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Terwilliger Algebras of Cyclotomic Schemes and Jacobi Sums

HARUO ISHIBASHI, TATSURO |ITO AND MIEKO YAMADAT

We show that th@ -module structure of a cyclotomic scheme is described in term of Jacobi sums.
It holds that an irreducibl@ -module of a cyclotomic scheme fails to have maximal dimension if and
only if Jacobi sums satisfy certain kind of equations, which are of some number theoretical interest in
themselves.
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1. INTRODUCTION

Terwilliger algebras, or simplif -algebras, were introduced by Terwilliger [10] under the
name subconstituent algebrds.algebras and their representations are becoming increasingly
important in the study of association schemes themselves and of some combinatorial objects
defined over association schemes. This is typically seen in Terwilliger's work toward the
classification ofP- and Q-polynomial schemes and expected in the study of spin models,
codes, and designs.

Terwilliger writes, ‘To get an intuitive feel foll [T is a Terwilliger algebra], suppose
for the moment that the associate clasBgsRy, ..., Ry [of our association schem#& =
(X, {Ri}o<i<d)] are the orbits of the automorphism group Atj)(acting on the Cartesian
productX x X. Then the Bose—Mesner algebra is the centralizer algebra otAutf/hether
or not Aut(X) acts in the above fashion, we may still view the Bose—Mesner algebra as a ‘com-
binatorial analogue’ of this centralizer algebra. Similarly, we may vieas a ‘combinatorial
analogue’ of the centralizer algebra of the stabilizer of [the base vectexput(X).

Following Terwilliger, let us consider an association schethghose automorphism group
Aut(X) acts transitively on each associate cl&sand let us denote b the centralizer
algebra of the stabilizer of the base vertein Aut(X). It turns out thafT is contained inS
but does not always coincide with Some examples daf that are smaller thaB are reported
for group association schemes in Ref. [2].

In this paper, we shall choose cyclotomic schemes to discuss whketb@ncides withS
or not. What we actually do is to determine when an irreduchaodule fails to remain
irreducible as a -module; this suffices to settle the question of whefhemwincides withS
or not, as the algebrak and S are both semi-simple and in the case of cyclotomic schemes,
non-isomorphic irreducibl&modules cannot be isomorphic &smodules (Corollary 5). As
is shown in Corollary 10, the problem turns out to be reduced to a number theoretical problem,
which is in itself interesting: leK be a finite field,H a multiplicative subgroup oK * with
indexe, n a generator of the character groupkof /H. The number theoretical problem is
to find all multiplicative characterg of K= such thaty |4 # 1y and the Gauss sum(n' x)
equalse' g(x) for all i, wheree is aneth root of unity independent of

In the last section, we shall discuss in detail the case ef 2, i.e., the case wherd is
of index 2. Letp = charK and|K| = p". It holds thatT = Sif and only if r is odd
(Corollaries 13, 14). Moreover, we show that whiea even, the number theoretical condition
g(nx) = +g9(x) is equivalent to a weaker one, nameigh x) andg(x) generate the same
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ideal in the ring of integers @(¢,), wherez,, is a primitiventh root of unity withn the order of

x (Theorem 16). Given a multiplicative characjeof K, the weaker condition enables us to
checkg(nx) = +9(x) easily, as Stickelberger’s theorem tells us the factorization of the ideal
generated by a Gauss sum. In case ef 2, Shiratani—Yamada [9] has recently determined
all x for whichg(nx) = £g(x) holds.

In many ways, thd -algebra is a good combinatorial analogue of the centralizer algebra
However, it may not be a perfect combinatorial analogu&.ofor example;T need not be
closed with respect to the Hadamard multiplication, whei@&s In any case, we think it
important to examine how closeis to Sfor various association schemes. In [6], cyclotomic
schemes over Galois rings of characteristic 4 are considered in this respect. It should be noted
that the work on Galois rings was motivated by our work on Galois fields.

2. THE CENTRALIZER ALGEBRA Homy (V, V)

Let X = (X, {Ri}o<i<d) be an association scheme which may or may not be commutative.
Denote the set of with (X, y) € R by R (x). Thestandard module \of X is the unitary
space withX an orthonormal basisV = @, .y Cx and< X,y >= éxy for x,y € X. The
adjacency map ; fwith respect to the associate relati®n is the linear tansformation of
defined byf; (x) = ZyeRa(x) yfor x € X. TheBose—Mesner algebf of X is the subalgebra
of the endmorphism ring Endl() spanned by alf;.

