEGF stimulation of endothelial cells

labeled with anti-VE-cadherin antibodies results in the rapid

accumulation of VE-cadherin-containing intracellular vesicles

(Figure 2A). Stimulation with Ang1 not only failed to promote

this internalization, but it also halted the accumulation of VE-

cadherin in an internal compartment caused by VEGF (Figures

2B and 2C). However, Ang1 did not affect VEGF-induced VEGFR2

internalization (Figure S1; see the Supplemental Data available

with this article online) (Lampugnani et al., 2006). Ang1 did not

have a general effect on endocytic pathways, as judged by
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the effective uptake of transferrin in Ang1-stimulated cells (not

shown). However, the tyrosine phosphorylation of VE-cadherin

may regulate the endothelial barrier junctions in response to

VEGF (Potter et al., 2005). As shown in Figure 2D, VEGF stimula-

tion caused an accumulation of phosphotyrosine-containing

VE-cadherin in mature endothelial cell monolayers. Whereas

Ang1 did not cause an increase in VE-cadherin tyrosine phosphor-

ylation at early time points (not shown; Gamble et al., 2000), it pro-

moted an increase in phosphotyrosine-containing VE-cadherin

after 30 min of stimulation (Figure 2D). However, Ang1 stimulation

did not influence the accumulation of phosphotyrosine on

VE-cadherin in response to VEGF. This observation prompted

us to investigate whether Ang1 alters the phosphorylation of

VE-cadherin on its serine 665 residue (S665), which has been re-

cently shown to represent a critical step involved in VE-cadherin

trafficking in response to VEGF (Gavard and Gutkind, 2006). The

VEGF-induced S665 phosphorylation of VE-cadherin was clearly

reduced when cells were pre-exposed to Ang1 (Figure 2D).

To examine the contribution of this particular phosphorylation

event to the antagonistic effects of Ang1 on VEGF-induced

permeability, we took advantage of the availability of mouse en-

dothelial cells expressing wild-type human (h)VE-cadherin and

its phosphomimetic S665D mutant (Gavard and Gutkind, 2006).

Similar to endogenous VE-cadherin, Ang1 prevented the inter-

nalization of wild-type hVE-cadherin in response to VEGF stimu-

lation. However, Ang1 failed to limit the intracellular accumulation

of S665D hVE-cadherin (Figure 2E). Aligned with these observa-

tions, Ang1 could not prevent the basal or VEGF-provoked

permeability in endothelial cells expressing the phosphomimetic

mutant S665D of hVE-cadherin (Figure 2F). Thus, our data sug-

gest that whereas Ang1 can potently block the disruption of the

endothelial barrier function caused by VEGF, it cannot prevent

the disassembly of endothelial junctions, and hence increased

permeability, once VE-cadherin is phosphorylated and targeted

for internalization.

Using the acute in vivo vascular permeability model described

above, we observed that the morphology of the blood vessels

was not altered after VEGF or Ang1 injections, as judged by

the wrapping of the endothelial cells (CD31 positive) by the

smooth muscle cells (aSMA positive, not shown). However, con-

focal microscopy analysis of endothelial markers in the skin of

control and VEGF-treated mice revealed that vascular per-

meability was concomitant with the ability of VEGF to trigger

VE-cadherin redistribution. VE-cadherin is found primarily on

the cell surface along CD31 staining and displays a polarized ac-

cumulation into cell junctions in control mice, but VE-cadherin

presents a more diffuse, nonpolarized intracellular distribution

pattern after VEGF stimulation (Figure 2G). These changes in

VE-cadherin localization in response to VEGF exposure are mas-

sive (65% of blood vessels), and specific, as VEGF does not

affect the distribution of other cell-surface molecules, such as

CD31, and are reduced to nearly baseline conditions when

VEGF is administered with Ang1 (<25%, Figure 2H). This ability

of Ang1 to prevent the VE-cadherin redistribution caused by

VEGF in blood vessels is consistent with the potent antagonist

effect of Ang1 on VEGF-induced acute vascular permeability.

Importantly, aligned with our in vitro observations, protein prep-

arations from dorsal skin of VEGF-treated mice revealed that

VEGF promotes the rapid and sustained augmentation of S665
VE-cadherin phosphorylation in vivo, which was prevented by

the administration of Ang1 (Figure 2I).

Ang1 Blocks VEGF-Triggered Src Activation
Since VEGF causes VE-cadherin endocytosis through a bio-

chemical route that involves the sequential activation of Src,

Vav2, Rac1, and PAK (Gavard and Gutkind, 2006), we tested

the specific effects of Ang1 on this signaling axis. Prestimulation

with Ang1 prevented the VEGF-initiated activation of Src-family

kinases (SFK), Vav2, and Rac (Figures 3A; Figure S2). Similarly,

Ang1 decreased the accumulation of phosphorylated PAK in

response to VEGF (not shown), together suggesting that Ang1

may interfere with the ability of VEGF to elevate the activity of

a Src-initiated pathway that culminates in the serine phosphory-

lation and internalization of VE-cadherin. Moreover, the use of an

active Src mutant circumvented the inhibitory activity of Ang1 on

VEGF-induced permeability (Figure S3). We then examined in

more detail which specific SFK can be affected by Ang1. Endo-

thelial cells express Src and its related nonreceptor tyrosine

kinases Fyn and Yes (Eliceiri et al., 1999), all of which were acti-

vated in response to VEGF, as judged by their detection with

antibodies recognizing the phosphorylated active state (pSFK)

in the corresponding immunoprecipitates (Figure 3B). Among

them, however, Src was the only SFK efficiently associated

with VEGFR2, in agreement with a prior report (Chou et al.,

2002). Using a similar procedure, we found that Ang1 prevented

the activation of Src and Fyn, but not Yes (Figure 3C). To chal-

lenge the biological significance of these observations, we

used histamine, a well-known mediator of vascular permeability.

