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SUMMARY

Bcl-2 family members are key regulators of
apoptosis. Their involvement in other cellular pro-
cesses has been so far overlooked. We have studied
the role of the Bcl-2 homolog Nrz in the developing
zebrafish. Nrz was found to be localized to the
yolk syncytial layer, a region containing numerous
mitochondria and ER membranes. Nrz knockdown
resulted in developmental arrest before gastrulation,
due to free Ca2+ increase in the yolk cell, activating
myosin light chain kinase, which led to premature
contraction of actin-myosin cables in the margin
and separation of the blastomeres from the yolk
cell. In the yolk syncytial layer, Nrz appears to prevent
the release of Ca2+ from the endoplasmic reticulum
by directly interacting with the IP3R1 Ca2+ channel.
Thus, the Bcl-2 family may participate in early devel-
opment, not only by controlling apoptosis but also by
acting on cytoskeletal dynamics and cell movements
via Ca2+ fluxes inside the embryo.

INTRODUCTION

The Bcl-2 family plays a central role in apoptosis; it controls the

release of cytochrome c from the mitochondria into the cytosol,

which triggers the formation of the apoptosome complex and

caspase activation, leading to cell death. Cytochrome c release

is due to the insertion of the apoptosis accelerator Bax into the

outer mitochondrial membrane, which is blocked by Bcl-2 and

related apoptosis inhibitors (for review, see Wang and Youle,

2009). In addition to the mitochondria, apoptosis inhibitors are

also found in the endoplasmic reticulum (ER) where they partic-

ipate in the regulation of Ca2+ fluxes (for review, see Rong and

Distelhorst, 2008). Indeed, Bcl-2 modulates the release of Ca2+

from the ER by directly inactivating Bax and/or by interacting

with the Ca2+ channel IP3R (Chen et al., 2004; Rong et al., 2009).

In addition to IP3R, Bcl-2 family members interact with a

variety of partners, including G proteins (Bivona et al., 2006),

phosphatases (Shibasaki et al., 1997), kinases (Wang et al.,

1994; Youn et al., 2005), transcription factors (de Moissac et al.,

1998), and chaperone proteins (Takayama et al., 1995; Shirane
Deve
and Nakayama, 2003). This illustrates that Bcl-2 proteins play

multiple roles inside the cell and can control the cell cycle (Zinkel

et al., 2006), cell differentiation (Wanget al., 2007), axonal elonga-

tion (Jiao et al., 2005), redox status (Kowaltowski and Fiskum,

2005), and metabolism (Chen and Pervaiz, 2010). However, the

underlying molecular mechanisms remain largely unknown.

The role of Bcl-2 like proteins during development was estab-

lished by the work of R. Horwitz and M. Hengartner in C. elegans

(Hengartner and Horvitz, 1994). Investigations in Drosophila and

vertebratemodels confirmed the role of the apoptosismachinery

in development and morphogenesis (for review, see Chipuk

et al., 2010).

The zebrafish is a unique model for studying the mechanisms

of development in vertebrates (Shestopalov and Chen, 2010)

and of a number of human pathologies, including cardiovascular

diseases and cancer (Lam et al., 2006; Lieschke and Currie,

2007). During early development, after rapid cellular divisions,

the blastomeres in contact with the yolk release their content

in the yolk cell forming the yolk syncytial layer (YSL). At this stage

the embryo comprises the YSL, the enveloping layer (EVL), and

the deep cell layer (DCL). Prior to gastrulation, the blastomeres

begin to migrate from the animal pole down to the vegetal

pole. This process, known as epiboly, is driven bymultiplemech-

anisms, including yolk cytoskeleton remodeling and endocy-

tosis. Completion of epiboly is characterized by the formation

of an actin-myosin ring close to vegetal pole of EVL and DCL

(Solnica-Krezel, 2006).

We recently demonstrated that the knockdown of the

apoptosis inhibitor nrz (the zebrafish ortholog of human nrh/

bcl-2l10) leads to premature death of the embryo due to devel-

opmental arrest before the onset of gastrulation. This phenotype

could be partly prevented by the downregulation of the Snail

pathway, but not by caspase inhibition, suggesting that the

effect of nrz knockdown might not be due to apoptosis deregu-

lation (Arnaud et al., 2006).

Here, we show that nrz knockdown results in Ca2+-dependent

phosphorylation of the myosin light chain (MLC). We show that

the knockdown of nrz increases free Ca2+ levels in the region

of the margin (between the embryonic blastomeres and the

yolk cell). We present evidence that the Ca2+-dependent kinase

MLCK is required for the observed MLC phosphorylation and

subsequent epiboly arrest. Together, our results support the

notion that the Nrz protein plays a key role during epiboly by

controlling the formation of actin-myosin cables and cell move-

ments via the regulation of Ca2+ fluxes from the ER. Thus, in
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Figure 1. Nrz Protein Is Located into YSL Mitochondria and ER

(A) Schematic drawing of a zebrafish embryo representing a simplified model of yolk organization. YSL contains a large number of nuclei present beneath the

blastoderm. The region populated with yolk nuclei presents a dense network of microtubules fromwhich originates a parallel microtubule network oriented along

the animal-vegetal axis and extending into the yolk cell layer. MT, microtubules; YSL, yolk syncytial layer; YCL, yolk cell layer.

(B) Transmission electron microscopy image of the interface region between the YSL and the deep cells showing the presence of numerous mitochondria inside

the blastomeres and the YSL (white arrowheads). Membranes reminiscent from ER are visible in the vicinity of a YSL nucleus (red arrows). Scale bar: 2 mm.

(C) Confocal section of zebrafish embryo stained in vivo with Mitotracker Red in the margin region showing the presence of a belt of mitochondria in the YSL

(arrowhead).

(D) Confocal section of zebrafish embryo expressing recombinant EGFP targeted into the ER membrane (ER-GFP); a fluorescent signal can be detected in the

YSL (arrowhead). White rectangles materialize regions observed at higher magnification (right panels). AP, animal pole; VP, vegetal pole.