Fix a base vertexp and letV;* be the subspace &f spanned byR; (xo). Let g be the
orthogonal projection o ontoV,*. TheTerwilliger algebra Tof X', which may depend on
the base vertexy, is defined to be the subalgebra of Evijl6panned by alf;, e’j*. T and2(
are semi-simple algebras and obviou§lgontainsl.

Let G be a finite group acting on a s&ttransitively. LetRy, Ry, ..., Ry be the orbits of
G acting on the Cartesian produxt x X in the natural way. Then we have an association
schemeY = (X, {Ri}o<i<d), which may or may not be commutative. Itis well known that the
Bose—Mesner algebRacoincides with the centralizer algebra HgqV, V) of G, the algebra
consisting of all linear transformations @fthat commute with the action @ onV.

Letus fix a base vertexy € X and letH be the stabilizer oty in G. It can be easily checked
that every element of the Terwilliger algebFawith respect to the base vertgg commutes
with the action ofH onV. SoT is contained in the centralizer algebra HeV, V) of H.
Denoting Hony (V, V) by S, we have three semi-simple algeb@sT, 2l with the inclusion
SO T D 2. Notice thatT and®l are defined combinatorially b&is not. The question is
whenT coincides withS. As S becomes smaller or is unchanged when we repads a
bigger subgroup of Aut(), we usually assumé& = Aut(X).

As SandT are semi-simple algebra§ and T coincide if and only if every irreducible
S-module remains irreducible asTamodule and every pair of non-isomorphic irreducible
S-modules remains non-isomorphic &smodules. Notice that every irreducib&module
(resp.T-module) appears ¥, because (resp.T) is faithful onV. In this section, we briefly
review some duality between tf&moduleV and theH-moduleV. The following argument
is valid for any finite grougH acting onV andS = Homy (V, V).

Let Irr(H, V) be the set of irreducible characterskbfwhich appear in théd -moduleV.

PrRoPOSITION 1. (i) The isomorphism classes of irreducible S-modules are in one-to-one
correspondence with Irid, V).

(i) Let W be an irreducible S-submodule of V corresponding withlrr(H, V). LetU be
a H-submodule of V and g#) the multipilicity of in U. Then we have

dmwWnuU =my(@®).
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PrROOF. Foré € Irr(H, V), let V(0) be the homogeneous component of thenoduleV
affording#, i.e., the sum of irreduciblel -submodules o¥ affordingé. From Schur’s lemma,
it is well known thatV (0) is S-invariant and that for an arbitrary decomposité®) = & U;
with U; an irreducibleH -submodule affording, the algebreS|yv ) = Homy (V (6), V (0))
has a basi$fj; } such that

(1) {fji} vanishes oty if k # i,
(2) fji (Uj) = Uj affords aH-isomorphism betweeld; andUj,
(3) fik fji = dkj fii-

In particular,V (9) is a homogeneous component of enoduleV. The assertions (i) and
(i) immediately follow from the above observation. a

An S-submoduléV (resp.T-submoduléV) of V is calledthinif dim WN V;* < 1 foralli,
whereV/* = g (x,) CX- The algebras (resp.T) is thin if every irreducibleS-submodule
(resp.T-submodule) o¥/ is thin. Notice thafl is thin wheneve6is thin, because isomorphic
T-submodules intersedt* with the same dimension, and so it suffices to test the thinness for
the irreducibleT -submodules which are contained in an irreduc®submodule.

CoROLLARY 2. Sisthinifand only if H is mulitplicity free on every*Vi.e., my«(6) = 0
or 1forall 6.

Assume thaH is a subgroup of another finite grodfy which also acts oiv, extending the
actionofH onV. SetS = Homy/(V, V). ThenS> S. LetW (respW’) be anirreducibl&
submodule (resf8-submodule) oV corresponding té < Irr(H, V) (resp.f’ € Irr(H’, V)).
By the multiplicity of W’ in W, we mean dim Homg (W', W), and we simply denote it
by (W, W)g. So when we decompos#' as a direct sum of irreducibl€-modules, the
multiplicity is the number of direct summands that are isomorphM/to Let (6', 0)y stand
for the inner product of characte#st’ | of H as usual.

ProPosITION 3. The multiplicity of Win W coincides with that af in ¢/, i.e.,
(W', W)g = (¢, 0)n.