This effect was insensitive to SFK blockade, and was thus likely

SFK independent (Figure S4). In addition, Ang1 had only a mod-

est effect on histamine-induced permeability when compared to

its remarkable opposition to VEGF, suggesting that Ang1 may

be more effective in preventing endothelial permeability when

promoted by the activation of SFK-dependent pathways. We

next investigated whether Ang1 can impede VEGF-induced

SFK activation in vivo. Indeed, SFK phosphorylation was greatly

enhanced upon VEGF stimulation, which was prevented when

coadministered with Ang1 (Figure 3D). As Src represents the

most upstream component of the pathway linking VEGFR2 to

endothelial permeability, and both genetic and pharmacological

studies indicate that Src activity, but not Fyn, is strictly required

for VEGF-induced vascular leakage in vitro and in vivo (Eliceiri

et al., 1999; Gavard and Gutkind, 2006), we decided to focus

our attention on this nonreceptor tyrosine kinase.

To further investigate how Ang1 affects the dynamic regulation

of Src by VEGF, we used a FRET-based Src reporter system

(Figure 3E) (Ting et al., 2001). The emission spectra of control

experiments indicated that, when the CFP donor is excited at

433 nm, an energy transfer occurred at the YFP peak (527 nm)

only in VEGF-stimulated cells (Figure 3F). Remarkably, this

VEGF-dependent FRET was abolished by Ang1 as well as by

a SFK inhibitor (su6656). More importantly, this approach re-

vealed that the time course of VEGF stimulation is consistent

with a two-step activation of Src, which is sustained for at least

30 min (Figure 3G), and that Ang1 can reduce these two peaks of

VEGF-initiated Src activation. Quantitative analysis of single-cell

image-based FRET assays also indicated that Src is activated in

more than 80% of the endothelial cells (not shown), with a high
Developmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc. 27
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Figure 2. Ang1 Prevents VEGF-Induced VE-Cadherin S665 Phosphorylation-Dependent Internalization

(A) Human endothelial cells were incubated with anti-human VE-cadherin antibody at 4�C to label cell-surface-exposed VE-cadherin and were then placed at

37�C for 30 min to track its movements, in serum-free medium (control) or with VEGF (50 ng/ml). Cells were fixed (‘‘no wash’’) or subjected to mild acid wash

(‘‘acid wash’’) before fixation in order to remove membrane-bound antibodies. This treatment reveals acid-resistant internal anti-VE-cadherin antibodies. The

scale bar is 10 mm.

(B) Cells were treated as indicated in (A) in serum-free medium (control) with 50 ng/ml VEGF, Ang1, and VEGF after Ang1 treatment. Cells were further stained for

ZO-1 (red). Only the internal VE-cadherin (green) is resistant to the acid-wash treatment while the cell-surface staining is removed. The scale bar is 10 mm.

(C) Quantification of the number of cells exhibiting vesicle staining in the VE-cadherin-uptake experiments and expressed as the mean percentage of total cells ±

SEM. Cells were stimulated as indicated in (B), n > 300.

(D) Overnight-starved, 3-day-old SVEC monolayers (�) were stimulated (+, 50 ng/ml) by VEGF (5 min), Ang1 (30 min), and a combination of the two (Ang1 + VEGF,

25 + 5 min). Cell lysates were analyzed for phosphotyrosine (pY), via western blot, in the VE-cadherin (VE-cad) immunoprecipitates (IPs). Total cell lysates were

analyzed for phosphoS665-VE-cadherin (pS665) and total VE-cadherin (VE-cad) contents.

(E) Quantification of the number of cells exhibiting vesicle staining in the VE-cadherin-uptake experiments and expressed as the mean percentage of transfected

cells ± SEM in mouse SVECs expressing WT (white bar) and S665D (black bar) human (h)VE-cadherin. Cells were stimulated as indicated in (B), n > 300. The level

of expression of the human WT VE-cadherin and SD is shown in transfected mouse SVECs, by using the BV6 human-specific anti-VE-cadherin antibody.

(F) FITC-dextran permeability was determined in overnight-starved, 3-day-old SVEC monolayers, transfected with WT (white bar) and S665D (black bar) hVE-

cadherin, and treated as described in (B). The data represent FITC-dextran permeability expressed as fold increase ± SEM with respect to untreated, starved

cells.

(G) Representative confocal acquisitions of CD31 (green) together with VE-cadherin (red) performed on ethanol-fixed, frozen 3 mm sections from skin samples

injected with 250 ml saline (�), VEGF (50 ng), or Ang1 + VEGF (50 ng of each) after 1 hr. The scale bars are 20 mm.

(H) VE-cadherin redistribution was quantified based on z-stack reconstructions in frozen sections from five different animals. A positive score was attributed when

VE-cadherin and CD31 staining were not colocalized. The graph represents the percentage ± SEM of blood vessels exhibiting this delocalized VE-cadherin

pattern per random field.
28 Developmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc.
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Figure 3. Ang1 Blocks VEGF-Triggered Src Activation

(A) Overnight-starved, 3-day-old SVEC monolayers (control) were stimulated by 10% serum as a positive control, VEGF (50 ng/ml, 5 min), Ang1 (50 ng/ml, 30 min),

and a combination of the two (Ang1 + VEGF, 25 + 5 min). The Rac activation was assessed by GST-CRIB pull-down (Rac-GTP), and Src activation was assessed

by anti-phosphoY418-SFK antibodies (pSFK) in total cell lysates. Total levels of Rac and Src were also evaluated in the same samples. The graph shows the

relative pixel intensity, measured by the NIH Image J software. Bar graphs show the average ± SEM.