(E) Immunoblot of whole embryo (before MBT stage) or blastomere and yolk mitochondrial extracts (sphere-oblong, 30%–50%, or 75% epiboly stages) showing

the presence of Nrz protein in the yolk mitochondrial fraction. F0/F1 ATPase is used for calibration.

(F) Confocal microscopy analysis. Detection of ER-GFP (green, left) and endogenous Nrz protein (red, middle) at the margin (50% epiboly). Merged images show

colocalization of ER-GFP and Nrz (yellow, right). Dashed line separates blastomeres from YSL. Scale bar: 20 mm. Specificity of the anti-Nrz antibody was as-

sessed using Nrz-depleted embryos as negative control (see Figure S1).
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addition to controlling apoptosis, the Bcl-2 family may partici-

pate in the development of vertebrates by acting on cytoskeletal

dynamics and cell movements.

RESULTS

Zebrafish YSL Harbors Active Mitochondria
and ER Network
We previously showed that the nrz gene, a member of the bcl-2

family of cell death regulators, is specifically expressed at the

onset of epiboly in the extramaternal YSL of the zebrafish

embryo (Arnaud et al., 2006). This belt-like layer contains

a number of nuclei as well as microtubules, which participate

in epiboly progression (Figure 1A) (Solnica-Krezel, 2006). In

addition, the YSL is expected to contain a variety of components

such as ER or Golgi apparatus, originating from the blastomeres

having fused with the yolk cell. So far, the presence of mitochon-

dria in the yolk cell of the developing zebrafish has not been

reported. As shown in Figure 1B, transmission electronic micros-

copy analysis showed the presence of a number of mitochondria

in the YSL. Protrusive structures originating from the nuclear

envelope strongly suggested the existence of ER in this region.

To further assess the presence of mitochondria and ER in the

YSL, embryos were stained in vivo with the mitochondrial

probe Mitotracker or injected with in vitro synthesized mRNAs

encoding an EGFP mutant containing the transmembrane (TM)

domain of the tail-anchored ER protein Cytochrome B5 (ER-

GFP). Confocal microscopy analyses confirmed the presence

of numerous mitochondria forming a ring like structure and of

a dense ER network inside the YSL (Figures 1C, 1D, and S1A).

Of note, the fact that YSL mitochondria could be labeled with

Mitotracker, which is driven into the matrix by the mitochondrial

transmembrane potential (DJm), suggested that these organ-

elles are actually functional.

In cultured cells, the Nrz protein is located in mitochondria

and the ER (Figure S2A), which suggested that Nrz might also

interact with these organelles in the YSL. Indeed, as shown

in Figures 1E and S1B, the Nrz protein is detected in the YSL

as early as the sphere-oblong stage both in mitochondria

and ER fractions, remaining undetectable in the blastomeres.

Confocal microscopy analyses and fractionation experiments

confirmed the dual localization of Nrz in the YSL ER and mito-

chondria during epiboly progression (Figures 1F, 1G, S1B, and

S1C).

Functional Interaction of Nrz with Mitochondria
and ER Membranes into the YSL
Knockdown of nrz with specific morpholinos results in early

developmental arrest (Arnaud et al., 2006); in nrz morphants,

progression of the blastomeres down to the vegetal pole starts

normally; however, this movement is stopped short before the

margin reaches the equator of the yolk cell (40%–60% epiboly);

premature constriction of the margin occurs at the same time,

leading to separation of the blastomeres from the yolk and death
(G) Subcellular fractionation of YSL mitochondria and YSL ER of ER-GFP-expr

fraction (ER) and to a lesser extent in the mitochondrial fraction (Mito), being a

mitochondrial marker and ER marker, respectively. See also Figure S1.

Deve
of the embryo (Movie S1). Constriction of the margin was quan-

tified by measuring the embryo length/width ratio (LWR) at

50% epiboly-shield stages. The LWR of control embryos is close

to 1 (LWR = 1.001 ± 0.02, n = 34) whereas in nrz morphants it

is significantly higher (LWR = 1.36 ± 0.06, n = 34) (Figures 2A

and 2B).

The Bcl-2 family of proteins participates in the regulation of

apoptosis and other cellular processes via interaction of their

TM domain with mitochondrial and ER membranes (Rizzuto

et al., 2009). Nrz contains a C-terminal TM domain, as do most

Bcl-2 family members. In zebrafish, the ‘‘early epiboly arrest’’

phenotype of nrz morphants could be rescued by coinjecting,

together with the nrz antisense morpholino, in vitro synthesized

mRNAs encoding full-length Nrz (mortality at 10 hpf: 7.2% ±

4.8%; n = 158) but not the DTM truncated protein devoid of its

C-terminal membrane insertion domain (mortality at 10 hpf:

49.8% ± 18.8%; n = 106) (Figures 2C and 2D). This suggested

that the interaction of Nrz with biological membranes was

required for epiboly. To study the role of the membrane-associ-

ated pools of Nrz in more detail, two recombinant Nrz proteins

were designed by replacing the native C-terminal TM domain

by either the CytB5 ER-addressing TM domain (NrzCytB5) or

the MaoB mitochondrial-addressing domain (NrzMaoB). The

subcellular localization of both recombinant proteins as well as

their ability to prevent zBax-induced cell death was checked in

cultured cells before expressing in zebrafish embryo (Figures

S2B–S2F). Surprisingly, complementation experiments with the

corresponding in vitro synthesized mRNAs showed that the

mortality of nrz morphants was not significantly prevented by

NrzMaoB (mortality at 10 hpf: 41.2% ± 10.8%; n = 132), whereas

NrzCytB5 prevented embryonic mortality with the same efficacy

as the native Nrz protein (mortality at 10 hpf: 8.2% ± 4.7%; n =

170) (Figure 2D). Of note, ectopically expressed NrzCytB5 was

able to prevent the constriction of the margin in nrz morphants

(data not shown) suggesting that ER localization of Nrz is impor-

tant for its function.