PrROOF. LetU’ be an irreducibleH’-submodule oV affordingd’. Consider dimW nU’.
If we view W as anS-module, dimW NU’ = (W', W)g by Proposition 1. If we viewV as
anS-module, dimWNU’ = (¢, 0)RH. ]

3. T-MODULESOF CYCLOTOMIC SCHEMES

3.1. Cyclotomic schemed=rom now on, we assume that = (X, {Ri}o<i<d) is a cyclo-
tomic scheme over a finite field. So we take a subgroug of the multiplicative grougk

and form a grougs = K x H, the semi-direct product of the additive gropby H. Set
X = K. ThenG acts transitively orX by x@ = a 4+ xb. In other words@G is isomorphic

to the subgroup of GL(X) consisting oV( 1 ) witha € K, b € H. Identifying X with

a
0 b
the affine plane consisting 01, x) € K2 with x € X, the action ofG on X is identical with
that of the linear subgroup on the affine plane. The associate reldjoofsthe cyclotomic
scheme are the orbits & on X x X.

Let us understand th& > /H also means a complete representatives oftheosets oK *
and thatkK /H is a union of 0 andK*/H. Fora € K/H, let Ry be the set consisting of
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(X,y) € X x Xwithy —x € aH. Then theG-orbits onX x X areR; (a € K/H), and the
cyclotomic scheme ig’ = (X, {Ra}ack /H)-

When we considex € K as an element ok, we sometimes denote it by to clarify that
it belongs to the standard modwe Sox* 4+ y* means the sum of* andy* in V, whereas
X 4+ y means the sum of andy in the field K. Thus the adjacency mafy is the linear
transformation ol defined by

fax*) = ) (x+y)* 1)

yeaH

for x € K.

It is well known [5] that the automorphism group of the cyclotomic schetris no larger
thanG : Aut(X) = G. As G acts transitively orX, the structure of the Terwilliger algebra
does not depend on the choice of the base veexso we may assunte = 0 without loss
of generality. ThenV; = ®xcaHCx* (a € K/H), and€j is the orthogonal projection of
V onto V. The Terwilliger algebra of &’ is the subalgebra of End( spanned byfa, €
(@, beK/H).

3.2. lrreducible S-modules ). The stabilizer of the base vertex O @is H. As H
is abelian,V; (a # 0) affords the regular representation ldf, and V' affords the trivial
representatin oH. Let H be the character group df. Foro € H, let V(¢) be the
homogeneous component of themoduleV affordingd. Then fora € K*/H and6 € H,
the 1-dimensional subspa&&®) N VZ, which is an irreducibleHd-module affordingd, is
spanned by

va(®) = »_ 0(h)(@hy*. @)

heH

Thus we have,

Vi=@PCra®) ifa#o,

oeH
Vg = CO¥,
V() = EB Cva(0)  if 0 # 1n,
acK*/H
V) = @ Cran),
acK/H

where 1 is the principal character dfl andvg(1y) = 0*.

SetS = Homy (V, V). By Proposition 1V (@) (6 € ﬁ) is an irreducibleS-module, and
V (61), V (62) are not isomorphic aS-modules if9; # 6>. As S acts faithfully onV, every
irreducibleS-module is isomorphic to somé(9). We are mainly interested in the following
problem.

ProOBLEM A. Determine wherV (0) is reducible as & -module.

Notice thatS = T if and only if V() is irreducible as & -module for allé e ﬁ, because
SandT are both semi-simple witls > T and every pair of non-isomorphic irreducibte
modules remains non-isomorphic Banodules (Corollary 5). It is well known th&t(1y) is
irreducible as & -module [10]. So in what follows, we always assuthg 1y .
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3.3. The grapi'(H, #). TheT-moduleV (0) has an orthogonal basig(0) (b € K*/H).
Let us express the adjacency mip(a € K*/H) in matrix form:

fa(wp(@) = > r5p0)vc(6).
ceK>*/H
We define a graplr = I'(H, #) as follows: The vertex set iK*/H and (b, c¢) is an edge
(b # c)ifandonlyifrS, () # 0for somea € K*/H. The grapH™ turns out to be undirected
(Corollary 6). AsT is generated byf,, €5, the T-moduleV (9) is irreducible if and only if
' is connected. More precisely, a connected compoBeaf I' gives rise to an irreducible
T-module
Vz(6) = P Cun(®).
bex
andV (9) is decomposed as the direct sum of irreduciblenodulesVy (6) with X running
through the connected componentdof

