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Terwilliger Algebras of Cyclotomic Schemes and Jacobi Sums

HARUO ISHIBASHI, TATSURO ITO AND MIEKO YAMADA†

We show that theT-module structure of a cyclotomic scheme is described in term of Jacobi sums.
It holds that an irreducibleT-module of a cyclotomic scheme fails to have maximal dimension if and
only if Jacobi sums satisfy certain kind of equations, which are of some number theoretical interest in
themselves.
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1. INTRODUCTION

Terwilliger algebras, or simplyT-algebras, were introduced by Terwilliger [10] under the
name subconstituent algebras.T-algebras and their representations are becoming increasingly
important in the study of association schemes themselves and of some combinatorial objects
defined over association schemes. This is typically seen in Terwilliger’s work toward the
classification ofP- and Q-polynomial schemes and expected in the study of spin models,
codes, and designs.

Terwilliger writes, ‘To get an intuitive feel forT [T is a Terwilliger algebra], suppose
for the moment that the associate classesR0, R1, . . . , Rd [of our association schemeX =
(X, {Ri }0≤i≤d)] are the orbits of the automorphism group Aut(X ) acting on the Cartesian
productX× X. Then the Bose–Mesner algebra is the centralizer algebra of Aut(X ). Whether
or not Aut(X) acts in the above fashion, we may still view the Bose–Mesner algebra as a ‘com-
binatorial analogue’ of this centralizer algebra. Similarly, we may viewT as a ‘combinatorial
analogue’ of the centralizer algebra of the stabilizer of [the base vertex]x in Aut(X ).’

Following Terwilliger, let us consider an association schemeX whose automorphism group
Aut(X ) acts transitively on each associate classRi , and let us denote byS the centralizer
algebra of the stabilizer of the base vertexx in Aut(X ). It turns out thatT is contained inS
but does not always coincide withS. Some examples ofT that are smaller thanSare reported
for group association schemes in Ref. [2].

In this paper, we shall choose cyclotomic schemes to discuss whetherT coincides withS
or not. What we actually do is to determine when an irreducibleS-module fails to remain
irreducible as aT-module; this suffices to settle the question of whetherT coincides withS
or not, as the algebrasT andS are both semi-simple and in the case of cyclotomic schemes,
non-isomorphic irreducibleS-modules cannot be isomorphic asT-modules (Corollary 5). As
is shown in Corollary 10, the problem turns out to be reduced to a number theoretical problem,
which is in itself interesting: letK be a finite field,H a multiplicative subgroup ofK× with
indexe, η a generator of the character group ofK×/H . The number theoretical problem is
to find all multiplicative charactersχ of K× such thatχ |H 6= 1H and the Gauss sumg(ηiχ)

equalsε i g(χ) for all i , whereε is aneth root of unity independent ofi .
In the last section, we shall discuss in detail the case ofe = 2, i.e., the case whereH is

of index 2. Let p = char K and |K | = pr . It holds thatT = S if and only if r is odd
(Corollaries 13, 14). Moreover, we show that whenr is even, the number theoretical condition
g(ηχ) = ±g(χ) is equivalent to a weaker one, namelyg(ηχ) andg(χ) generate the same
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ideal in the ring of integers ofQ(ζn), whereζn is a primitiventh root of unity withn the order of
χ (Theorem 16). Given a multiplicative characterχ of K , the weaker condition enables us to
checkg(ηχ) = ±g(χ) easily, as Stickelberger’s theorem tells us the factorization of the ideal
generated by a Gauss sum. In case ofr = 2, Shiratani–Yamada [9] has recently determined
all χ for which g(ηχ) = ±g(χ) holds.

In many ways, theT-algebra is a good combinatorial analogue of the centralizer algebraS.
However, it may not be a perfect combinatorial analogue ofS. For example,T need not be
closed with respect to the Hadamard multiplication, whereasS is. In any case, we think it
important to examine how closeT is to S for various association schemes. In [6], cyclotomic
schemes over Galois rings of characteristic 4 are considered in this respect. It should be noted
that the work on Galois rings was motivated by our work on Galois fields.

2. THE CENTRALIZER ALGEBRA HomH (V,V)

LetX = (X, {Ri }0≤i≤d) be an association scheme which may or may not be commutative.
Denote the set ofy with (x, y) ∈ Ri by Ri (x). Thestandard module Vof X is the unitary
space withX an orthonormal basis:V = ⊕x∈X Cx and< x, y >= δxy for x, y ∈ X. The
adjacency map fi with respect to the associate relationRi is the linear tansformation ofV
defined byfi (x) =∑y∈Ri (x) y for x ∈ X. TheBose–Mesner algebraA ofX is the subalgebra
of the endmorphism ring End(V) spanned by allfi .