To further understand Nrz implication during development, we

analyzed the consequences of nrz knockdown on the status of

YSL mitochondria using Mitotracker. Indeed, in nrz morphants,

the labeling of the YSL mitochondria with Mitotracker, was

significantly decreased (Figures 2E, 2F, and 2I). Moreover, as

shown by western blotting using protein extracts from purified

YSL mitochondria, the loss of Nrz protein was correlated with

cytochrome c release (Figure 2J). Thus, the downregulation of

nrz expression resulted in both the dissipation of DJm and the

release of cytochrome c from the YSL mitochondria. In nrz

morphants, ectopic expression of either NrzCytB5 or NrzMaoB

was able to prevent cytochrome c release from YSL mitochon-

dria (Figure 2J), while NrzCytB5 was found to prevent DJm

drop more efficiently, compared to NrzMaoB (Figures 2E–2I).

Together, these results confirmed that the ER localization of

Nrz is critical during early development; in addition, they sug-

gested that the observed mitochondrial alterations could be trig-

gered by a signal originating from the ER.
essing embryos (75% epiboly). Nrz is detected in the endoplasmic reticulum

bsent in the cytosolic fraction (SN). VDAC and GFP antibodies were used as
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Figure 2. Effect of nrz Knockdown and Nrz Subcellular Localization on Epiboly and YSL Mitochondria

(A) Embryo length (L) and width (W) used for calculating the L/W ratio; left: control embryo; right: nrz morphant.

(B) Histogram showing the L/W ratio of control embryos (WT) and nrz morphants (nrzMO) at 50% epiboly/shield stage (mean ± SD; three independent experi-

ments; p < 0.01).
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Figure 3. Nrz Knockdown Results in Caspase-Independent Epiboly Arrest

(A) Left panels: activated caspase-3 staining of embryos injected at the one cell stage with egfpmRNA (control), nrzMO (0.5mM), zbaxmRNA, or zbaxmRNA plus

p35 mRNA. Zbax-expressing embryos were stained at the two to eight cell stage, whereas nrz morphants were labeled at the 30%–50% epiboly stage. Right

panels: same embryos stained with Hoechst’s reagent to visualize nuclei. Scale bar: 200 mm.

(B) Mortality rate of control zebrafish embryos injected with p35 and zbax mRNA either alone or in combination and of nrz morphants coinjected or not with p35

mRNA (mean ± SD; three independent experiments).

(C) Bright-field images showing the phenotype of control embryos and nrz morphants injected with p35 mRNA. Scale bar: 500 mm.
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Nrz Knockdown Results in Epiboly Arrest Independently
of Caspase Activation
Together, the above observations suggested that in the YSL

mitochondria, the loss of Nrz protein elicited typical features of

apoptosis, such as cytochrome c release and DJm dissipation.

This prompted us to check whether or not the early lethal
(C) Schematic drawing of recombinant proteins. Nrz, full-length protein; NrzDTM

addressing domain; NrzMaoB, swap mutant with mitochondria-addressing dom

(D) Complementation experiments: Embryos were injected with nrz morpholinos

recombinant proteins displayed in (C). Embryo mortality (%) was measured at

experiments. The nrz morpholino is directed against the 50 untranslated region of

(E–H) Representative confocal images of Mitotracker Red-stained embryos inject

(G), or nrzMO + nrzmaob mRNA (H); nrzMO-injected embryos exhibit a dramatic

(I) Quantitative analysis of Mitotracker labeling of zebrafish embryos. Fluorescen

(upper panel). Intensity peaks in the region of the YSL. Statistical data are shown

(J) Immunoblot analysis of Nrz protein and cytochrome c contents of purified YSL

protein extracts from control embryos and nrz morphants; loss of Nrz protein c

morphants coinjected with mRNAs expressing NrzCytB5 or NrzMaoB; cytochrom

S1 and Figure S2.

Deve
phenotype of nrz morphants was the consequence of caspase

activation in the YSL. To address this issue, we used a specific

antibody to detect the activated form of caspase-3 in embryos

at the 30%–50% epiboly stage. As depicted in Figure 3A,

knockdown of nrz did not appear to result in caspase-3 activa-

tion at this developmental stage (0% embryos with activated
, deletion mutant lacking the TM domain; NrzCytB5, swap mutant with ER-

ain. BH and TM domains are shown as color boxes.

to dampen endogenous nrz level and coinjected with mRNAs expressing the

indicated (hours postfertilization). Representative data from 2–8 independent

the endogenous nrz mRNA; it does not match with the foreign nrz transcripts.

ed with control morpholino (E), nrzMOmorpholino (F), nrzMO + nrzcytb5mRNA

decrease in the labeling of the YSL mitochondria belt (white arrows).

ce intensity is represented as a function of the distance from the animal pole

(bottom panel).

mitochondria; F0/F1 ATPase was used as a loading control. Left: mitochondrial

orrelates with cytochrome c release. Right: same analysis carried out on nrz

e c release appears to be prevented by both Nrz swapmutants. See also Movie

lopmental Cell 20, 663–676, May 17, 2011 ª2011 Elsevier Inc. 667
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Figure 4. Nrz Binds to IP3R1 via Its BH4 Domain and Controls Intracellular Ca2+ Levels in Zebrafish Embryos

(A–D) Fluorescence microscopy images of control embryos (A), nrz morphants (B), WT embryos treated with thapsigargin (C), or nrz morphants treated with or

2-APB (D); embryos were stained with Oregon Green BAPTA-1 AM (false colors, oblong-sphere stage). Increased signal in thapsigargin-treated embryos and nrz

morphants reveals the release of free Ca2+ in the region of the margin from which originates the YSL. In (A0–D0 ), bright-field images of the same embryos are

shown. Scale bar: 100 mm.

