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Elliptic flow of colored glass in high energy heavy ion collisions
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Abstract

We compute the elliptic flow generated by classical gluon fields in a high energy nuclear collision. The classical gluon fields
are described by a typical momentum scale, the saturation scaleΛs , which is, for RHIC energies, of the order of 1–2 GeV.
A significant elliptic flow is generated only over time scales on the order of the system sizeR. The flow is dominated by soft
modespT ∼Λs/4 which linearize at very late timesτ ∼R� 1/Λs . We discuss the implications of our result for the theoretical
interpretation of the RHIC data.
 2003 Elsevier Science B.V.

1. Introduction

The collective flow of excited nuclear matter has
been an important tool in attempts to extract the nu-
clear equation of state ever since the early days of
heavy ion collision experiments [1]. Measurements of
collective flow at the Relativistic Heavy Ion Collider
(RHIC) may provide insight into the excited partonic
matter, often called a Quark Gluon Plasma (QGP),
produced in high energy heavy ion collisions [2]. In
particular, the azimuthal anisotropy in the transverse
momentum distribution has been proposed as a sen-
sitive probe of the hot and dense matter produced in
ultra-relativistic heavy ion collisions [3]. A measure
of the azimuthal anisotropy is the second Fourier co-
efficient of the azimuthal distribution, the elliptic flow
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parameterv2. Its definition is [4]

(1)

v2 = 〈
cos(2φ)

〉 =
∫ π
−π dφ cos(2φ)

∫
d2pT

d3N
dy d2pT dφ∫ π

−π dφ
∫

d2pT
d3N

dy d2pT dφ

.

The elliptic flow for non-central collisions is believed
to be sensitive to the early evolution of the system [5].

The first measurements of elliptic flow from RHIC,
at center of mass energy

√
sNN = 130 GeV, have been

reported recently [6]. Hydrodynamic model calcula-
tions provide good agreement, for large centralities,
with the measured centrality dependence of the data
and the initial condition and equations of state depen-
dence has been extensively studied in Ref. [7]. The
agreement at smaller centralities is less good, perhaps
reflecting the breakdown of a hydrodynamic descrip-
tion in smaller density of the systems at beam rapidity
region [8]. Hydrodynamic models also agree well with
the pT dependence of the unintegrated (see Eq. (1))
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elliptic flow parameterv2(pT) up to 1.5 GeV/c at mid-
rapidity [7]. However, above 1.5 GeV, the experimen-
tal distribution appears to saturate, while the hydro-
dynamic model distributions continue to rise [7]. Jet
quenching scenarios to explain this saturated behavior
of v2(pT) at largepT [9] appear to disagree quantita-
tively with the data. Partonic transport models includ-
ing only elastic gluon–gluon scattering require large
cross sections or large initial gluon number to obtain
significant elliptic flow [10].

In this Letter, we compute the contribution to
v2 at central rapidities from the strong color fields
generated in the initial instants after the heavy ion
collision. These are generated as follows. At high
energies, or equivalently, at small Brokenx, the parton
density in a nucleus grows very rapidly and saturates
eventually [11] forming a Color Glass Condensate
[12] (CGC). The CGC is characterized by the color
charge squared per unit areaΛ2

s which grows with
energy, centrality and the size of the nuclei. Estimates
for RHIC giveΛs ∼ 1–2 GeV.1 For a recent review
of the CGC model and additional references, see
Ref. [13]. Since the occupation number of gluons
in the CGC is large,f ∼ 1/αS(Λ2

s ) > 1, classical
methods can be applied to study gluon production
in heavy ion collisions at high energies [16,17]. The
energy and number [18,19] of gluons produced were
computed numerically for an SU(2) Yang–Mills gauge
theory and recently extended to the SU(3) case [20].
We have confirmed that strong electric and magnetic
fields of order 1/αS are generated in a timeτ ∼ 1/Λs
after the collision.

The classical Yang–Mills approach may be applied
to compute elliptic flow in a nuclear collision.2 For
peripheral nuclear collisions, the interaction region
is a two-dimensional almond shaped region, with
the x axis lying along the impact parameter axis

1 The correct leading logarithmic relation betweenΛs and
the gluon saturation scaleQs is Q2

s = Λ2
s Nc ln(Λ2

s /Λ
2
QCD)/4π .