Fix a base vertexx0 and letV∗i be the subspace ofV spanned byRi (x0). Let e∗i be the
orthogonal projection ofV ontoV∗i . TheTerwilliger algebra Tof X , which may depend on
the base vertexx0, is defined to be the subalgebra of End(V) spanned by allfi , e∗j . T andA

are semi-simple algebras and obviouslyT containsA.
Let G be a finite group acting on a setX transitively. LetR0, R1, . . . , Rd be the orbits of

G acting on the Cartesian productX × X in the natural way. Then we have an association
schemeX = (X, {Ri }0≤i≤d), which may or may not be commutative. It is well known that the
Bose–Mesner algebraA coincides with the centralizer algebra HomG(V,V) of G, the algebra
consisting of all linear transformations ofV that commute with the action ofG on V .

Let us fix a base vertexx0 ∈ X and letH be the stabilizer ofx0 in G. It can be easily checked
that every element of the Terwilliger algebraT with respect to the base vertexx0 commutes
with the action ofH on V . SoT is contained in the centralizer algebra HomH (V,V) of H .
Denoting HomH (V,V) by S, we have three semi-simple algebrasS, T , A with the inclusion
S⊃ T ⊃ A. Notice thatT andA are defined combinatorially butS is not. The question is
whenT coincides withS. As S becomes smaller or is unchanged when we replaceG by a
bigger subgroup of Aut(X), we usually assumeG = Aut(X ).

As S and T are semi-simple algebras,S and T coincide if and only if every irreducible
S-module remains irreducible as aT-module and every pair of non-isomorphic irreducible
S-modules remains non-isomorphic asT-modules. Notice that every irreducibleS-module
(resp.T-module) appears inV , becauseS(resp.T) is faithful onV . In this section, we briefly
review some duality between theS-moduleV and theH -moduleV . The following argument
is valid for any finite groupH acting onV andS= HomH (V,V).

Let Irr(H,V) be the set of irreducible characters ofH which appear in theH -moduleV .

PROPOSITION 1. (i) The isomorphism classes of irreducible S-modules are in one-to-one
correspondence with Irr(H,V).

(ii) Let W be an irreducible S-submodule of V corresponding withθ ∈ Irr(H,V). Let U be
a H-submodule of V and mU (θ) the multipilicity ofθ in U. Then we have

dimW ∩U = mU (θ).
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PROOF. For θ ∈ Irr(H,V), let V(θ) be the homogeneous component of theH -moduleV
affordingθ , i.e., the sum of irreducibleH -submodules ofV affordingθ . From Schur’s lemma,
it is well known thatV(θ) is S-invariant and that for an arbitrary decompositionV(θ) =⊕Ui

with Ui an irreducibleH -submodule affordingθ , the algebraS|V(θ) = HomH (V(θ),V(θ))
has a basis{ f j i } such that

(1) { f j i } vanishes onUk if k 6= i ,
(2) f j i (Ui ) = U j affords aH -isomorphism betweenUi andU j ,
(3) flk f j i = δk j fli .

In particular,V(θ) is a homogeneous component of theS-moduleV . The assertions (i) and
(ii) immediately follow from the above observation. 2

An S-submoduleW (resp.T-submoduleW) of V is calledthin if dim W∩ V∗i ≤ 1 for all i ,
whereV∗i =

⊕
x∈Ri (x0)

Cx. The algebraS (resp.T) is thin if every irreducibleS-submodule
(resp.T-submodule) ofV is thin. Notice thatT is thin wheneverS is thin, because isomorphic
T-submodules intersectV∗i with the same dimension, and so it suffices to test the thinness for
the irreducibleT-submodules which are contained in an irreducibleS-submodule.

COROLLARY 2. S is thin if and only if H is mulitplicity free on every V∗i , i.e., mV∗i (θ) = 0
or 1 for all θ .

Assume thatH is a subgroup of another finite groupH ′ which also acts onV , extending the
action ofH onV . SetS′ = HomH ′(V,V). ThenS⊃ S′. LetW (resp.W′) be an irreducibleS-
submodule (resp.S′-submodule) ofV corresponding toθ ∈ Irr(H,V) (resp.θ ′ ∈ Irr(H ′,V)).
By the multiplicity of W′ in W, we mean dimC HomS′(W′,W), and we simply denote it
by (W′,W)S′ . So when we decomposeW as a direct sum of irreducibleS′-modules, the
multiplicity is the number of direct summands that are isomorphic toW′. Let (θ ′, θ)H stand
for the inner product of charactersθ, θ ′|H of H as usual.