(B) Similarly, cells were treated with VEGF (+) and processed for Src, Fyn, and Yes immunoprecipitations (IPs). IPs were then processed for western blots against

Src, Fyn, Yes, pSFK, and VEGFR2.

(C) Cells were treated as described in (A), and protein extracts were subjected to Src, Fyn, or Yes IPs. Western blots for pSFK were then performed in each IP.

(D) Proteins were extracted from mouse skins that were either noninjected or were injected with 250 ml saline (�), VEGF (50 ng), Ang1 (50 ng), or a combination of

the two for 1 hr, and they were analyzed by western blot against phosphoY418-SFK (pSFK) and total Src.

(E) Schematic representations of the Src FRET biosensor in the case of quiescent and energy transfer conformations, dependent on the Src activity status. Once

activated, Src may phosphorylate its substrate (P), which showed higher affinity for the SH2 domain, bringing YFP closer enough to CFP for energy transfer.

(F) Wavelength emission spectra between 470 and 540 nm, measured each 20 nm, when excited at 433 nm. The CFP peak (donor) is around 480 nm, and the YFP

peak (acceptor) is around 530 nm. Cells were either nonstimulated (PBS) or were stimulated by VEGF (50 ng/ml, 5 min) and after su6656 (SFK inhibitor, 1 mM,

30 min) and Ang1 (50 ng/ml, 30 min) treatments. Curves represent the average ratio from three independent experiments, each done in triplicate.

(G) FRET is represented as the normalized YFP/CFP ratio (527/476 nm emission fluorescence, when excited at 433 nm). Cells were stimulated as described in (F)

for the indicated period of times. Curves represent the average ratio from three independent experiments, each done in triplicate.

(H) FRET efficiency was monitored in SVECs that were unstimulated (control) or were stimulated by 50 ng/ml VEGF (5 min), Ang1 (25 min), or a combination of the

two (Ang1 + VEGF, 25 + 5 min). Energy transfer is color-coded (from purple to red). The scale bar is 20 mm.

(I) Quantification of FRET efficiency calculated by the Youlan method either in the total cell area (whole), at the plasma membrane area (PM), or in the intracellular

part, excluding the cell border (intracell), n = 9 cells. Bar graphs show the average ± SEM.

ANOVA test: ***, p < 0.001; **, p < 0.01.
FRET efficiency (15%) after a 5 min stimulation (Figures 3H and

3I). Aligned with the data obtained by using spectral FRET of

whole-cell populations, this single-cell Src activation-based

FRET analysis showed that VEGF stimulation of Src was strongly

blocked by Ang1 pretreatment (Figures 3H and 3I). We also no-

ticed that this effect was even more pronounced when analyzing
D

the status of Src activation at the level of the plasma membrane

(Figure 3I). Taken together, these observations suggested that

Ang1 may interfere with VEGF-induced endothelial barrier desta-

bilization by preventing Src activation, which is an obligatory

component of the pathway by which VEGF provokes vascular

permeability.
(I) Western blot analysis was performed for phosphoS665-VE-cadherin (pS665) and VE-cadherin (VE-cad) from mice injected with saline (�) or VEGF (50 ng/250 ml)

at the indicated times. Alternatively, proteins were extracted from mouse skins that were either noninjected or were injected with 250 ml saline (�), VEGF (50 ng),

Ang1 (50 ng), or a combination of the two for 1 hr.

ANOVA test: ***, p < 0.001; **, p < 0.01; *, p < 0.05.
evelopmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc. 29
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Figure 4. Activation of RhoA by Ang1 Protects from VEGF-Induced Permeability

(A) Overnight-starved, 3-day-old SVEC monolayers (control) were stimulated by 10% serum as a positive control, VEGF (50 ng/ml, 5 min), Ang1 (50 ng/ml, 30 min),

and a combination of the two (Ang1 + VEGF, 25 + 5 min). RhoA activation (RhoA-GTP) was assessed by GST-rhotekin pull-down. RhoA was used as a loading

control in total cell lysates.

(B) SVECs were transfected with nonsilencing (ctrl, 50 nM) or RhoA (50 nM) duplexes. RhoA protein levels were assessed 3 days later; Rac was used as a loading

and specificity control in the same samples.

(C) FITC-dextran permeability was determined in starved, 3-day-old SVEC monolayers transfected by mock DNA (white bar), RhoA siRNA (50 nM, black bar), and

C3 toxin (gray bar). Cells were nonstimulated (control) or were treated for 30 min with 50 ng/ml VEGF alone or after Ang1 treatment. Bar graphs show the average

± SEM.

(D) Quantification of the number of cells exhibiting VE-cadherin vesicle staining in the uptake experiments either in serum-free media (control) or when incubated

for 30 min with 50 ng/ml VEGF alone or after Ang1 treatment; quantification was expressed as the mean percentage of transfected cells ± SEM in SVECs ex-

pressing GFP (mock, white bar), active RhoAQL (gray bar), and inactive RhoAN19 (black bar).

(E) SVECs were transfected with nonsilencing (ctrl) or RhoA duplexes (50 nM). Two days later, starved-overnight SVEC monolayers (�) were stimulated by VEGF

(50 ng/ml, 5 min) alone or after Ang1 stimulation (Ang1 + VEGF, 25 + 5 min). PhosphoS665-VE-cadherin (pS665), RhoA, and VE-cadherin protein levels were

monitored in the same samples.