(E) Quantification of Oregon Green BAPTA-1 AM staining of control embryos and of nrzmorphants injected or not with nrzcytb5 or nrzmaobmRNAs or treatedwith

2-APB (50 mM); embryos treated with thapsigargin alone (20 mM) were used as positive controls (mean ± SD; three independent experiments; *p < 0.01 versus

control embryos; #p > 0.9 versus control embryos).
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caspase-3, n = 10); in contrast, overexpression of the cell death

accelerator zBax efficiently induced caspase activation as early

as the four to eight cell stage (80% embryos with activated

caspase-3; n = 10). In addition, apoptotic features downstream

of caspase-3 activation such as chromatin condensation and

formation of pyknotic nuclei were not observed in nrzmorphants

(data not shown). Finally, whereas the caspase inhibitor p35,

prevented caspase-3 activation and subsequent embryonic

lethality caused by ectopic expression of zBax, p35 was inca-

pable to restore epiboly progression in nrz morphants (Figures

3B and 3C).

Together, these observations showed that, although the

caspase-dependent cell death machinery already seems to be

functional at early developmental stages in the zebrafish

embryo, it was not activated following nrz knockdown. Thus,

the premature arrest of epiboly observed in nrz morphants did

not appear to be the consequence of caspase activation.

Nrz Knockdown Triggers IP3R-Dependent Intracellular
Ca2+Increase
The fact that the phenotype of nrz morphants was reverted by

expressing NrzCytB5 protein was an indication of the contribu-

tion of the ER and raised the idea that Ca2+ flows inside the

YSL might be altered following nrz knockdown. We thus

evaluated the effect of nrz knockdown on the YSL Ca2+ levels

using a dedicated fluorescent dye (Oregon Green, BAPTA-1).

As shown in Figures 4A and 4B, knockdown of nrz resulted in

a significant increase in ‘‘cytosolic’’ Ca2+ in the region of

the margin (average fluorescence intensity [afi]: 1487.5 ± 146,

n = 10), as compared with control embryos (afi: 1177.8 ± 135.7;

n = 9). This increase was observed as early as the oblong-sphere

stage, shortly before the start of the epiboly process. In addition,

the observed Ca2+ peak was fully suppressed by expression of

NrzCytB5 (afi: 1083.3 ± 96.1, n = 10), which was previously found

to prevent the premature death of nrz morphants, contrary to

NrzMaoB (afi: 1674.1 ± 311; n = 10), which was unable to restore

the viability of nrz morphants (Figure 4E, see also Figure 2D). To

further establish that the increase of YSL Ca2+ concentration

is a causal event of the observed epiboly arrest in nrzmorphants,

zebrafish embryos were treated with the SERCA inhibitor

thapsigargin (512 cell stage), which is routinely used to induce

cytosolic Ca2+ accumulation in cultured cells. As shown in Fig-

ure 4C, thapsigargin treatment led to massive increase in Ca2+

concentration in the YSL, as similarly observed in nrzmorphants.

Moreover, embryos incubated with thapsigargin (5–20 mM)

exhibited delayed epiboly; however, a limited number of

embryos died prematurely, compared with nrz morphants (less

than 5%, data not shown). Direct injection of thapsigargin into

the YSL at the sphere-oblong stage considerably increased the

rate of early mortality. Interestingly, thapsigargin treatment also
(F) Effect of IP3R inhibition with 2-APB on the mortality of zebrafish embryos. Co

(50 mM) from 512 cells to oblong-sphere stage. Mortality was evaluated at indica

experiments).

(G and H) Immunoprecipitation experiments with protein extracts from transfecte

(G); Nrz but not DBH4Nrz was able to interact with IP3R1 (H); the Flag-tagged

quantification, Nrz IP/input ratios obtained by calculating the ratio of IP band int

(I) Time course analysis of nrz morphants injected or not with in vitro synthesize

prevent nrzMO lethal phenotype (mean ± SD; three independent experiments). S

Deve
led to DJm drop and cytochrome c release, thus phenocopying

nrz morphants (Figures S5A–S5C).

As the observed Ca2+ increase in nrz morphants seems to

originate from the ERwe investigated the implication of themajor

calcium channel IP3R in the nrz knockdown phenotype. For this

purpose, nrz morphants were incubated with the IP3R inhibitor

2-aminoethoxydiphenyl borate (2-APB). Prolonged treatment

of embryos with 2-APB throughout epiboly significantly delayed

epiboly progression (Figure S3D); thus, nrzmorphants were tran-

siently incubated with 2-APB (from 512 cells to oblong stage). In

such conditions, as shown in Figures 4D and 4E, 2-APB treat-

ment prevented the increase of Ca2+ levels in nrz morphants

(afi: 1195.6 ± 155; n = 19). Moreover, as shown in Figure 4F, early

mortality was significantly reduced in nrzmorphants upon 2-APB

treatment (nrzMO embryos: mortality at 10 hpf = 39.9% ± 1.9%;

2-APB treated nrzMO embryos: mortality at 10 hpf = 24.4% ±

6%). Interestingly, heparin as well as Xestospongin C, two other

inhibitors of IP3R, have a similar effect (Figures S3E and S3F).

This suggested that the Ca2+ increase observed in nrz mor-

phants is IP3R dependent.

Nrz Interacts with the IP3R1 Channel via Its BH4 Domain
It was previously shown that the Bcl-2 protein can regulate cyto-

solic Ca2+ concentrations via its interaction with the IP3R1

Inositol 1,4,5-triphosphate receptor channel; moreover, Bcl-2

was reported to interact directly with IP3R1 via its BH4 domain

(Rong et al., 2009). To directly check if Nrz was able to repress

the opening of the IP3R1 channel, the effect of Nrz on the release

of calcium originating from the ER was studied in HeLa

cells following histamine treatment, which is known to trigger

calcium release into the cytosol by increasing intracellular IP3

levels. Indeed, full-length Nrz, as well as NrzCytB5, but not

DBH4NrzCytB5, prevented histamine-dependent Ca2+ release

(Figures S3G and S3H). To check if Nrz interacted with IP3R1

via its BH4 domain, a series of Nrz mutants were expressed

in HeLa cells, Nrz/IP3R1 interactions being detected by co-

immunoprecipitation and western blotting. As shown in Fig-

ure 4G, whole-length Nrz did interact with IP3R1 as well as

ER-addressed NrzCytB5; in contrast, no interaction could be

detected with DBH4Nrz, whereas the BH4 domain alone

appeared to disrupt Nrz/IP3R1 interaction (Figure 4H). Finally,

the fact that in nrz morphants, contrary to full-length NrzCytB5

(Figure 2B),DBH4NrzCytB5 neither restored epiboly progression

(Figure 4I) nor prevented the increase of Ca2+ in the YSL (data not

shown) was an indication that the observed interaction between

IP3R1 and Nrz was of functional significance.