PROPOSITION 3. The multiplicity of W′ in W coincides with that ofθ in θ ′, i.e.,

(W′,W)S′ = (θ ′, θ)H .
PROOF. Let U ′ be an irreducibleH ′-submodule ofV affordingθ ′. Consider dimW ∩U ′.

If we view W as anS′-module, dimW ∩U ′ = (W′,W)S′ by Proposition 1. If we viewW as
anS-module, dimW ∩U ′ = (θ ′, θ)H . 2

3. T -MODULES OF CYCLOTOMIC SCHEMES

3.1. Cyclotomic schemes.From now on, we assume thatX = (X, {Ri }0≤i≤d) is a cyclo-
tomic scheme over a finite fieldK . So we take a subgroupH of the multiplicative groupK×
and form a groupG = K o H , the semi-direct product of the additive groupK by H . Set
X = K . ThenG acts transitively onX by x(a,b) = a+ xb. In other words,G is isomorphic

to the subgroup of GL(2,K ) consisting of

(
1 a
0 b

)
with a ∈ K , b ∈ H . Identifying X with

the affine plane consisting of(1,x) ∈ K 2 with x ∈ X, the action ofG on X is identical with
that of the linear subgroup on the affine plane. The associate relationsRi of the cyclotomic
scheme are the orbits ofG on X × X.

Let us understand thatK×/H also means a complete representatives of theH -cosets ofK×
and thatK/H is a union of 0 andK×/H . For a ∈ K/H , let Ra be the set consisting of
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(x, y) ∈ X × X with y− x ∈ aH. Then theG-orbits onX × X areRa (a ∈ K/H), and the
cyclotomic scheme isX = (X, {Ra}a∈K/H ).

When we considerx ∈ K as an element ofX, we sometimes denote it byx∗ to clarify that
it belongs to the standard moduleV . Sox∗ + y∗ means the sum ofx∗ andy∗ in V , whereas
x + y means the sum ofx and y in the field K . Thus the adjacency mapfa is the linear
transformation ofV defined by

fa(x
∗) =

∑
y∈aH

(x + y)∗ (1)

for x ∈ K .
It is well known [5] that the automorphism group of the cyclotomic schemeX is no larger

thanG : Aut(X ) = G. As G acts transitively onX, the structure of the Terwilliger algebra
does not depend on the choice of the base vertexx0. So we may assumex0 = 0 without loss
of generality. ThenV∗a = ⊕x∈aHCx∗ (a ∈ K/H ), ande∗a is the orthogonal projection of
V onto V∗a . The Terwilliger algebraT of X is the subalgebra of End(V) spanned byfa, e∗b
(a, b ∈ K/H).

3.2. Irreducible S-modules V(θ). The stabilizer of the base vertex 0 inG is H . As H
is abelian,V∗a (a 6= 0) affords the regular representation ofH , andV∗0 affords the trivial
representatin ofH . Let Ĥ be the character group ofH . For θ ∈ Ĥ , let V(θ) be the
homogeneous component of theH -moduleV affordingθ . Then fora ∈ K×/H andθ ∈ Ĥ ,
the 1-dimensional subspaceV(θ) ∩ V∗a , which is an irreducibleH -module affordingθ , is
spanned by

va(θ) =
∑
h∈H

θ(h)(ah)∗. (2)

Thus we have,

V∗a =
⊕
θ∈Ĥ

Cva(θ) if a 6= 0,

V∗0 = C0∗,
V(θ) =

⊕
a∈K×/H

Cva(θ) if θ 6= 1H ,

V(1H ) =
⊕

a∈K/H

Cva(1H ),

where 1H is the principal character ofH andv0(1H ) = 0∗.
SetS = HomH (V,V). By Proposition 1,V(θ) (θ ∈ Ĥ) is an irreducibleS-module, and

V(θ1), V(θ2) are not isomorphic asS-modules ifθ1 6= θ2. As S acts faithfully onV , every
irreducibleS-module is isomorphic to someV(θ). We are mainly interested in the following
problem.

PROBLEM A. Determine whenV(θ) is reducible as aT-module.

Notice thatS = T if and only if V(θ) is irreducible as aT-module for allθ ∈ Ĥ , because
S andT are both semi-simple withS ⊃ T and every pair of non-isomorphic irreducibleS-
modules remains non-isomorphic asT-modules (Corollary 5). It is well known thatV(1H ) is
irreducible as aT-module [10]. So in what follows, we always assumeθ 6= 1H .
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3.3. The graph0(H, θ). TheT-moduleV(θ) has an orthogonal basisvb(θ) (b ∈ K×/H).
Let us express the adjacency mapfa (a ∈ K×/H) in matrix form:

fa(vb(θ)) =
∑

c∈K×/H

r c
ab(θ)vc(θ).