3.4. Jacobisums and edgedufH, 6). Let K * be the character group of the multiplicative
groupK*. Fory € K*, we extendy to K by definingx (0) = 0. Fory1, x2 € KX, the
Jacobi sunis defined to be

I, x2) = ) xaxa(l—u).

ueK

THEOREM 4. Fora,b,ce K*/H andé € H (6 # 1), it holds that

- 1 B B
r5p(6) = m;s(a lox (b0 I (. x).
s X
where the sum is taken oveyy € K> such thatt |y = 1y and x|y = 0, andr stands for
the complex conjugate of r. In particular,’Kacts onl” as a group of automorphisms.

PROOF. Put (2) in (1) to obtain
fa(n(®)) = »_ O(h)@h’ + bhy*.
h,heH
Sor £, (0)vc(9) is the partial sum of the right-hand side obeh’ € H suchthaah'+-bh € cH.
Setah’' + bh = cu (u € H). Thenh = u(b'c — b~tah'u™1) = ub~1c — btau)
(U = hu~t e H). Hence, extending to K by definingd (x) = 0 for x ¢ H, we have
r5p®) = Y 6(b-tc—b-Tau). (3)
u'eH
For aH-cosetHt, let gyt be the characteristic function of iy (X) = 1,0 according to

whetherx belongs toHt or not. Thenpyy is a linear combination of characters i that
vanish onH:

PHL = Z agg (g € O).
£eK>*/H
The coefficientr is

as = (PHt, §)kx
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Therefore

PHt = Z EDE. @

EeKX/H

Choose a characten € K* such thaty1|y = 6. Then by (3), (4), we have

rép(0) = Z on (b~tc — b~tau) x1(b—1c — b-lau)
ueH
1

KX H| Y &b 'c—btau)xi(b~lc — b-tau),

ueH

£cK>*/H

and so

r50) = Zx(b c— b tauw), )

where the sum is taken overe H andy € KX such thaty |y = 0.
Write the partial suny_,. 4 x (b~1c — b~1au) of the right-hand side of (5) as

X071 Y prcta®x (L - 1).

teK

Then by (4), it equals
x(b~'c) - x (b~1c) .
K TH Y EcTa)) Etxd-t) = TEEEl Y t@ ol .
£eK*/H tek £ TH
This proves the theorem. O

COROLLARY 5. For distinctd, 8’ ¢ H ® # 1y,0" # 1y), the irreducible S-modules
V(0), V(0') are not isomorphic as T-modules.

PROOF. Suppose there existsTamodule isomorphisnp : V (8) — V (0").
Applying g€ = €;¢ to the orthogonal basig,(9) (b € K*/H) of V(0), we have

@(vp(9)) = rpup(8)
for some nonzeray € C. Applying ¢fa = fap tovp(9) (a,b € K*/H), we have
)\crgb(e) = kbrgb(O’) (6)

force K*/H.

Chooseéo, xo. x4 € KX such thattoln = 1ln, xolH = 6, xgln = 6’. Multiply both
sides of (6) byeg(a—1c) xo(b~1c) and sum them up over, b € K*. Then by Theorem 4, the
left-hand side is

FZ‘](E x){ Y &@ 1c>so<a—1c>}{ > x(b—lc>xo(b—1c>}

acKx beK %
= AclHI?J (o, x0),

which is nonzero.
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The right-hand side is

1 - -
723(%(/){ > s(a—1c>so(a—1c>H > /\bX/(b_lc)XO(b_lC)}
&.x

X . 2
(K> H X acKx beKx
[ — .
= WZJ@O, x") Z Apx'(b=*C) xo(b™ 0 ¢,
[K> HIZ 2= boRx

wherey’ runs throughy’ € K* suchthaf’|y = 6’. Writebasb =th(t € K*/H, h e H).
Thenip = Ar andx’(b~1c) = x'(t~1c)6’(h~1), xo(b~1c) = xo(t~1c)8(h~1). So we have

> ax' b Ioxeb o = Y Atx/(t1c)xo<t1c>{Ze’(hl>e(hl>}:o.
beK* teKx/H heH

Therefore the right-hand side is zero and we have a contradiction. ]
COROLLARY 6. Fora,b,ce K*/H and6 € H (6 # 1), it holds that
50 =rP2.0).
In particular, I" is an undirected graph.