(F) Mice were injected with 250 ml PBS, VEGF (50 ng), Ang1 (50 ng), and C3 toxin plus tetanolysin (1 mg). The extravasation of Evans Blue from the blood vessels

was quantified by spectrometry (OD620 nm), n = 7 mice. The median is represented on this scatter plot.

(G) Representative pictures of corresponding skin samples treated as described in (F).

(H) Protein extracts from skin were prepared as described above, and phosphoS665-VE-cadherin (pS665) and VE-cadherin (VE-cad) protein levels were mon-

itored in the same samples.

ANOVA test: ***, p < 0.001; **, p < 0.01.
Activation of RhoA by Ang1
Protects from VEGF-Induced Permeability
In search for a likely mechanism by which Ang1 could prevent

SFK activation by VEGF, we focused on the fact that Ang1

blocks the VEGF-dependent activation of Rac1 without interfer-

ing with other components of the VEGFR signaling axis. As

small GTP-binding proteins often regulate the activity of each

other (Burridge, 1999), we asked whether this proangiogenic

factor stimulates a distinct member of the Rho-family GTPases.
30 Developmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc.
First, we observed that Ang1 can transiently activate Rho in the

endothelial monolayer (Figure 4A), as earlier reported (Cascone

et al., 2003). Interestingly, the ability of VEGF to cause endothe-

lial permeability in the presence of Ang1 was restored when

RhoA expression was decreased by siRNA or its activity was

blocked by the use of the C3 toxin, supporting a role for RhoA

signaling in the antipermeability pathway deployed by Ang1 in

the presence of VEGF (Figures 4B and 4C). VE-cadherin endocy-

tosis was also affected by RhoA activation, as expression of the
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Figure 5. mDia Is Required Downstream of Ang1 to Block VEGF-Dependent Permeability

(A) FITC-dextran permeability was determined in 3-day-old, starved SVECs (control, white bar), stimulated 30 min by 50 ng/ml VEGF alone (black bar) and after

Ang1 stimulation (gray bar). Cells were treated with increasing amounts of Y27632 ROK inhibitor (5, 10, and 20 mM). Bar graphs show the average ± SEM.

(B) SVECs were transfected with 50 nM nonsilencing (�), mDia1, and mDia2 duplexes, alone or together. mDia1 and mDia2 protein levels were assessed 3 days

later. Alternatively, SVECs treated for 2 days with 50 nM nonsilencing (�) or mDia1 duplexes were transfected with GFP (�) or human (h) mDia1-GFP and were

further analyzed by western blot 1 day later. Endogenous mDia1 is indicated by a gray arrow; exogenous mDia1-GFP is indicated by a black arrow. Tubulin was

used as a loading control.

(C) FITC-dextran permeability was determined in 3-day-old, starved SVEC monolayers transfected by control duplexes (ctrlsi, white bar), mDia1 siRNA (light-gray

bar, si), and mDia2 siRNA (dark-gray bar, si), both mDia1 and mDia2 (50 nM of each, black bar), or in mDia1 siRNA + hmDia1-GFP (dashed bar). Cells were non-

stimulated (control) or were treated for 30 min with 50 ng/ml VEGF alone or after Ang1 stimulation. Bar graphs show the average ± SEM.

(D) FITC-dextran permeability was determined in 3-day-old GFP- (white bar) and mDia1-DN- (black bar) transfected, starved SVECs that were stimulated by

VEGF (50 ng/ml, 30 min). Bar graphs show the average ± SEM.

(E) SVECs were transfected with nonsilencing (ctrl) or mDia1 duplexes (50 nM). Three days later, overnight-starved SVEC monolayers (�) were stimulated by

50 ng/ml VEGF alone (5 min) and after Ang1 stimulation (25 + 5 min). mDia1, SFK activation (pSFK), Src, phosphoS665-VE-cadherin (pS665), and VE-cadherin

protein levels were monitored in the same samples.

(F) SVECs were transfected with nonsilencing (ctrl, white bar) or mDia1 duplexes (50 nM, black bar), and were transfected 2 days later with the Src FRET sensor.

FRET efficiency as the normalized YFP/CFP ratio was then measured in unstimulated cells (control) or in cells stimulated by 50 ng/ml VEGF alone (5 min) and after

Ang1 stimulation (25 + 5 min). Bar graphs show the average ± SEM.

ANOVA test: ***, p < 0.001; **, p < 0.01; *, p < 0.05.
dominant-negative RhoA mutant enabled the VE-cadherin up-

take induced by VEGF to occur even in the presence of Ang1

(Figure 4D). In agreement, the knockdown of endothelial RhoA

by siRNA restored the VEGF-induced S665 VE-cadherin phos-

phorylation that was blocked by Ang1 (Figure 4E). We next

utilized the local treatment with C3 toxin to investigate the con-

tribution of RhoA to the anti-VEGF permeability effect of Ang1

in vivo. We did not observe any short-term effects of C3 toxin

injection, alone or with VEGF, on blood vessel morphology

and skin histology (not shown). However, C3 toxin was sufficient

to prevent the antipermeability effect of Ang1 and therefore

restored the VEGF-induced S665 VE-cadherin phosphorylation

and vascular leakage (Figures 4F–4H). This supported the emerg-

ing notion that Ang1 utilizes RhoA-initiated signaling pathways to
D

offer protection from the disruption of the endothelial barrier

caused by VEGF.