We define a graph0 = 0(H, θ) as follows: The vertex set isK×/H and(b, c) is an edge
(b 6= c) if and only if r c

ab(θ) 6= 0 for somea ∈ K×/H . The graph0 turns out to be undirected
(Corollary 6). AsT is generated byfa, e∗a, theT-moduleV(θ) is irreducible if and only if
0 is connected. More precisely, a connected component6 of 0 gives rise to an irreducible
T-module

V6(θ) =
⊕
b∈6

Cvb(θ),

andV(θ) is decomposed as the direct sum of irreducibleT-modulesV6(θ) with 6 running
through the connected components of0.

3.4. Jacobi sums and edges of0(H, θ). Let K̂× be the character group of the multiplicative
group K×. For χ ∈ K̂×, we extendχ to K by definingχ(0) = 0. Forχ1, χ2 ∈ K̂×, the
Jacobi sumis defined to be

J(χ1, χ2) =
∑
u∈K

χ1(u)χ2(1− u).

THEOREM 4. For a, b, c ∈ K×/H andθ ∈ Ĥ (θ 6= 1H ), it holds that

r c
ab(θ) =

1

|K× : H |2
∑
ξ,χ

ξ(a−1c)χ(b−1c)J(ξ, χ),

where the sum is taken overξ, χ ∈ K̂× such thatξ |H = 1H andχ |H = θ , andr stands for
the complex conjugate of r . In particular, K× acts on0 as a group of automorphisms.

PROOF. Put (2) in (1) to obtain

fa(vb(θ)) =
∑

h,h′∈H

θ(h)(ah′ + bh)∗.

Sor c
ab(θ)vc(θ) is the partial sum of the right-hand side overh, h′ ∈ H such thatah′+bh ∈ cH.

Set ah′ + bh = cu (u ∈ H). Then h = u(b−1c − b−1ah′u−1) = u(b−1c − b−1au′)
(u′ = h′u−1 ∈ H). Hence, extendingθ to K by definingθ(x) = 0 for x 6∈ H , we have

r c
ab(θ) =

∑
u′∈H

θ(b−1c− b−1au′). (3)

For aH -cosetHt , let ϕHt be the characteristic function of it:ϕHt (x) = 1,0 according to
whetherx belongs toHt or not. ThenϕHt is a linear combination of characters ofK× that
vanish onH :

ϕHt =
∑

ξ∈K̂×/H

αξ ξ (αξ ∈ C).

The coefficientαξ is

αξ = (ϕHt , ξ)K×

= 1

|K×|
∑
h∈H

ξ(ht)

= |H ||K×|ξ(t).
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Therefore

ϕHt = 1

|K× : H |
∑

ξ∈K̂×/H

ξ(t)ξ. (4)

Choose a characterχ1 ∈ K̂× such thatχ1|H = θ . Then by (3), (4), we have

r c
ab(θ) =

∑
u∈H

ϕH (b
−1c− b−1au)χ1(b−1c− b−1au)

= 1

|K× : H |
∑
u∈H

ξ∈K̂×/H

ξ(b−1c− b−1au)χ1(b−1c− b−1au),

and so

r c
ab(θ) =

1

|K× : H |
∑
u,χ

χ(b−1c− b−1au), (5)

where the sum is taken overu ∈ H andχ ∈ K̂× such thatχ |H = θ .
Write the partial sum

∑
u∈H χ(b

−1c− b−1au) of the right-hand side of (5) as

χ(b−1c)
∑
t∈K

ϕHc−1a(t)χ(1− t).

Then by (4), it equals

χ(b−1c)

|K× : H |
∑

ξ∈K̂×/H

ξ(c−1a)
∑
t∈K

ξ(t)χ(1− t) = χ(b−1c)

|K× : H |
∑

ξ∈K̂×/H

ξ(a−1c)J(ξ, χ).

This proves the theorem. 2

COROLLARY 5. For distinct θ, θ ′ ∈ Ĥ (θ 6= 1H , θ
′ 6= 1H ), the irreducible S-modules

V(θ), V(θ ′) are not isomorphic as T -modules.