PrROOF. By Theorem 4,

- 1
r2ac(®) = TSR Y E(—a (e ) IE x).
’ &.x

K
Here we have

t(—a by (c ) IE, x) =@ T0Ex (b lo)E(-1)IE, x)

and o
EDIE, x) = JE, &x).

So we have 1

b
Mac®) = K< : H|2

> Ea@toE b oIE. £x).
§.x

Wheny runs through characters &f* such thaty | = ¢, so doeg x. Whené runs through
K*/H, so doeg. Hence we have the corollary. |

COROLLARY 7. InT, (b, c) is not an edge if and only if

D x00IE ) =0
X

forall & € KX such that |y = 14, where the sum is taken ovgre K* such thaty |y = 0.

PROOF. (b, ¢) is not an edge i if and only ifr5 (6) = O for alla € K*/H. This is
equivalent to
Y. E@rg6) =0

aeK*/H
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forall&’ e K/Xﬁ| By Theorem 4, the left-hand side equals

H K HE Z { > é/(a)«s(a1)}s(c)x<blc)J(s, X

acK*/H

1
= o 2§ ©x079IE 0.
K .mz;

This proves the corollary. O

3.5. The fusion schemd.et ¥ be a connected component Bf = I'(H, #) and H’ the
global stabilizer ofE in K> (recall thatk * acts onI" as a group of automorphisms). Then
H c H’, andH’ does not depend on the choiceddf K * /H' is in one-to-one correspondence
with the set of connencted componentd oy the bijectionK */H’ > b’ — b'H’/H. The
multiplicative subgroupH’ gives rise to the cyclotomic schem¥’ = (X, {Ra}ack/H/),
which is a fusion scheme & = (X, {Ra}ack/H) ; Ra is a union ofRy (a € @'H’/H). Let

T’ be the Terwilliger algebra ot” with respect to the base vertex = 0. ThenT’ C T; fy
(resp.e},) is the sum off, (resp.€j ) overa € a’H'/H. SetS = Homy/(V, V). Obviously

S c S. By Proposition 3, we have

V) =PVe.
9/

where the sum is taken ovef € H’ such tha®’|y = 6. A graph is said to béliscreteif it
has no edges.

THEOREM 8. For @’ € H’ with 0’|y = 0, the graphI"(H’, 8') is discrete. In other words,
every irreducible T-submodule of \W’) is of dimension 1.

PrROOF. The irreducibleS-moduleV (9") has a basisy (9) (b" € K*/H’), where
vy (0) = Y o) (B'h)*
heH’

Writing h" = th witht € H’/H, h € H, we have

w (@)= Y Y T®eM)(b'th*

teH’/H heH

= Y 0 Ovy®). (7)

teH’/H
In particular,vy (6”) belongs to the irreducibl& -module Vx (9) corresponding to the con-

nencted componerf = b'H’/H of I'(H,0) : V() = @beb,H,/H Cup(0). As another
ve (07) belongs to another irreducible-moduleVs (6) (X’ = c¢’H’/H), we have

Vs (0) NV (6') = Cuy (0)).

AsT' C T, Vg(9) is T’-invariant. AsT’ ¢ S, V(9') is T'-invariant. Hence/s (6) NV (")
is T’-invariant. Therefore, the 1-dimensional sp&ag (9') is T'-invariant. O
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3.6. Discretel'(H, ). Every reduciblelT-moduleV (9) thus gives rise to a discrete graph
I'(H’, 8"), and hence Problem A is reduced to the following.

ProBLEM B. Determine wher’(H, 0) is discrete.

THEOREM 9. TI'(H, 0) is discrete if and only if

J(E, x1) = JIE, x2)
for all £, x1, x2 € K* such tha|n = 1n, x1ln = x2ln = 6.

PrROOF. By Corollary 7, the grapli'(H, #) is discrete if and only if
D o x®IE ) =0
X

forall ¢ € }&/\H and allt e K*/H — {H}. Throughout the proof, we understand tlyat
runs through characters & such thaty |y = 6.
Suppose thalf (H, 0) is discrete. Fo’ € K> such thaty’|y = 6, we have

1 o
T x/(t)< LOIE. x))
K< H 2 XX:

teK* /H—{H}

1 , 1
=<1—m)a(m>—m D IE D

’ x#x'
1
=JE x) - ——— Y I,
& x) lKX;ng & x)
—0. (8)

J(‘S)X/) I E J(%!X)’
|K>< . | X

andJ(&, x/) is independent of’.