mDia Is Required Downstream of Ang1
to Block VEGF-Dependent Permeability
Based on these results, we explored whether ROK, a key down-

stream target for Rho, could participate in the signaling route by

which Ang1 interferes with VEGF-induced permeability. How-

ever, pharmacological inhibition of ROK did not affect the block-

ing effect of Ang1 (Figure 5A). The efficiency of this drug was

confirmed by virtue of its ability to inhibit myosin-light chain

phosphorylation (not shown). In search for alternative Ang1/

RhoA pathways impinging on Src, we next investigated the

potential role of mDia, another typical RhoA target (Wallar and
evelopmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc. 31
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Alberts, 2003). We first observed that Ang1 stimulation enhances

the formation of a heterocomplex between mDia1 and mDia2,

which was confirmed by knocking down each of these mDia pro-

teins (Figure S5). Interestingly, knocking down either mDia1 or

mDia2 eliminated the counteracting effect of Ang1 on VEGF-

induced endothelial permeability in mouse endothelial cells,

which was rescued by the expression of a human mDia1-GFP fu-

sion protein (Figures 5B and 5C). No additional effect of knocking

down both mDia1 and mDia2 was observed (Figure 5C), sug-

gesting that the availability of both proteins is limiting, and that

mDia1 and mDia2 activities are functionally linked, in agreement

with their ability to form a homo- and heterocomplex (Copeland

et al., 2007).

Supporting that, once activated, mDia plays a key role for

Ang1 in controlling endothelial barrier function, the expression

of an active mDia1 mutant was sufficient to block VEGF-induced

permeability (Figure 5D). Both western blot and FRET analysis

showed that reducing the expression of mDia1 did not affect

basal or VEGF-stimulated levels of active Src, but restored the

ability of VEGF to activate SFK signaling and to promote the

accumulation of VE-cadherin phosphorylated on S665 when

cells were exposed to Ang1 (Figures 5E and 5F). Thus, these

observations suggest that mDia acts downstream of RhoA in

the biochemical route by which Ang1 counteracts the VEGF-ini-

tiated permeability signaling pathway.

A Pool of Src Is Sequestered by mDia
upon Ang1 Stimulation
Of interest, these findings may explain the requirement of

p190RhoGAP for Ang1 signaling (Mammoto et al., 2007), as

the hydrolysis of GTP bound to RhoA may be necessary for the

subsequent dissociation of active mDia from RhoA. How does

mDia, in turn, play a role in the blocking effect of Ang1 on the

VEGF-increased permeability? One possibility is that activated

mDia strengthens the endothelial cell barrier function by stabiliz-

ing microtubules (Birukova et al., 2005; Palazzo et al., 2001).

However, the observation that mDia can directly interact with

Src through its Src homology (SH)3 domain (Tominaga et al.,

2000) prompted us to ask whether mDia1 could affect the activa-

tion of Src by VEGF or its inhibition by Ang1. Ang1, but not VEGF,

stimulation caused an increased association of mDia1 with Src,

in a slow but sustained fashion (Figure 6A; Figure S6). This was

also true for Fyn and Yes, which associated with mDia1 in re-

sponse to Ang1 (Figure 6B). Mammalian or recombinant Src

interacted with mDia1, only in its open conformation, as judged

by the use of mDia1 N-terminal deletion mutants or by favoring

its active state by a brief heat shock (Figure 6C; Figure S5).

Finally, Src activity may not be required for this interaction, as

inhibition of Src activation with a SFK blocker did not interfere

with the Src/mDia1 association caused by Ang1 (Figure 6D). In

contrast, the knockdown of endogenous RhoA abolished the

Ang1-induced Src/mDia interaction, together indicating that

the activation of mDia1 through RhoA is necessary to promote

the formation of stable Src/mDia complexes in response to

Ang1 (Figure 6E).

As shown in Figure 2, VEGF induces the binding of VEGFR2 to

Src. However, the treatment with Ang1 prevented the accumula-

tion of VEGFR2/Src complexes upon VEGF stimulation (Fig-

ure 6F). Concomitant with this decrease, Ang1 promoted the
32 Developmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc.
increased association of Src and mDia1 in a VEGFR2-free

pool, as suggested by VEGFR2 immunodepletion experiments

(Figure 6G). In fact, mDia1 can compete for binding to Src with

VEGF-stimulated VEGFR2, as judged by the decreased forma-

tion of VEGFR2/Src complexes upon increased expression

levels of active mDia1 in endothelial cells (Figure 6H). This sug-

gests that the interaction of Src with mDia1 and VEGFR2 are

mutually exclusive, and therefore that mDia1 may limit the pool

of Src available for interaction with VEGFR2. Remarkably, the

inhibitory effect of Ang1 on VEGFR2/Src complex formation

was reverted by decreasing the expression levels of RhoA and

mDia1 (Figure 6I). Together, these findings support the emerging

notion that, in endothelial cells, the activation of RhoA by Ang1

results in the interaction of mDia1 with Src, thereby preventing

the binding of Src to VEGFR2 and the consequent activation of

a SFK-dependent pathway that involves Vav2, Rac1, and PAK

that leads to the phosphorylation and internalization of VE-

cadherin, and ultimately to the disassembly of cell-cell junctions

and enhanced vascular permeability (Figure 7). Thus, by limiting

the access of Src to VEGFR2, mDia1 may restrict the activation

of the SFK-initiated pathway and ultimately orchestrate the inter-

play between Ang1 and VEGF, and its biological outcome.