PROOF. Suppose there exists aT-module isomorphismϕ : V(θ)→ V(θ ′).
Applying ϕe∗b = e∗bϕ to the orthogonal basisvb(θ) (b ∈ K×/H) of V(θ), we have

ϕ(vb(θ)) = λbvb(θ
′)

for some nonzeroλb ∈ C. Applyingϕ fa = faϕ to vb(θ) (a, b ∈ K×/H), we have

λcr
c
ab(θ) = λbr c

ab(θ
′) (6)

for c ∈ K×/H .
Chooseξ0, χ0, χ

′
0 ∈ K̂× such thatξ0|H = 1|H , χ0|H = θ, χ ′0|H = θ ′. Multiply both

sides of (6) byξ0(a−1c)χ0(b−1c) and sum them up overa, b ∈ K×. Then by Theorem 4, the
left-hand side is

λc

|K× : H |2
∑
ξ,χ

J(ξ, χ)

{ ∑
a∈K×

ξ(a−1c)ξ0(a
−1c)

}{ ∑
b∈K×

χ(b−1c)χ0(b
−1c)

}
= λc|H |2J(ξ0, χ0),

which is nonzero.
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The right-hand side is

1

|K× : H |2
∑
ξ,χ ′

J(ξ, χ ′)
{ ∑

a∈K×
ξ(a−1c)ξ0(a

−1c)

}{ ∑
b∈K×

λbχ ′(b−1c)χ0(b
−1c)

}
= |K×|
|K× : H |2

∑
χ ′

J(ξ0, χ ′)
{ ∑

b∈K×
λbχ ′(b−1c)χ0(b

−1c)

}
,

whereχ ′ runs throughχ ′ ∈ K̂× such thatχ ′|H = θ ′. Writeb asb = th (t ∈ K×/H, h ∈ H).
Thenλb = λt andχ ′(b−1c) = χ ′(t−1c)θ ′(h−1), χ0(b−1c) = χ0(t−1c)θ(h−1). So we have∑

b∈K×
λbχ ′(b−1c)χ0(b

−1c) =
∑

t∈K×/H

λtχ ′(t−1c)χ0(t
−1c)

{∑
h∈H

θ ′(h−1)θ(h−1)

}
= 0.

Therefore the right-hand side is zero and we have a contradiction. 2

COROLLARY 6. For a, b, c ∈ K×/H andθ ∈ Ĥ (θ 6= 1H ), it holds that

r c
ab(θ) = r b−ac(θ).

In particular,0 is an undirected graph.

PROOF. By Theorem 4,

r b−a,c(θ) =
1

|K× : H |2
∑
ξ,χ

ξ(−a−1b)χ(c−1b)J(ξ, χ).

Here we have

ξ(−a−1b)χ(c−1b)J(ξ, χ) = ξ(a−1c)ξχ(b−1c)ξ(−1)J(ξ, χ)

and
ξ(−1)J(ξ, χ) = J(ξ, ξχ).

So we have

r b−a,c(θ) =
1

|K× : H |2
∑
ξ,χ

ξ(a−1c)(ξχ)(b−1c)J(ξ , ξχ).

Whenχ runs through characters ofK× such thatχ |H = θ , so doesξχ . Whenξ runs through
K×/H , so doesξ . Hence we have the corollary. 2

COROLLARY 7. In 0, (b, c) is not an edge if and only if∑
χ

χ(b−1c)J(ξ, χ) = 0

for all ξ ∈ K̂× such thatξ |H = 1H , where the sum is taken overχ ∈ K̂× such thatχ |H = θ .

PROOF. (b, c) is not an edge in0 if and only if r c
ab(θ) = 0 for all a ∈ K×/H . This is

equivalent to ∑
a∈K×/H

ξ ′(a)r c
ab(θ) = 0
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for all ξ ′ ∈ K̂×/H . By Theorem 4, the left-hand side equals

1

|K× : H |2
∑
ξ,χ

{ ∑
a∈K×/H

ξ ′(a)ξ(a−1)

}
ξ(c)χ(b−1c)J(ξ, χ)

= 1

|K× : H |
∑
χ

ξ ′(c)χ(b−1c)J(ξ ′, χ).

This proves the corollary. 2

3.5. The fusion scheme.Let 6 be a connected component of0 = 0(H, θ) and H ′ the
global stabilizer of6 in K× (recall thatK× acts on0 as a group of automorphisms). Then
H ⊂ H ′, andH ′ does not depend on the choice of6. K×/H ′ is in one-to-one correspondence
with the set of connencted components of0 by the bijectionK×/H ′ 3 b′ 7→ b′H ′/H . The
multiplicative subgroupH ′ gives rise to the cyclotomic schemeX ′ = (X, {Ra′ }a′∈K/H ′),
which is a fusion scheme ofX = (X, {Ra}a∈K/H ) ; Ra′ is a union ofRa (a ∈ a′H ′/H). Let
T ′ be the Terwilliger algebra ofX ′ with respect to the base vertexx0 = 0. ThenT ′ ⊂ T ; fa′
(resp.e∗a′ ) is the sum offa (resp.e∗a ) overa ∈ a′H ′/H . SetS′ = HomH ′(V,V). Obviously
S′ ⊂ S. By Proposition 3, we have

V(θ) =
⊕
θ ′

V(θ ′),

where the sum is taken overθ ′ ∈ Ĥ ′ such thatθ ′|H = θ . A graph is said to bediscreteif it
has no edges.