Conversely, suppos&(é, x') is independent of(’jlgl thaty’|n = 0. Fix a charactej
such thaty1|y = 6, and writey’ = x1&’ with &’ € K*/H. Fort’ € K*/H — {H}, we have
from (8) that

1
KRl 2 E’(t’>{ Y. FOab ) x®IE x)}
' X

E/EWH IEKX/H—{H}

=) Y x®)JIE x) =0.
X

This proves the theorem. ]

Let p be the characteristic & and¢ = e2mV/=1/p, Fory e @, theGauss sunis defined
to be
900 = Y x(we ™,
ueK
where Tr denotes the absolute trace frm
Rewriting Theorem 9 in terms of the Gauss sum, we have the following.
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COROLLARY 10. Letn be a generator of the character grom, and sete= |[K* :
H|. For6 € H (0 # 1), choosex € K* such thaty|y = 6. ThenI'(H, 0) is discrete if
and only if

g x) =€'g(x) foralli,
wheree is an eth root of unity independent of i.

PROOF. By Theorem 9,J(n, x) = J(, ' x) for alli. As it holds that

i ama(n' x)
Jn,n'y) = 22222
01130 = g0
we have o) ( : )
(04 g x .
9tnx) 9t +ix) foralll,
and hence

( 900 )‘“ _ 9
9mx) g +1x)”
Sete = g(nx)/9(x). Then , _
ag(n' x) = €'900).
Asn® =1, we have:® = 1.
Conversely, ifg(nx) = eXg(x) for all k, then

9(1)g(n’ x)
9+
_ ag(n")

el

I i) =

)

which does not depend gn O

4, THECASEOF|K*:H|=2

Let us assume thad is of index 2. So, we are dealing with the case where the cyclotomic
scheme is a str@gl\y regular graph. dbe the quadratic character, i.e., the generator of the
character groufk X /H. Let6 be an irreducible character éf such thab # 1 andx an
irreducible character dk > such thaty |4 = 6. Denote the order of by n.

In this case, what we have already proved can be summarized as follows.

CoOROLLARY 11. The following are equivalent to each other.

(i) The T-module W) is reducible.
(i) I, x) =3I, nx).
(i) gmx) = =9(x).

It can also be shown fairly easily (see the proof of Lemma 12) that the above statements are
equivalent to

(iv) I(n, x) € Q.

Let p=charK and|K| = p".
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LEMMA 12. If J(n, x) = J(n, nx), then the power r is even.
PrROOF. As J(n, nx) = n(—=1)J(n, ), it follows from J(n, x) = J(n, nx) that

I, x) =n(=DIM, ).

AsJ(n, x)I(m, x) = p', we have
I, )% =n(=p".

The Jacobi sund(n, x) is an element oQ(¢), wherez is a primitive(p" — 1)th root of unity.
The primep does not ramify iQ(¢). Therefore must be even. m]

COROLLARY 13. Ifrisodd,thenthe T-module{) isirreducible foralld e ﬁ(@ # 1n).
In particular, if r is odd, then S= T.

In what follows, we assume thats even. LetF be the subfield oK such thafK : F] = 2.
Set|F| = qand|K| = g2.

STICKELBERGER’S THEOREM ([8]). Suppose the order n ¢f € K (x # 1lkx) divides

g+ 1. Then
q ifnisoddor®! is even,

900 = —q ifnis even and? is odd.

COROLLARY 14. Ifr is even, then 2 T.

PrROOF. As K* has a subgroupi of index 2,q is odd. Choose to be, for example, a
character of ordeq + 1. Thenny is also of ordeq + 1. By Stickelberger’s theoreng(x) =
9g(nx) = —g. Obviouslyd = x|u is not the principal characteiyl By Corollary 11,V (9) is
reducible as & -algebra. Henc& 2 T. |

Itis adifficult but interesting number theoretical problem to be precise about wylsatisfies
g(nx) = £9g(x). The problem was recently settled for the case ef 2 by Shiratani—-Yamada
[9]. Experiments by computer based on our Theorem 16 were helpful for them godawn.

COROLLARY 15. For x € K* such thaty|gx = 1gx, we have

agmx) = £9(x).