DISCUSSION

VEGF and Ang1 play essential roles in vascular development and

in adult blood vessel function (Dumont et al., 1994; Ferrara et al.,

1996; Lee et al., 2007; Suri et al., 1996). Whereas both act as

proangiogenic factors, VEGF and Ang1 elicit strikingly distinct

responses regarding vascular permeability and plasma leakage

(Thurston et al., 1999, 2000). Here, we provide evidence of a novel,

to our knowledge, molecular mechanism by which Ang1 specifi-

cally counteracts VEGF-induced permeability. Our data indicate

that Ang1 activation of its cognate receptor, Tie2, triggers the ac-

tivation of RhoA, which, in turn, leads to the stimulation of one of

its downstream targets, mDia. Activated mDia binds Src, thereby

inhibiting the activation of this nonreceptor tyrosine kinase by the

VEGF receptor. By causing the sequestration of Src, the Ang1

signaling pathway may ultimately deprive VEGFR2 of an essen-

tial molecule required to initiate a signaling route that includes

Vav2, Rac1, and PAK, and culminates in the phosphodependent

internalization of VE-cadherin, thus causing the disassembly of

interendothelial junctions and enhancing endothelial permeabil-

ity (Garrett et al., 2007; Gavard and Gutkind, 2006; Stockton

et al., 2004; Weis et al., 2004).

Ang1 might exert a general antivascular permeability effect,

protecting blood vessels from the plasma leakage caused by

VEGF, as well as by thrombin and bacterial wall components,

such as LPS (Li et al., 2004; Mammoto et al., 2007). In contrast

to Ang1, which stimulates RhoA and mDia, thrombin and LPS

enhance vascular permeability through a robust and persistent

RhoA activation and the consequent ROK-dependent assembly

of stress fibers and cell contraction (Wojciak-Stothard and Rid-

ley, 2002). The strength and location of RhoA activation may

therefore affect the choice of the RhoA downstream target,

thereby determining whether RhoA-initiated signals protect the

barrier function of endothelial cells or promote vascular leakage.

In addition, Ang1 acts as a vascular protective factor by limiting

leukocyte and neutrophil adhesion and transmigration through
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Figure 6. A Pool of Src Is Sequestered by mDia upon Ang1 Stimulation

(A) Overnight-starved, 3-day-old SVEC monolayers were stimulated by Ang1 (50 ng/ml, from 0 to 20 min) and subjected to Ig control (ctrl) or Src immunoprecip-

itation (IP). mDia1 and Src protein levels were evaluated in the IP fractions.

(B) Overnight-starved, 3-day-old endothelial monolayers were stimulated by Ang1 (50 ng/ml, 15 min) and subjected to Fyn or Yes IP. mDia1, Fyn, and Yes protein

levels were evaluated in the IP.

(C) HEK293T cells were transfected with GFP (�), GFP-mDia wild-type (WT), and myc-active mDia (DN) and were lysed for tag IP (GFP or myc). IPs were collected

or further subjected to heat shock (99�C, 2 min), washed, and subsequently incubated with 2 mg recombinant Src (rSrc). Src, GFP (WT), and myc (DN) western

blots were then performed in total cell lysates or IPs.

(D) Overnight-starved, 3-day-old SVEC monolayers were stimulated by Ang1 (50 ng/ml, 15 min) alone and after stimulation with SFK inhibitor (su6656, 1 mM,

30 min). mDia1 and Src protein levels were evaluated in the Src IP.

(E) SVECs were transfected with nonsilencing (ctrl) or RhoA duplexes (50 nM, 3 days). Overnight-starved SVECs (�) were stimulated by Ang1 (50 ng/ml, 15 min)

and were analyzed for RhoA, mDia1, and Src protein levels in the total cell lysate. mDia1 and Src were also analyzed in the Src IP.

(F) Overnight-starved SVECs (�) were stimulated (+, 50 ng/ml) by VEGF (5 min), Ang1 (30 min), and a combination of the two (25 + 5 min). VEGFR2 levels, pSFK,

and Src were monitored in the Src IP.

(G) Overnight-starved SVECs (�) were stimulated as described in (F). Src and VEGFR2 levels were monitored in VEGFR2 IPs. The output from this VEGFR2 IP

(VEGFR2 i-depleted fraction) was then cleared from VEGFR2 antibodies by incubation with G protein Sepharose and was subjected to Src IP. Levels of VEGFR2,

mDia1, and Src were then evaluated.

(H) SVECs were transfected with mock (�) or an increased amount of myc-active mDia1 (DNmDia1: 1, 3, and 5 mg). Overnight-starved, 3-day-old SVEC mono-

layers were stimulated by VEGF (50 ng/ml, 5 min), and protein extracts were subjected to Src IP. Levels of VEGFR2, DNmDia1 (myc), and Src were then evaluated.

(I) SVECs were transfected with nonsilencing (c), mDia1, or RhoA duplexes (50 nM). Three days later, overnight-starved SVECs (�) were stimulated for 5 min with

50 ng/ml VEGF alone or after Ang1 stimulation (25 min). VEGFR2 and Src protein levels were monitored in the Src IP. mDia1, Src, and RhoA were also evaluated in

the total cell lysate.
the endothelial barrier (Gamble et al., 2000; Pizurki et al., 2003).

Thus, the Ang1/Tie2 endothelial signaling axis might play a key

anti-inflammatory role in various diseases such as asthma, rheu-

matoid conditions, and septic shock. Whether Ang1 also acts by

preventing Src activation in each of these cases, alone or in com-

bination with other potential mechanisms, such as by affecting the

activation of PKC, calcium signaling, or GAPs for RhoGTPases

(Jho et al., 2005; Li et al., 2004; Mammoto et al., 2007), is at the

present unknown and warrants further investigation. In this re-

gard, the complete delineation of the specific molecular mecha-

nisms by which each class of vascular leakage factors acts may

facilitate the identification of additional targets for the antiperme-

ability action of Ang1.
However, the discovery that Ang1 is a proangiogenic factor but

blocks rather than promotes vessel leakiness has opened the

possibility of using Ang1 for therapeutic purposes in many path-

ological conditions characterized by enhanced vascular leaki-

ness, such as in acute and chronic inflammation, diabetic retinop-

athy, macular degeneration, and tumor-induced angiogenesis.