Assuming (for cylindrical nuclei!) thatΛs has the samex and
atomic number dependence asQs , the Golec–Biernat–Wusthoff
parametrization of HERA data [14] givesΛs ∼ 1.4 GeV. Other
estimates giveΛs ∼ 2 GeV [15]. For realistic nuclei, the average
value ofΛs over the nucleus may be lower, about 1 GeV for a
central value of 1.4 GeV.

2 Our computations are performed for an SU(2) gauge theory.
We expect thatv2, since it is a ratio of components of the stress-
energy tensor, will likely be independent of the number of colors.

and they direction perpendicular to it and to the
beam direction. We will show that even though large
electric and magnetic fields (and the corresponding
transverse components of the pressure in thex andy
directions) are generated over very short time scales
τ ∼ 1/Λs , the significant differences in the pressures,
responsible for elliptic flow, are only built up over
much longer time scalesτ ∼R. Moreover, the elliptic
flow is generated by soft modespT ∼ Λs/4. Our
result has important consequences for the theoretical
interpretation of the RHIC data-these will be discussed
later in the text.

2. Numerical method

We now discuss our numerical computation of
elliptic flow. As in our earlier work, we assume strict
boost invariance. The dynamics is then that of a Yang–
Mills gauge field coupled to an adjoint scalar field
in 2 + 1 dimensions. For a numerical solution we
use lattice discretization. The discretized theory is
described by a Kogut–Susskind Hamiltonian [18].

In previous work, we studied gluon production in
central collisions of very large nuclei and therefore
assumed a uniform color charge distribution (Λs =
constant) in the transverse plane. To study effects of
anisotropy and spatial inhomogeneity, we shall con-
sider a finite nucleus. We shall impose suitable neutral-
ity conditions on the distribution of color sources [21]
to prevent gluon production at large distances outside
the nucleus.

To this end, we model a nucleus as a sphere of
radiusR, filled with randomly distributed nucleons
of radiusl ≈ 1 fm. For a gold nucleus,R ≈ 6.5 fm.
The color charge distribution within a nucleon is gen-
erated as follows. First, we generate (throughout the
transverse plane of a nucleon) a random uncorre-
lated Gaussian distributionρa(�r) (a being the adjoint
color index and�r the transverse-plane position vector),
obeying the relation〈
ρa(�r)ρb(�r ′)〉 =Λ2

nδ
abδ(�r − �r ′),

where the〈 〉 average is over the ensemble of nucleons.
Next, we remove the monopole and dipole compo-
nents of the distribution by superimposing the distrib-
ution with the appropriate homogeneous contribution;
first of the color charge, then of the color dipole mo-
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ment. For a sufficiently fine lattice discretization, this
procedure does not result in a significant change in the
average magnitude of the random charge distribution.
Since the color charges of different nucleons are un-
correlated, the resulting nuclear color charge squared
per unit area has a position-dependent magnitude,

Λ2
s (r)=

2

l
Λ2

n

√
R2 − r2,

wherer is the transverse radial coordinate relative to
the beam axis through the center of the nucleus andl

is the nucleon diameter. We can adjustΛn to ensure
the central nuclear color charge squared per unit area
Λ2
s0 ≡Λ2

s (0) has a desired value.
Once the color charge distributions of the incoming

nuclei are determined, the corresponding classical
gauge fields can be computed. The initial conditions
for the gauge fields in the overlap region between
the nuclei are obtained as discussed previously [18].
For each configuration of color charges sampled,
Hamilton’s equations are solved on the lattice for the
gauge fields and their canonical momenta as a function
of the proper timeτ .

3. Results

We first compute the momentum anisotropy para-
meterα (defined in Fig. 1) as a function of the proper
time τ .3 The results for values of the external parame-
terΛs0R = 18.5 andΛs0R = 74 (spanning the RHIC-
LHC range of energies) are shown in Fig. 1. We ob-
serve thatα rises gradually saturating atα ∼ 1% at a
proper time on the order of the size of the system. The
time required to develop an anisotropy is clearly much
larger than the characteristic time∼ 1/Λs0 associated
with non-linearities in the system. Also, we note that
α is very weakly dependent onΛs0, or equivalently,
on the initial parton density.