Nrz Knockdown Alters the Cytoskeleton in the Yolk Cell
The yolk cell and in particular the YSL is a dynamic structure con-

taining a broad range of cytoskeleton components that organize
ntrol embryos (WT) and nrz morphants (MO) were incubated or not with 2-APB

ted times after the beginning of the incubation (mean ± SD; three independent

d HeLa cells: Nrz and NrzCytB5 coimmunoprecipitated with the IP3R1 channel

BH4 peptide domain inhibited Nrz/IP3R1 interaction. Bottom: densitometry

ensity (lanes ‘‘IB:Nrz’’) to the input band intensity (lanes ‘‘Input Nrz’’).

d DBH4NrzCytB5 mRNA. Ectopic expression of DBH4NrzCytB5 is unable to

ee also Figure S3.
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Figure 5. Nrz Knockdown Leads to Profound Alterations of the Cytoskeleton Inside the Yolk Cell

(A) F-actin staining in control embryos and nrzmorphants at 40%–50%epiboly stage showing the status of cortical F-actin inside the vegetal pole (white asterisk).

In nrz morphants, cortical actin is severely reduced or absent.

(B) Histogram showing the percentage of control embryos versus nrzmorphants at 50% epiboly stage with normal (blue), reduced (red), or absent (green) cortical

F-actin. See also Figure S4.
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into complex networks of microtubules and microfilaments

(cortical F-actin, actin-myosin ring). These networks actively

drive epiboly progression during early development (Cheng

et al., 2004; Koppen et al., 2006). Ca2+ is a major intracellular

messenger that controls a variety of cellular processes including

cytoskeleton remodeling and morphogenesis; it plays a critical

role throughout the development of the zebrafish (Ashworth

et al., 2007; Gilland et al., 1999; Webb and Miller, 2006; Westfall

et al., 2003). Ca2+ fluxes in the vicinity of themargin were recently

suggested to participate in epiboly (for review, see Webb and

Miller, 2006). Thus, the effect of nrz knockdown on the cytoskel-

eton of the yolk cell was analyzed. Microtubules appeared to be

intact in the blastomeres of nrz morphants. In contrast, the

microtubule network was dramatically disorganized in the yolk

cell; this effect being prevented by the microtubule stabilizing

agent Taxol (Figures S4A–S4C). However Taxol did not prevent

the mortality of nrz morphants (data not shown). This suggested

that Nrz was required for the YSL microtubule stability during

epiboly but that the observed disorganization of the microtubule

network in the yolk cell of nrz morphants was the consequence

rather than the cause of early embryonic mortality.

We then analyzed the effect of nrz knockdown on the

organization of the F-actin network using phalloidin-rhodamine
670 Developmental Cell 20, 663–676, May 17, 2011 ª2011 Elsevier In
staining. In control embryos, a diffuse signal was detected in

the yolk cell, corresponding to cortical actin (Cheng et al.,

2004). Remarkably, this signal was severely altered, being

reduced (71.4%, n = 35) or even suppressed (28.6%) in nrzmor-

phants as compared to control embryos (96.4% normal, n = 28)

(Figure 5). The observed cortical actin disruption appeared to be

possibly due to both F-actin depolymerization and partial

proteolytic degradation (Figure S4D).

Thus, knockdown of nrz resulted in alterations both in actin

microfilaments and microtubules in the yolk cell. By contrast,

in the animal pole, apart from the blastomeres in direct contact

with the margin, the overall organization of the cytoskeleton

did not seem to have been altered (Figures 5 and S4D).

Effect of nrz Knockdown Triggers MLCK-Dependent
Actin-Myosin Complex Formation at the Margin
During zebrafish development an actin-myosin ring forms at

75% epiboly and plays an essential role in epiboly progression

and blastopore closure (Cheng et al., 2004; Rohde and Heisen-

berg, 2007). This raised the possibility that in nrz morphants,

the observed constriction of the margin could be due to prema-

ture formation of the actin-myosin complex. Indeed, as shown

in Figure 6A, the actin-myosin ring had already appeared
c.
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when the margin reached the yolk cell equator (50% epiboly),

whereas in control embryos this structure was not present until

75% epiboly. It should be noted that the treatment of nrz mor-

phants with the selective myosin II inhibitor blebbistatin, signifi-

cantly delayed the constriction of the margin in nrz morphants

(data not shown). These observations suggested that in nrz

morphants, the constriction of the actin-myosin ring was

accelerated, whereas the speed of progression of the margin

down to the vegetal pole was unchanged. Importantly, thapsi-

gargin-treated embryos exhibited similar early margin constric-

tion as well as premature formation of the actin-myosin ring

(Figure 6A), suggesting that in nrz morphants as well, these

events are the consequence of massive Ca2+ release from the

ER inside the yolk cell. Finally, overexpression of Nrz appeared

to prevent the formation of the actin-myosin ring and delay

epiboly (Figure S5).