One can anticipate the use of Ang1 together with VEGF to stimu-

late revascularization of damaged or ischemic tissues while

preventing vascular leakage. In this scenario, our present obser-

vation that Ang1 rescues the barrier function of the endothelium

from VEGF-induced endothelial permeability by stimulating mDia

and uncoupling Src from VEGFR2 has now helped define the

underlying mechanisms of their counteracting effects. These
Developmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc. 33
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Figure 7. Model Depicting How VEGF and Ang1 Can Both Elicit a Proangiogenic Response, but Control the Endothelial Barrier Function in an

Antagonist Fashion

See text for details.
findings may provide a molecular framework for the future explo-

ration of natural and synthetic small molecules that may act on the

mDia/Src signaling axis as potential antivascular leakage thera-

peutic agents.

EXPERIMENTAL PROCEDURES

Cell Culture, Transfections, and siRNA

Immortalized human endothelial cells were obtained from C.J. Edgell (Edgell

et al., 1983), and SV40 immortalized mouse endothelial cells (SVECs) and

HEK293T cells were purchased from the ATCC (Manassas, VA). DNA transfec-

tions were performed by using the Amaxa’s electroporation system, achieving

�80% efficiency (Amaxa Biosystems, Gaithersburg, MD). siRNA were deliv-

ered with the Hiperfect reagent (QIAGEN, Valencia, CA). The following prede-

signed sequences were used: nonsilencing sequence (Dharmacon, Chicago,

IL) and mouse mDia1, mDia2, and RhoA sequences (Stealth RNAi, Invitrogen,

Carlsbad, CA).

Reagents and Antibodies

Recombinant Vascular Endothelial Growth Factor 165 was purchased from

Calbiochem (San Diego, CA), Angiopoietin 1 was purchased from R&D Sys-

tems (Concord, MA), SFK inhibitor su6656 was purchased from Calbiochem,

and C botulinum exoenzyme C3 and tetanolysin were purchased from List Bi-

ological Labs (Campbell, CA). The following antibodies were used: mouse anti-

human VE-cadherin (BV6 clone, Research Diagnostics, Inc., Flanders, NJ);

mouse anti-Rac (BD Biosciences, San Jose, CA); mouse anti-phosphotyrosine

(4G10 clone, Upstate Biotech, Waltham, MA); mouse anti-Src (L4A1 clone, Cell

Signaling, Boston, MA); mouse anti-tubulin and Yes (Santa Cruz Biotechnol-

ogy, Santa Cruz, CA); mouse anti-myc (Covance, Berkley, CA); rat anti-CD31
34 Developmental Cell 14, 25–36, January 2008 ª2008 Elsevier Inc.
(BD); mouse anti-cadherin (Sigma); rabbit anti-phosphoS473 AKT and phos-

phoT202/Y204 ERK1/2 (Cell Signaling); rabbit anti-RhoA, VEGFR2, VEGFR1,

FAK, Fyn, Tie2, ERK2, and Src (Santa Cruz Biotechnology); rabbit anti-

phosphoY418 Src, phosphoY1054 VEGFR2, and phosphoY397 FAK (Bio-

source QCB, Camarillo, CA); goat anti-VE-cadherin, mDia1, and mDia2 (Santa

Cruz Biotechnology). Rabbit anti-phosphoS665 VE-cadherin was described

previously (Gavard and Gutkind, 2006). Secondary antibodies for immunofluo-

rescence and western blot were purchased from Jackson ImmunoResearch

(West Grove, PA) and Southern Biotechnology (Birmimgham, AL), respectively.

DNA and Constructs

pCEFL-human VE-cadherin wild-type and S665D mutant were described

previously (Gavard and Gutkind, 2006), as were pCEFL-AU5-RhoAN19,

pCEFL-AU5-RhoAQL, pcDNA3-C3toxin (Marinissen et al., 2004), the N-termi-

nal deletion active mutant pEF-myc-DGBDmDia1 (Tominaga et al., 2000), and

pEGFP-mDia1 (Seth et al., 2006). The FRET-based Src sensor was provided

by R.Y. Tsien (Ting et al., 2001) and was subcloned in pCEFL.

Statistical Analysis

In all cases, results are shown as a mean value ± SEM from at least three

independent experiments; confocal pictures and western blot scans are

representative of at least three independent experiments. Statistical analysis

was performed with Prism 4.2 software (GraphPad). ANOVA test: ***, p <

0.001; **, p < 0.01; *, p < 0.05.

Miles Permeability Assays

All animal studies were carried out according to National Institutes of Health-

approved protocols, in compliance with the Guide for the Care and Use of Lab-

oratory Animals. Miles permeability assays were conducted in athymic nude

mice (Harlan Sprague-Dawley, Frederick, MD) as described previously (Eliceiri
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et al., 1999). Briefly, reagents were injected subdermally in PBS as a maximal

volume of 250 ml, and the injection zone was marked for further analysis. Sterile

Evans Blue dye (150 ml, 1% in 0.9% NaCl, Sigma) was injected through the tail

vein. Mice were kept for 1 hr, unless otherwise specified, before sacrificing.