PROOF. Both x andny have order dividingy + 1. ]
In what follows, we assumg|gx # 1gx.

THEOREM 16. If % is a unit of Q (¢p), then% = 41, whereg, is a primitive nth
root of unity with n the order of.

We delay the proof of Theorem 16 and prepare for relative Gauss sums, as they play a crucial
role in the proof. Letyr be the multiplicative character &t obtained by restricting to F.

The ratio of the two Gauss sums
() = 9(x)

)
is called arelative Gauss surassociated withy .
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THEOREM 17 ([11]). It holds that
=Y. X(Trkra)x(@),
aeK X /Fx
whereTrg /ra is the relative trace from K to F. Furthermore, we have
=Y, x®B.
Try/pB=1
The norm ofr (x) is given by L
TOOT(X) =0.
For any integec prime ton, leto¢ be the automorphism @(¢,) defined byoc : ¢y +— ¢S.
PrROOF OF THEOREM 16. As two characterg andny coincide onF, we have
7(x) _ 900
tmx)  9(x)
We shall show thatt?)- = 41 on the assumption thg% is a unit of Q(¢n). Let us set

t(nx)
wix) = r’(") . By Theorem 17, the absolute value jofx) and the absolute value of any

)
conjugate %»L(X) is 1. Thereforeu(y) is annth root of unity by Kronecker’s theorem. Put

(0 =&
First assume that is odd. Applyoc with ¢ = 2 to u(x). Then by Theorem 17, we have
2
o TXD 1
w(x) T 2xd)

Hence;?M =1andsa" = 1,i.e.,u(x) = 1.

Next assume that = 2 (mod 4). Them/2 is odd. Asy = x"2, we have(nx)"2 =
n™2x"/2 =y =1. So nxis of odd order. The argument in the previous paragraph is valid for
ny instead ofy. Henceu(x) = 1.

Finally assume that =0 (mod 4). Applyoc with c =n/2+ 1 to u(x). Notice thatc is
an odd number prime to. By Theorem 17, we have

(X9 (x9
M%)  t(x©
Asn = x"2, we have £ = nx andnx® = x. Hence

w(x)’ =

1nGO% = o™
This impliesm(n/2 + 2) = 0 (modn). In particular, 4m= 0 (modn). Therefore
OOt =M =1,ie.,u(x) € {+1, +/-1}.
According to Theorem 17, let us write
) =tr+17,
)=t -1,
where

=" xp).

Trp=1
n(p)=1

= Y X

Trp=1
n(p=-1
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Then
LA
nOO =3

— T
Supposeu(y) = ++/—1. Thent™ = F/—1t7, and sor(x) = (LF /=1t ~. As
T(x)t(x) = gq by Theorem 17, we obtain
2171 =q.
This contradicts the fact thatis a power of the odd prime. O

Rather tha 9(57’% = +1, itis easier to check the equivalent condition in Theorem 16 that
g(x) and g(n;%;nerate the same ideal in the ring of integer®¢f,), as it is well known
how to find the factorization of the ideal generated by a Gauss sumi beta Teichmiuller
character and pyt = o K (k= #). Let 9 (k) be the Stickerberger element:

kc
20 = Y (gl
ce(Z/nzZ)* a° =

where< t > is the fractional part of a real numbgr0 <<t >< 1, and(Z/nzZ)* is the
multiplicative group oZ/nZ. Letp be a prime ideal lying abovein Q(y2_1) and a prime
ideal lying abovep in Q(gy2_1, ¢p) . We then have the the factorization of the Gauss sum

g(a)_k) ~ m(p—l)f)(k) ~ pﬂ(k)_

The primeo; 1p occurs in the ideg)” ® with the multiplicity

ixlmd>
2 b
jmo\a” -1
where|K| =¢2 = p'.

For an integel, write the canonicalp-adic expantion = lg + lip+ --- + l,_1p' 2
(mod q2 —1),0<lj < p-1,anddefines(l) =lg+ 11 + - -- + I, _1. Then the multiplicity
is given by

1 =1/ kep!
i Xt

j=0

2_
Asny = w K+ 1, the Gauss sun(x) andg(nx) have the same factorization @(g,z_1,
¢p) ifand only if

> —1
2

s(kc) = s(kc+ ) (Ve € (Z/nZ)™).

Givenq andk, it is easy for a computer to check the above equality foc &ll(Z/nz)*.
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