THEOREM 8. For θ ′ ∈ Ĥ ′ with θ ′|H = θ , the graph0(H ′, θ ′) is discrete. In other words,
every irreducible T′-submodule of V(θ ′) is of dimension 1.

PROOF. The irreducibleS′-moduleV(θ ′) has a basisvb′(θ ′) (b′ ∈ K×/H ′), where

vb′(θ
′) =

∑
h′∈H ′

θ ′(h′)(b′h′)∗.

Writing h′ = th with t ∈ H ′/H , h ∈ H , we have

vb′(θ
′) =

∑
t∈H ′/H

∑
h∈H

θ ′(t)θ(h)(b′th)∗

=
∑

t∈H ′/H

θ ′(t)vb′t (θ). (7)

In particular,vb′(θ ′) belongs to the irreducibleT-moduleV6(θ) corresponding to the con-
nencted component6 = b′H ′/H of 0(H, θ) : V6(θ) = ⊕

b∈b′H ′/H Cvb(θ). As another
vc′(θ ′) belongs to another irreducibleT-moduleV6′(θ) (6′ = c′H ′/H ), we have

V6(θ) ∩ V(θ ′) = Cvb′(θ
′).

As T ′ ⊂ T , V6(θ) is T ′-invariant. AsT ′ ⊂ S′, V(θ ′) is T ′-invariant. HenceV6(θ) ∩ V(θ ′)
is T ′-invariant. Therefore, the 1-dimensional spaceCvb′(θ ′) is T ′-invariant. 2
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3.6. Discrete0(H, θ). Every reducibleT-moduleV(θ) thus gives rise to a discrete graph
0(H ′, θ ′), and hence Problem A is reduced to the following.

PROBLEM B. Determine when0(H, θ) is discrete.

THEOREM 9. 0(H, θ) is discrete if and only if

J(ξ, χ1) = J(ξ, χ2)

for all ξ, χ1, χ2 ∈ K̂× such thatξ |H = 1H , χ1|H = χ2|H = θ .

PROOF. By Corollary 7, the graph0(H, θ) is discrete if and only if∑
χ

χ(t)J(ξ, χ) = 0

for all ξ ∈ K̂×/H and allt ∈ K×/H − {H}. Throughout the proof, we understand thatχ

runs through characters ofK× such thatχ |H = θ .
Suppose that0(H, θ) is discrete. Forχ ′ ∈ K̂× such thatχ ′|H = θ , we have

1

|K× : H |
∑

t∈K×/H−{H}
χ ′(t)

(∑
χ

χ(t)J(ξ, χ)

)
=
(

1− 1

|K× : H |
)

J(ξ, χ ′)− 1

|K× : H |
∑
χ 6=χ ′

J(ξ, χ)

= J(ξ, χ ′)− 1

|K× : H |
∑
χ

J(ξ, χ)

= 0. (8)

Therefore
J(ξ, χ ′) = 1

|K× : H |
∑
χ

J(ξ, χ),

andJ(ξ, χ ′) is independent ofχ ′.
Conversely, supposeJ(ξ, χ ′) is independent ofχ ′ such thatχ ′|H = θ . Fix a characterχ1

such thatχ1|H = θ , and writeχ ′ = χ1ξ
′ with ξ ′ ∈ K̂×/H . For t ′ ∈ K×/H − {H}, we have

from (8) that

1

|K× : H |
∑

ξ ′∈K̂×/H

ξ ′(t ′)
{ ∑

t∈K×/H−{H}
ξ ′(t)χ1(t)

∑
χ

χ(t)J(ξ, χ)

}
= χ1(t ′)

∑
χ

χ(t ′)J(ξ, χ) = 0.

This proves the theorem. 2

Let p be the characteristic ofK andζ = e2π
√−1/p. Forχ ∈ K̂×, theGauss sumis defined

to be
g(χ) =

∑
u∈K

χ(u)ζTru,

where Tr denotes the absolute trace fromK .
Rewriting Theorem 9 in terms of the Gauss sum, we have the following.
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COROLLARY 10. Letη be a generator of the character group̂K×/H, and set e= |K× :
H |. For θ ∈ Ĥ (θ 6= 1H ), chooseχ ∈ K̂× such thatχ |H = θ . Then0(H, θ) is discrete if
and only if

g(ηiχ) = εi g(χ) for all i,

whereε is an eth root of unity independent of i .