Skin samples were dissected, photographed, and either placed in formamide

at 56�C for 36 hr to extract Evans Blue or fixed for further immunostaining.

Alternatively, dry-ice-frozen samples were saved for western blot analysis,

and total proteins were extracted from �0.2 cm2 crashed in 50 ml 23 Laemmli

buffer. Noninjected skin samples were used to normalize quantification of dye

extravasation, read by spectrophotometry at 620 nm.

In Vitro Permeability, Migration, and Proliferation Assays

Permeability assays were conducted as described previously (Gavard and

Gutkind, 2006). Briefly, endothelial cells were grown as a 3-day-old mature

monolayer on collagen-coated 3 mm-size pore inserts (PTFE, Corning Costar,

Acton, MA). Cells were starved overnight, treated as required, and incubated

with FITC-dextran (60 kDa, 1 mg/ml, Molecular Probes, Invitrogen). Each sam-

ple from the bottom chamber was read in triplicate on the Victor 3V1420 multi-

counter (Perkin-Elmer, Wellesley, PA). Endothelial migration was assessed by

wound-closure assays. Three-day-old endothelial monolayers were starved

overnight and wounded by a bevel-edged needle. Wound closures were mon-

itored 18 hr later in serum-free medium or in the presence of VEGF and Ang1.

Proliferation was estimated by BrdU incorporation. Three-day-old endothelial

monolayers were starved for 24 hr and incubated in serum-free medium with

VEGF and Ang1 for an additional 18 hr. BrdU (10 mM, Sigma) was added

to the medium 4 hr before fixation. DNA was denaturated by incubation

in 0.5% PBS-Triton-2N HCl for 30 min at 37�C, and pH was recovered by se-

quential washes in 0.1 M borate (pH 8.0) and PBS before staining with rat anti-

BrdU monoclonal antibodies (Accurate Chemical and Scientific Corp., West-

bury, NY).

Internalization Assays and Immunofluorescence

The internalization assay protocol was described previously by Gavard and

Gutkind (2006). Briefly, cells were incubated in DMEM with anti-VE-cadherin

(BV6 clone) at 4�C for 1 hr. The antibody uptake was induced for 30 min at

37�C in serum-free medium or in the presence of VEGF and Ang1. Cells

were either fixed or subjected to a mild acid wash (2 mM PBS-glycine [pH

2.0], 15 min) in order to remove plasma membrane-bound antibodies. Immu-

nofluorescence staining was done as described in Gavard and Gutkind (2006).

Cryostat sections were obtained from fixed, frozen skin samples. Permeabili-

zation was done for 1 hr at room temperature in ICC buffer (0.05% PBS-

Tween-3% BSA). Antibody incubations were done for 16 hr at 4�C in ICC

buffer, followed by four 15 min washes in the same buffer. Confocal acquisi-

tions were performed on a TCS/SP2 Leica microscope (NIDCR Confocal Facil-

ity, NIH, Bethesda, MD).

GST Pull-Downs, Immunoprecipitations, and Western Blots

Rac and RhoA activation was monitored by GST pull-downs by using GST-

PAK-CRIB (Cdc42/Rac Interacting Binding domain) and GST-Rhotekin re-

combinant proteins, respectively, bound to glutathion slurry resin (Amersham

Biosciences, General Electrics, Piscataway, NJ). Cells were lysed in Magne-

sium Buffer (10 mM Tris [pH 7.5], 100 mM NaCl, 1% Triton, 0.5 mM EDTA,

40 mM b-glycerophosphate, 10 mM MgCl2, 1 mM Na3VO4, 10 mg/ml aprotinin,

10 mg/ml leupeptin, and 1 mM PMSF), and postnuclei supernatants were incu-

bated for 30 min at 4�C with slurry resin. Immunoprecipitations were per-

formed by using the TNT buffer (10 mM Tris [pH 7.4], 150 mM NaCl, 1%

NP40, 1% Triton, 2 mM EDTA and 1 mM Na3VO4, 10 mg/ml aprotinin, 10 mg/ml

leupeptin, and 1 mM PMSF). For western blot analysis, equal amounts of

proteins were separated on 4%–20% polyacrylamide SDS Tris-glycine gels

(Invitrogen) and transferred on PVDF membranes (Millipore, Billerica, MA).

Horseradish peroxidase activity was revealed by a chemoluminescence reac-

tion (ECL, Pierce, Rockford, IL).

Fluorescence Resonance Energy Transfer Analysis

Src activation was monitored by the use of a genetically encoded fluorescent

reporter for Src. This sensor consists of fusions of cyan fluorescent protein

(CFP, donor), a phosphotyrosine-binding domain (Src homology domain

SH2), a consensus substrate for Src phosphorylation, and yellow fluorescent
D

protein (YFP, acceptor) (Ting et al., 2001). In endothelial cells, stimulation of

Src kinase activity causes a 15%–20% increase in the YFP/CFP emission ratio

because of phosphorylation-induced conformational changes leading to

FRET. Emission spectra and ratios (527 nm/476 nm, YFP/CFP) were measured

in 96-well plates at 433 nm excitation on a Tecan Fluorimeter. Normalization

was done with respect to the unstimulated transfected cells on both CFP

and YFP relative emitted fluorescence units (12 wells for each experiment).

Imaging was monitored by using the AxioVert microscope (Zeiss), equipped

with a FRET cube filter set from Zeiss and AxioFRET software. FRET analysis

and quantification were performed according to the manufacturer’s protocols.

Supplemental Data

Supplemental Data include six figures and are available with this article online

at http://www.developmentalcell.com/cgi/content/full/14/1/25/DC1/.
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