At the molecular level, the formation of the actin-myosin

complex is triggered by the phosphorylation of MLC subunits

(Thr-18 and Ser-19 residues) (Matsumura, 2005). We thus

analyzed MLC phosphorylation in nrz morphants by immunoflu-

orescence and western blotting, using an antibody specific for

phosphorylated Ser-19. Remarkably, at 50% epiboly, such

phosphorylation was observed at the leading edge of the

margin in nrz morphants (actin-myosin ring positive embryos =

76.9%, n = 13), but not in control embryos (0%, n = 14) (Fig-

ure 6B). In addition, protein extracts from nrzmorphants showed

increased myosin phosphorylation (Figure 6C), raising the possi-

bility that the formation of the actin-myosin ring in nrzmorphants

may be the consequence of premature phosphorylation of

MLC. Interestingly, thapsigargin treatment of zebrafish embryos

induced a similar increase of Ser-19 phosphorylation in a

dose dependant manner (Figure 6C), suggesting that MLC phos-

phorylation depends on the release of Ca2+ from the ER inside

the YSL.

Two main kinases are capable of phosphorylating MLC

directly at Ser-19: MLCK and Rho-associated protein kinase 1/

2 (ROCK 1/2) (Matsumura, 2005; Takashima, 2009; Totsukawa

et al., 2000). In zebrafish, these kinases are both expressed

during early development (Blaser et al., 2006). We thus evaluated

their involvement in the phenotype of nrz morphants, using

specific inhibitors. As shown in Figure 6D, incubation with the

MLCK inhibitor ML-7 slowed down the mortality of nrz mor-

phants significantly (mortality at 7 hpf = 4.4% ± 6.2%, n = 59),

whereas the ROCK inhibitor Y26732 had little or no effect

(mortality at 7 hpf = 23.8% ± 8.3%, n = 62). In addition, the

MLCK inhibitor ML-7 (actin ring positive embryos [RPE] = 20%,

n = 15), as well as the calmodulin antagonist W13 (RPE =

14.3%, n = 14), prevented MLC phosphorylation and premature

actin ring formation in nrz morphants (Figure 6B), contrary to

Y26732, which had no effect (RPE = 75%, n = 12). Together,

these results suggested that calmodulin-dependent MLCK

activity was required for premature formation of the actin-myosin

ring observed in nrz morphants.

Altogether, these data indicated that nrz invalidation results in

the massive release of Ca2+ from ER stores, which then triggers

MLC phosphorylation via MLCK. As a result, the formation of

the contractile actin-myosin ring occurs prematurely, leading

to the detachment of the blastomeres from the yolk cell and

death of the embryo (Figure 7).
Deve
DISCUSSION

In the zebrafish, epiboly is driven by the cytoskeletal dynamics of

the YSL and of the migrating blastomeres as well as presumably

by active endocytosis events at the level of the blastomere

plasma membrane. The formation of a contractile actin-myosin

ring, in the region of the margin, is critical for epiboly completion

(Solnica-Krezel, 2006). These events seem to be orchestrated in

part by Ca2+ transients, the underlying molecular mechanisms

remaining largely unknown (Webb and Miller, 2006).

Effect of nrz Knockdown on YSL Mitochondria
We previously showed that the knockdown of the apoptosis

inhibitor nrz led to premature epiboly arrest. In the zebrafish

embryo, the nrz transcript is specifically accumulated in the

YSL. Here, we demonstrate that the YSL contains a dense ER

network and a large number of active mitochondria. Our results

show that Nrz protein is localized to both YSL ER and

mitochondria.

Of note, nrz knockdown affects the TM potential of YSL mito-

chondria, and to a lesser extent of the blastomere mitochondria.

The observed DJm dropdown is accompanied by the release of

cytochrome c but not by any detectable activation of caspase-3.

However, expression of the caspase inhibitor p35 could not

prevent the early mortality caused by nrz downregulation.

Thus, the phenotype caused by the knockdown of nrz appears

to be caspase independent.

Effect of nrz Knockdown on Ca2+ Fluxes in the YSL
The localization of Nrz in the ER, but not in mitochondria, is crit-

ical for the proper early development of the embryo. Indeed, nrz

knockdown leads to amarked increase in cytosolic Ca2+ levels in

the YSL, which is prevented by ectopically expressed ER-

addressed NrzCytB5, but not by mitochondria-addressed

NrzMaoB. Moreover, artificial increase of free Ca2+ in the YSL

upon thapsigargin treatment of zebrafish embryos phenocopies

nrz morphants. Of note, thapsigargin treatment also results in

a decrease in transmembrane potential of YSL mitochondria

and triggers cytochrome c release. The interplay between Ca2+

signaling andmitochondrial status has been extensively studied;

mitochondria are capable of storing substantial amounts of Ca2+,

thus playing the role of intracellular Ca2+ buffer (Rizzuto et al.,

2009). Treating the cells, including thapsigargin, with cytotoxic

agents, triggering a massive release of Ca2+ into the cytosol

generally ends in cell death (Rong and Distelhorst, 2008).

Calcium waves observed in nrz morphants seem to originate

from the margin, thus affecting primarily YSL mitochondria.

However, blastomere mitochondria may be also affected due

to Ca2+ entry from the YSL via the gap junctions located into their

plasma membrane (Webb and Miller, 2006).

The effects of Bcl-2 family members on intracellular Ca2+

fluxes are still under active investigation. It has been reported

that Bcl-2 and Bcl-xL could increase calcium leak from the ER

thus reducing the amount of calcium available for inducing

apoptosis (White et al., 2005; Rizzuto et al., 2009). Alternatively,

Bcl-2 was shown to interact with the IP3R1 Ca2+ channel and

prevent the release of Ca2+ from the ER thus preventing Ca2+

overloading of the mitochondria and downstream apoptosis

events (Rong et al., 2009).
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Figure 7. A Model for the Role of Nrz in the

YSL during Zebrafish Development

Nrz located to the ER is critical for the regulation

of YSL Ca2+ fluxes. Nrz knockdown increases

YSL free Ca2+ levels, leading to MLC hyper-

phosphorylation presumably via calmodulin/

MLCK pathway, premature actin-myosin ring

formation, and subsequent YSL cytoskeletal

breakdown. Ca2+ may also directly lead to micro-

tubule depolymerization, as their stability is

compromised in the presence of increased Ca2+

levels. Another consequence of free Ca2+ increase

is the alteration of the YSL mitochondria as shown

by DJm loss and cytochrome c release. The

alteration of the mitochondrial status may also

contribute to cytoskeletal disorganization due to

decreased production of ATP into the YSL.
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Our data suggest that Nrz regulates YSL Ca2+ levels by inter-

acting with the IP3R1 channels via its BH4 domain. This interac-

tion appears to occur between the BH4 domain of Nrz and

IP3R1. Whether this effect on YSL Ca2+ levels occurs exclusively

in an IP3R-dependent manner or by an additional mechanism

will require further studies.