PROOF. By Theorem 9,J(η, χ) = J(η, ηiχ) for all i . As it holds that

J(η, ηiχ) = g(η)g(ηiχ)

g(ηi+1χ)
,

we have
g(χ)

g(ηχ)
= g(ηiχ)

g(ηi+1χ)
for all i,

and hence (
g(χ)

g(ηχ)

)i+1

= g(χ)

g(ηi+1χ)
.

Setε = g(ηχ)/g(χ). Then
g(ηiχ) = εi g(χ).

As ηe = 1, we haveεe = 1.
Conversely, ifg(ηkχ) = εkg(χ) for all k, then

J(ηi , η jχ) = g(ηi )g(η jχ)

g(ηi+ jχ)

= g(ηi )

εi
,

which does not depend onj . 2

4. THE CASE OF |K× : H | = 2

Let us assume thatH is of index 2. So, we are dealing with the case where the cyclotomic
scheme is a strongly regular graph. Letη be the quadratic character, i.e., the generator of the
character group̂K×/H . Let θ be an irreducible character ofH such thatθ 6= 1H andχ an
irreducible character ofK× such thatχ |H = θ . Denote the order ofχ by n.

In this case, what we have already proved can be summarized as follows.

COROLLARY 11. The following are equivalent to each other.

(i) The T -module V(θ) is reducible.
(ii) J(η, χ) = J(η, ηχ).

(iii) g(ηχ) = ±g(χ).

It can also be shown fairly easily (see the proof of Lemma 12) that the above statements are
equivalent to

(iv) J(η, χ) ∈ Q.

Let p = charK and|K | = pr .
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LEMMA 12. If J (η, χ) = J(η, ηχ), then the power r is even.

PROOF. As J(η, ηχ) = η(−1)J(η, χ), it follows from J(η, χ) = J(η, ηχ) that

J(η, χ) = η(−1)J(η, χ).

As J(η, χ)J(η, χ) = pr , we have

J(η, χ)2 = η(−1)pr .

The Jacobi sumJ(η, χ) is an element ofQ(ζ ), whereζ is a primitive(pr − 1)th root of unity.
The primep does not ramify inQ(ζ ). Thereforer must be even. 2

COROLLARY 13. If r is odd, then the T -module V(θ) is irreducible for allθ ∈ Ĥ (θ 6= 1H ).
In particular, if r is odd, then S= T .

In what follows, we assume thatr is even. LetF be the subfield ofK such that[K : F] = 2.
Set|F | = q and|K | = q2.

STICKELBERGER’S THEOREM ([8]). Suppose the order n ofχ ∈ K̂× (χ 6= 1K×) divides
q + 1. Then

g(χ) =
{

q if n is odd orq+1
n is even,

−q if n is even andq+1
n is odd.

COROLLARY 14. If r is even, then S% T .

PROOF. As K× has a subgroupH of index 2,q is odd. Chooseχ to be, for example, a
character of orderq+ 1. Thenηχ is also of orderq+ 1. By Stickelberger’s theorem,g(χ) =
g(ηχ) =−q. Obviouslyθ = χ |H is not the principal character 1H . By Corollary 11,V(θ) is
reducible as aT-algebra. HenceS% T . 2

It is a difficult but interesting number theoretical problem to be precise about whichχ satisfies
g(ηχ) = ±g(χ). The problem was recently settled for the case ofr = 2 by Shiratani–Yamada
[9]. Experiments by computer based on our Theorem 16 were helpful for them to pinχ down.

COROLLARY 15. For χ ∈ K× such thatχ |F× = 1F× , we have

g(ηχ) = ±g(χ).

PROOF. Bothχ andηχ have order dividingq + 1. 2

In what follows, we assumeχ |F× 6= 1F× .

THEOREM 16. If g(χ)
g(ηχ) is a unit ofQ (ζn), then g(χ)

g(ηχ) = ±1, whereζn is a primitive nth
root of unity with n the order ofχ .

We delay the proof of Theorem 16 and prepare for relative Gauss sums, as they play a crucial
role in the proof. LetχF be the multiplicative character ofF obtained by restrictingχ to F .
The ratio of the two Gauss sums

τ(χ) = g(χ)

g(χF )

is called arelative Gauss sumassociated withχ .
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THEOREM 17 ([11]). It holds that

τ(χ) =
∑

α∈K×/F×
χ(TrK/Fα)χ(α),

whereTrK/Fα is the relative trace from K to F. Furthermore, we have

τ(χ) =
∑

TrK/Fβ=1

χ(β).