The calculation of elliptic flow, defined by Eq. (1),
involves determining the gluon number, a quantity
whose meaning is ambiguous outside a free theory.
Closely following our earlier work [19,20], we resolve
this ambiguity by computing the number in two
different ways; directly in Coulomb Gauge (CG) and

3 For the case of classical fields,α provides a lower bound on
v2.

Fig. 1. The momentum anisotropy parameterα = 〈T xx − T yy 〉/
〈T xx + T yy 〉 for a peripheral nuclear collision corresponding to
impact parameterb/2R = 0.5 is plotted versus the proper timeτ
in units of the nuclear radiusR for two different values ofΛs0R.

by solving a system of relaxation (cooling) equations
for the fields. Both definitions give the usual particle
number in the case of a free theory. We expect the
two to be in good agreement for a weakly coupled
theory. Wherever the two disagree strongly, we should
not trust either.

It is easy to show thatv2N ,N being the total gluon
number, can be reconstructed from the cooling time
history of Txx − Tyy , just asN can be reconstructed
from that of the energy functional [19]:

(2)v2N =
√

2

π

∞∫
0

dt√
t

(
T xx(t)− T yy(t)).

This expression forv2N is manifestly gauge invariant.
In contradistinction to the gluon number, an es-

timate of v2 involves both the fields and their con-
jugate momenta. Indeed, consider the expression for
Txx − Tyy in our system:

Txx − Tyy =
∫

d2x⊥
[
E2
y −E2

x + (DxΦ)2

− (DyΦ)2
]
,

whereE is the chromo-electric field,Φ the adjoint
scalar field, andDi the covariant derivative, In the
weak-coupling limit Di reduces to∂i , the usual
derivative. In that limit, the first two terms inTxx −
Tyy only involve the conjugate momenta of gluons
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Fig. 2. v2 is plotted (for impact parameterb/2R = 0.5) versus
Λsτ . Solid squares are cooling results using only the potential
contribution. Solid diamonds include the contribution of both
potential and kinetic terms. The Coulomb gauge result, including
both the potential and the kinetic contributions, is shown in open
circles. Open squares are corrected CG results—see text for an
explanation.

polarized in the transverse plane, while the last two
terms only depend on the fields of gluons whose
polarization is perpendicular to that plane. Since it
is not a priori obvious that the two polarizations
contribute equally tov2, both the fields and the
conjugate momenta should be computed. For the
cooling method, relaxation equations for conjugate
momenta require that the usual relation between the
momenta andproper time derivatives of the fields hold
at all cooling times [22].

In Fig. 2, we compare, for a fixed impact parameter
(b/2R = 0.5), the values ofv2 obtained by the
different methods. In the cooling approach,v2 can be
computed first by considering only the potential part
of Txx − Tyy in Eq. (2) and then assuming an equal
contribution from the kinetic part. As seen in Fig. 2,
such an equality does not hold until very late times.
There is a significant difference at early times between
the CG and cooling estimates ofv2.

At asymptotically large cooling times we expect
N andv2N of the cooled configuration to vanish. If
the CG values of these do not vanish, then they are
artifacts of the CG. We subtract the residual values
from the corresponding values before cooling. The
result is referred to as the corrected CG values. The
cooling and the CG computations are expected to

Fig. 3. The centrality dependence ofv2 at the earliest times in Fig. 2
is computed using cooling (open symbols) and CG (filled symbols).
Results are forΛs0R spanning the RHIC-LHC range, specifically,
Λs0R = 18.5 (squares), 37 (triangles), and 74 (stars). Full circles
denotepreliminary STAR data.4 The band denotes the estimated
value ofv2 when extrapolated to very late times. “Corrected values”
denotes the late time cooling and CG result forΛs0R = 18.5 at one
centrality value.

agree at late times, as the system becomes increasingly
weakly coupled. The two methods agree forN at fairly
early times. Forv2, this convergence occurs at much
later times, since, as we shall see in the following,
v2 is dominated by very soft modes with momenta
pT <Λs0.

In Fig. 3 we plotv2 reconstructed from the cooling
time history of only the potential terms inTxx − Tyy ,
along with the CG values (also including potential
terms only) as a function ofnch/ntot for different val-
ues ofΛs0R as discussed in the figure. The systematic
errors represented by the band (forΛs0 = 18.55) are
primarily due to limited resources available to study
the slow convergence of the cooling and CG compu-
tations. We have studied the late time behavior ofv2
for one impact parameter—the results are shown in the
figure.