Effect of nrz Knockdown on Cytoskeletal Dynamics
in the YSL
The YSL contains a large number of cytoskeletal proteins that

drive in part epiboly morphogenic movements (Cheng et al.,

2004; Koppen et al., 2006). In nrz morphants, the microtubule

network and F-actin vegetal actin are dramatically affected,

which might result from a decrease in ATP concentrations in

the yolk cell due to alterations of YSL mitochondria (Figures

2E–2J). However, these cytoskeletal modifications are more

likely to be consequences rather than the actual cause of early

mortality since they occur after the constriction of the margin.

Our results suggest that the constriction of the margin and

subsequent embryonic death are due to the premature formation
Figure 6. Nrz Knockdown Leads to Increased Myosin Phosphorylation at the Margin and
Formation

(A) F-actin staining of control embryos (40% and 75% epiboly), nrzmorphants (nrzMO), and thapsigargin-trea

myosin ring is present at 75% epiboly but absent at 40% epiboly (white arrows). In nrz morphants the act

blastomeres reached the equator. White asterisks materialize the location of vegetal F-actin inside the yolk

(B) Immunofluorescence analysis of the margin region of 50% epiboly stage embryos: staining of phosph

showing MLC phosphorylation at the margin in nrzmorphants, which is correlated with an increase in the F-a

shown on the right. Treatment of nrz morphants with the MLCK inhibitor ML7 or the calmodulin antagoni

polymerization. Thapsigargin-treated embryos were used as positive controls. Scale bar, 20 mm. Representat

(C) Immunoblot analysis of the phospho-MLC (Ser-19) content in the blastoderm of control embryos, nrz

amounts of thapsigargin.

(D) Effect of ROCK inhibitor Y26732 (50 mM) and MLCK inhibitor ML7 (20 mM) on the mortality of nrz morphan

in blastomere detachment due to the lack of actin-myosin ring formation. Representative results from thre

Figure S5.
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of the contractile actin-myosin ring.

Indeed, the contractile ring normally

forms after the EVL reaches the equator

(75% epiboly), which favors epiboly

completion (Solnica-Krezel, 2006). In nrz

morphants, the formation of the actin

myosin ring occurs before the EVL rea-
ches the equator, resulting in the detachment of the entire

embryo from the yolk. Importantly, premature formation of the

actin myosin ring is correlated with increased phosphorylation

of MLC on Ser-19, which is known to enhance myosin ATPase

activity and stress fibers formation (Totsukawa et al., 2000).

The effect of the two pharmacological agents ML7 and Y26732

suggest that the inhibition of MLCK, but not ROCK1/2, signifi-

cantly delays margin constriction and early mortality of Nrz

morphants. In the smooth muscle, MLCK activation and myosin

phosphorylation are Ca2+ dependent. The release of Ca2+ from

the ER leads to the activation of the Ca2+-dependent calmodulin

protein, which subsequently binds and activates MLCK

(Matsumura, 2005). We show here that W-13 treatment of nrz

morphants inhibits premature actin-myosin ring formation, sug-

gesting that similar calmodulin-dependent MLCK activation

occurs at the margin.

In nrzmorphants, the rise in Ca2+ levels leads to mitochondrial

dysfunction and increased MLC phosphorylation by MLCK.

Thus, it turns out that in addition to Nrz, the formation of the

contractile ring is under the control of a multiplicity of factors,
Premature Actin-Myosin Contractile Ring

ted (5 mM) embryos. In control embryos, the actin-

in-myosin ring is already present before migrating

cell. Scale bar: 100 mm.

o-MLC of nrz morphants versus control embryos

ctin signal (phalloidin staining). Merged images are

st W13 inhibits MLC phosphorylation and F-actin

ive data from at least three embryos (50% epiboly).

morphants, and embryos treated with increasing

ts. Mortality of ML7-treated embryos 7 hpf results

e independent experiments are shown. See also
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including the MTX2 transcription factor (Wilkins et al., 2008), the

MAPKAPK2 protein kinase (Holloway et al., 2009), the Ste20 like

kinase MSN1 (Koppen et al., 2006), and the mDIA2 formin (Lai

et al., 2008). Understanding of the interplay between the

signaling pathways involved remains a major issue.

The Bcl-2 Family of Proteins as Regulators
of Cytoskeleton Dynamics
Why the release of cytochrome c from the YSL mitochondria

does not result in caspase activation remains an open question.

The possibility exists that phosphorylation of MLC occurs shortly

after the release of Ca2+ such that the contraction of the actin-

myosin ring and subsequent separation of the blastomeres

from the yolk cell may occur before caspases can be activated.

This then raises the possibility that the Bcl-2 family of apoptosis

regulators, via their effect on Ca2+ signaling, may indeed have

multiple roles into the cell when apoptosis is silenced.

Actually, there may be a dual role for Nrz during epiboly, first in

the ER, where it may participate, as shown in this report, in fine-

tuning of the Ca2+ fluxes and ensure the formation of the actin

ring at the right time; second, in the YSL mitochondria, where,

possibly by enhancing their Ca2+ uptake capacity (see Murphy

et al., 1996), it may preserve mitochondrial integrity by avoiding

DJm drop and preventing cytochrome c release. Indeed, this

could explain the observed capacity of NrzMaoB to prevent mito-

chondrial dysfunction in nrz morphants. Nrz may also prevent

unwanted apoptotic events that may otherwise be triggered

when the blastomeres merge and give rise to the YSL. Indeed,

there is evidence that syncytium formation favors apoptosis

spreading (Greenwood and Gautier, 2005; Huppertz et al.,

2001). Finally,Nrzmightbecritical for thecontributionofYSLmito-

chondria to the regulation of Ca2+ transients throughout epiboly.