The norm ofτ(χ) is given by
τ(χ)τ(χ) = q.

For any integerc prime ton, let σc be the automorphism ofQ(ζn) defined byσc : ζn 7→ ζ c
n .

PROOF OF THEOREM 16. As two charactersχ andηχ coincide onF , we have

τ(χ)

τ(ηχ)
= g(χ)

g(ηχ)
.

We shall show thatτ(χ)
τ(ηχ)

= ±1 on the assumption thatτ(χ)
τ(ηχ)

is a unit ofQ(ζn). Let us set

µ(χ) = τ(χ)
τ(ηχ)

. By Theorem 17, the absolute value ofµ(χ) and the absolute value of any
conjugate ofµ(χ) is 1. Thereforeµ(χ) is annth root of unity by Kronecker’s theorem. Put
µ(χ) = ζm

n .
First assume thatn is odd. Applyσc with c = 2 to µ(χ). Then by Theorem 17, we have

µ(χ)σ2 = τ(χ2)

τ (η2χ2)
= 1.

Henceζ 2m
n = 1 and soζm

n = 1, i.e.,µ(χ) = 1.
Next assume thatn ≡ 2 (mod 4). Thenn/2 is odd. Asη = χn/2, we have(ηχ)n/2 =

ηn/2χn/2 = ηη = 1. So ηχis of odd order. The argument in the previous paragraph is valid for
ηχ instead ofχ . Henceµ(χ) = 1.

Finally assume thatn ≡ 0 (mod 4). Applyσc with c = n/2+ 1 to µ(χ). Notice thatc is
an odd number prime ton. By Theorem 17, we have

µ(χ)σc = τ(χc)

τ (ηcχc)
= τ(χc)

τ (ηχc)
.

As η = χn/2, we have χc = ηχ andηχc = χ . Hence

µ(χ)σc = µ(χ)−1.

This impliesm(n/2 + 2) ≡ 0 (mod n). In particular, 4m≡ 0 (mod n). Therefore
µ(χ)4 = ζ 4m

n = 1, i.e.,µ(χ) ∈ {±1,±√−1}.
According to Theorem 17, let us write

τ(χ) = τ+ + τ−,
τ (ηχ) = τ+ − τ−,

where

τ+ =
∑

Trβ=1
η(β)=1

χ(β),

τ− =
∑

Trβ=1
η(β)=−1

χ(β).
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Then

µ(χ) = τ+ + τ−
τ+ − τ− .

Supposeµ(χ) = ±√−1. Thenτ+ = ∓√−1τ−, and soτ(χ) = (1 ∓ √−1)τ−. As
τ(χ)τ(χ) = q by Theorem 17, we obtain

2τ−τ− = q.

This contradicts the fact thatq is a power of the odd primep. 2

Rather thang(χ)
g(ηχ) = ±1, it is easier to check the equivalent condition in Theorem 16 that

g(χ) andg(ηχ) generate the same ideal in the ring of integers ofQ(ζn), as it is well known
how to find the factorization of the ideal generated by a Gauss sum: letω be a Teichmüller
character and putχ = ω−k (k = q2−1

n ). Letϑ(k) be the Stickerberger element:

ϑ(k) =
∑

c∈(Z/nZ)×
〈 kc

q2− 1
〉σ−1

c ,

where< t > is the fractional part of a real numbert, 0 ≤< t >< 1, and(Z/nZ)× is the
multiplicative group ofZ/nZ. Letp be a prime ideal lying abovep in Q(ζq2−1) andP a prime
ideal lying abovep in Q(ζq2−1, ζp) . We then have the the factorization of the Gauss sum

g(ω−k) ∼ P(p−1)ϑ(k) ∼ pϑ(k).

The primeσ−1
c p occurs in the idealpϑ(k) with the multiplicity

r−1∑
j=0

〈
kcpj

q2− 1

〉
,

where|K | = q2 = pr .
For an integerl , write the canonicalp-adic expantionl = l0 + l1p + · · · + lr−1pr−1

(mod q2 − 1), 0≤ l i ≤ p− 1, and defines(l ) = l0 + l1 + · · · + lr−1. Then the multiplicity
is given by

1

p− 1
s(kc) =

r−1∑
j=0

〈
kcpj

q2− 1

〉
.

As ηχ = ω−k+ q2−1
2 , the Gauss sumsg(χ) andg(ηχ) have the same factorization inQ(ζq2−1,

ζp) if and only if

s(kc) = s(kc+ q2− 1

2
c) (∀c ∈ (Z/nZ)×).

Givenq andk, it is easy for a computer to check the above equality for allc ∈ (Z/nZ)×.
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