The asymptotic values ofv2, as predicted by
the model, undershoot the data. This disagreement
notwithstanding, our results show that a significant
v2 can be generated by the classical fields. For very

4 We thank R.J. Snellings for providing us with thepreliminary
STAR data on centrality dependence ofv2.

5 The band will likely be lower for larger values ofΛs0R.



A. Krasnitz et al. / Physics Letters B 554 (2003) 21–27 25

Fig. 4.v2(pT) as a function of transverse momentum in dimension-
less units forΛs0R = 74.

peripheral collisions, where the gluon density may
be too low to justify the classical approximation,
the predictions of the model are not reliable. In this
regime, one may also expect significant corrections
from realistic nuclear density profiles relative to hard
spheres. Interestingly, the dependence ofv2 onΛs0R
is rather weak. For a fixed impact parameter, the model
predicts that, asΛs0R→ ∞, the classical contribution
to the elliptic flow goes to zero. This is because
increasingΛs0R is equivalent to increasingR for fixed
Λs0 and therefore reducing the initial anisotropy.

In Fig. 4, v2(pT) is plotted forb/2R = 0.75 for
Λs0R = 74. Our calculations show that the elliptic
flow rises rapidly and is peaked forpT ∼ Λs0/4 be-
fore falling rapidly. The theoretical prediction [23] is
that forpT �Λs0, v2(pT)∼Λ2

s0/p
2
T. The lattice nu-

merical data appear to confirm this result-better sta-
tistics are required to determine the large momentum
behavior accurately. A couple of comments about our
result are in order. Firstly, even thoughΛ2

s0 is large, it
may differ considerably from the color charge squared
in the region where the nuclei overlap. This may ex-
plain in part why the momenta are peaked at smaller
values ofpT. Secondly, the dominant contribution of
very soft modes tov2 helps explain why the cooling
and CG computations differ until very late times. The
soft gluon modes have large magnitudes and there-
fore continue to interact strongly until very late proper
times. Concomitantly, the occupation number of these
modes is not small and the classical approach may be

adequate to describe these modes even at the late times
considered.

4. Discussion

We now turn to the theoretical interpretation of the
RHIC v2 data in the CGC approach. It is clear from
Fig. 3 that our result forv2 contributes only about 50%
of the measuredv2 for various centralities. OurpT
distributions also clearly disagree with experiment [6,
24]. Naively, one could argue that the classical Yang–
Mills approach is only applicable at early times so
additional contributions tov2 will arise from later
stages of the collision. While there is merit in this
statement, it is also problematic as we will discuss
below.

The reason the situation is complex is as follows.
We observed that it takes a long timeτ ∼ R to
obtain a significant elliptic flow. At these late times,
one would expect that the classical approach would
be inapplicable due to the rapid expansion of the
system. On the other hand, we have seen thatv2 in the
classical approach is dominated by soft modes which
are strongly interacting and do not linearize even at
time scalesτ ∼ R. Clearly, the soft modes cannot be
treated as on-shell partons even at timesτ ∼ R! This
is the message one obtains from Fig. 2.

The correct way to treat the theoretical problem
may be as follows. Hard modes withkt � Λs lin-
earize on very short time scalesτ ∼ 1/Qs . Their sub-
sequent evolution is treated incorrectly in the classical
approach, which has them free streaming in the trans-
verse plane. In actuality, they are scattering off each
other via elasticgg → gg and inelasticgg ↔ ggg

collisions which drive them towards an isotropic dis-
tribution [25]. This dynamics would indeed provide
an additionalpreequilibrium contribution tov2 and is
calculable. An effect to consider here would be the
possible screening of infrared divergences in the hard
scattering by the time dependent classical field. More
complicated is the effect of these hard modes on the
classical dynamics of the soft modes and on their pos-
sible modification of the contribution of the latter to
v2. One has here a little explored dynamical analog to
the interplay of hard particle and soft classical modes
in the kinetic theory of Hard Thermal Loops [26].
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Were the system to thermalize, both these effects
would complement the hydrodynamic component of
elliptic flow [7]. A quantitative study of the anisotropy
generated in this intermediate regime would therefore
be very useful in our theoretical understanding of the
data.

Finally, we note thatv2 is extracted only indirectly
from a variety of techniques, in particular, two and
four particle cumulant analyses [27]. Recently, it has
been proposed that non-flow two particle correlations
explain thev2 data [28]. It is unclear whether this
model can explain other features of the measured
azimuthal anisotropy. In our approach, a procedure
very similar to the experimental approach can be
followed and two and four particle correlations can
be determined. This work will be reported in the near
future.
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