Thus, our results suggest that Bcl-2 family members, in addi-

tion to their role in controlling apoptosis, may play a pivotal role in

remodeling the cytoskeleton during cell migration, epithelial

mesenchymal transition, and possibly metastasis formation.

EXPERIMENTAL PROCEDURES

Embryo Manipulation

Morpholino (0.5 mM) and mRNA (100 ng/ml) injections were performed at one

to four cell stages. Thapsigargin (5–20 mM)was incubated at 1000 cell stage for

3 hr or injected in the YSL at oblong-sphere stage. ML-7 (20 mM), Y27632

(50 mM), and W-13 (100 mM) were incubated at oblong-sphere stage. For

embryo mortality quantification, 50 mM 2-APB was added before MBT for

45 min (between 512 cells and oblong stage), which did not cause any signifi-

cant early epiboly delay. After incubation, embryos were washed with egg

water and mortality was evaluated.

Immunofluorescence Analysis and In Vivo Staining

Image acquisition was carried out with the same gain, amplification, and expo-

sure time between each experimental condition and the corresponding

control. Image analysis was done using ImageJ software. All the procedures

were carried out at room temperature unless otherwise stated. For Ca2+

dynamics experiments, one cell stage embryos were injected with 10 mM

Oregon Green 488 BAPTA-1 AM and analyzed at high stage using Nikon

TE300 fluorescence microscope. Double phosphomyosin/F-actin and Nrz

staining were carried out as described (Koppen et al., 2006). In brief, embryos

at the desired stage were fixed overnight in 4% paraformaldehyde at 4�C and

washed in 0.1% Triton in PBS (PBT). They were then permeabilized for 1 hr in

0.5% Triton in PBS and subsequently incubated in block solution (10% normal

goat serum, 1% DMSO, 0.1% Triton in PBS). Embryos were then incubated
674 Developmental Cell 20, 663–676, May 17, 2011 ª2011 Elsevier In
overnight at 4�C with 1/100 rabbit antiphospho-MLC 2 Ser-19 or 1/100 rabbit

anti-Nrz antibody. Following three washes in PBT, embryos were incubated in

Phalloidin and/or secondary antibodies and incubated overnight at 4�C. In vivo
active mitochondria staining was performed by incubating embryos at the

40% epiboly stage with Mitotracker Red (500 nM) in egg water for 30 min at

28.5�C. Embryos were then washed extensively with egg water and visualized

using a confocal microscope Axiovert 100M LSM510. The YSL ER was

visualized in vivo by injecting 100 mM ER tracker at one cell stage or injecting

egfpcytb5 mRNA. Activated caspase-3 staining was performed as described

(Jette et al., 2008).

Subcellular Fractionation

All steps were carried out at 4�C if not otherwise stated. Mitochondria and ER

localized to the YSL were purified as follows: approximately 100–150 embryos

were put in 1 ml cold MB buffer (210 mM mannitol, 70 mM sucrose, 1 mM

EDTA, 10 mM HEPES [pH 7.5] containing proteases inhibitors) and the yolk

sac disrupted with a P1000 tip. Embryos were then shaken for 5 min at

1100 rpm to dissolve the yolk and then centrifuged 2 min at 300 3 g to pellet

the blastomeres. The supernatant was centrifuged at 15003 g twice for 5 min

each to eliminate yolk nuclei and then centrifuged at 10,6003 g for 5 min. The

pellet containing mitochondria was washed once with MB buffer and prepared

for further analyses. The supernatant was then centrifuged at 100,000 3 g for

1 hr. The supernatant containing cytosolic fraction was conserved and the

pellet was resuspended in RIPA buffer for further analyses.

For HeLa cell fractionation, cells at 90% confluence in 10 cm2 plates were

transfected with pCS2+-NrzCytB5 or pCS2+-NrzMaoB using lipofectamine

transfection reagent. Twenty-four hours after transfection, mitochondria

were purified using the Qproteome Mitochondria Isolation Kit (QIAGEN)

according to manufacturer recommendation. After mitochondria isolation,

the ER was purified from the supernatant as described above.

Immunoprecipitations and Immunoblotting

For IP3R/Nrz coimmunoprecipitation experiments, 4 3 106 HeLa cells were

transfected with the corresponding vector. Cells were then lysed in TNE buffer

(10 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA [pH 7.4], 1 mM b glycerophos-

phate, 1 mM orthovanadate, 0.1 mM sodium pyrophosphate containing

protease inhibitors). Extracts were precleared with protein G-Sepharose

beads for 1 hr and then incubated with 6 mg of primary anti-IP3R antibody.

Extracts were then incubated with protein G-Sepharose beads for 2 hr. Immu-

noprecipitated fractions were washed five times with TNE and analyzed by

immunoblotting. For yolk cortical actin, immunoprecipitation experiments

were carried out on yolk fractions (see below) obtained from embryos at

40%–50% epiboly stage. Four micrograms of primary anti-a-actin antibody

were used for the immunoprecipitation.

Ser-19 phosphorylation status of MLC was done on extracts from blasto-

meres separated from the yolk as described (Link et al., 2006). Proteins

were extracted in RIPA buffer (1% NP-40, 0.5% deoxycholic acid, 0.1%

SDS in PBS, containing protease and phosphatase inhibitors) and analyzed

using anti-phospho-MLC (Ser-19) antibody (1/500 dilution). Detection of Nrz

and cytochrome c was performed on protein extracts from isolated YSL mito-

chondria (50 embryos/ lane), using anti-Nrz (1/200) and anti-cytochrome c

(1/500) antibodies.

Statistical Analysis

Error bars displayed on graphs represent mean ± SD of three independent

experiments. Statistical significance was analyzed using Student’s t test;

p < 0.01 was considered significant.
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