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Abstract

In the conbinatorics of Sturmian words an essential role is played by th€®E&of all finite
wordsw on the alphabe#d = {a, b} having two periodg andq which are coprime and such that
lw| = p+ q— 2. As is well known, the séebtof all finite factors of all Sturmian words equals the
set of factors oPER Moreover, tre elements oPERhave many remarkable structural properties. In
particular, he reldion Stand= .4 U PERab, ba} holds, whereStandis the set of all finite standard
Sturmian words. In this paper we introduce two proper subclassB&ERfthat we daeote byHarm
and Gold. We call an element oHarm a harmonic wrd and an element dbold a gold word. A
harmonic wordw beginning with the lettek is such that the ratio of two periods/q, with p < q,
is equal to itsslope, ie., (jwly + 1)/(Jw|x + 1), where{x, y} = {a, b}. A gold word is an element
of PERsuch thatp andq are primes. Some characterizatimisharmonic words are given and the
number of harmonic words of each lengstobmputed. Moreover, we prove thatis equal to the set
of factors ofHarmand to the set of factors @old. We introduce also the classelgrm andGold of
all infinite standard Sturmian words having infinitely many prefixeld@mm andGold, resgctively.
We prove thatGold N Harm contain continuously many elements. Finally, some conjectures are
formulated.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Sturmian words have been extensivelyudied by several authors for at least
two centuries. They have many applications in various different fields like algebra,
theory of numbers, physics (symbolic dynamics, crystallography), and computer science
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(computer graphics and pattern matching); the study of the structure and combinatorics of
these words has become a subject of the greatest interest, with a large literature on it (see,
for instancethe excellent overview by Berstel an@ébold ]). For all ddinitions and
notations not explicitly given in the paper, the reader is referre@jto |

Sturmian words can be defined in sevedifferent but equivalent ways. Some
definitions are ‘geometrical’ and others of ‘combinatorial’ nature. A ‘geometrical
definition is the following: a Sturmian word can be defined by considering the sequence of
the cuts €utting sequengean asquared-lattice made by a ray having a slope which is an
irrational number. A horizontal cut is denoted by the leftea vertcal cut bya and a cut
with a coner byab or ba. Sturman words represented by a ray starting from the origin are
usuallycalledstandardor characteristic

A combindorial definition of Sturmian words can be given in terms sobword
complexity We recall that ifw is an infinite word on the alphabet, then he subword
complexity ofw is the mapf,,: N — N, defined as: for each > 0

fu(n) = CardFactw) N.A"),

where Fadw) is the set of all facta, or sibbwords, ofw. In other terms for each, f,,(n)
counts the number of factors af of lengthn. Sturmian words are infinite words whose
subword complexityf,, is such that

fuM=n+1

for all n > 0. As iswell known [2] this is also guivalent to saying that Sturmian words
have the minimal possible value for subwomhtplexity without beiig ultimately periodic.
Moreover, sincef,, (1) = 2 one has that these words are in a two letter alphabet. From now
on, we shall take the alphahdtequal to the binary alphabg, b}.

The most famous Sturmian word is tREbonacci word

f = abaababaabaababaababaabaababaabaab

which is the limit, according to a suitable topology, of the sequence of wglgsso,
inductively defined as:

fo = b, fi =a, and far1 = fnfnoa forn> 1.

The wordsf, of this sequence are calldishite Fibonacci wordsThe name Fibonacci is
due to the fact that for eaah the length| f,| of the word f, is equal to the(n + 1)th term
of the Fibonacci series:

1,1,2,3,58,13....

Standard Strmian words can be defined in the following way which is a natural
generalization of the definition of the Fibonacci word. latcy,...,cn, ... be any
sgquence of integers such theg > 0 and¢g; > 0 fori > 0. We define, inductively,
the sejuence of word$s,)n=0, Where

s = b, s = a, and  Sy1=s"'s,.1 forn>1

The sequencés,)n>0 converges to a limis which is an infinite stadard Sturmian word.
Any standard Sturmian word is obtained in this way. The sequé&sgmso is called the
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approximating sequenag s and(co, C1, Cy, . . .) thedirective sequenaef s. The Fibonacci
word f is the standard Sturmian wordhase directive sequence(s, 1,...,1,...). We
shall cenote byStand the set of all nfinite standard Sturmian words and 8tandthe set
of all the wordss,, n > 0 of any sandard sequende&n)n>0. Any word of Standis called a
finite standard wordor ageneralized Fibonacci word

2. Finite standard words

Infinite standard Sturmian words are of great interest sicff any Stumian wordt
there exists amiffinite standard Sturmian wole Stand such that Factt) = Fact(s). If
one is interested in the study of the langu&gef the factors of all Sturmian words, one
can limit oneself to consider only infinite standard Sturmian words. Indeed, one has:

St= U Fact(s).

seStand

Since any element @tand is the limit of a sequence of fite standardvords,one has that
any factor of a word oftand is a facbr of a word ofStand Herce,

St= Fact(Stand.

The setStandhas several characterizationsbd on quitelifferent conceptsd, 4]. One
of the characterizations is based on periods of words. More precisely, consider®feRset
of all wordsw having two period$, q which are coprime and such that| = p+q — 2.
Thus a wordw belongs taPERIf it is a power of a single letter or is a word of maximal
length for which the theorem of Fine and Wilf (cB]) does not apply. In the sequel we
assume that € PER(this is, formally, coherent with the above definition if one takes
p=q=1).In[6] it has been proved that:

Stand= A U PERab, ba}.

Thus, any element dstandwhich isnot a single letter can be obtained by appendibg
or bato a word ofPER Another characterization is based on palindromesPi¢tbe the
set of all péindromes on4. The setY is the sibset ofA* defined as:

Y = AU (PAL? N PAL{ab, ba}).

Thus a wordw belongs to) if and only if w is a single letter or satisfies the equation:
w = AB = Cxy,

whereA, B, C € PALand{x, y} = {a, b}. It was poved in [g] that
Stand= Y.

From this one can easily derive the followiremarkable structure result on the B&R[3].
For a wordw we denote by alpltw) the set of the letters occurring in.
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Proposition 2.1. Let w be a word such tha€Cardalph(w)) > 1. Thenw € PER if and
only if w can be uniquely represented as:

w = PXyQ: QyX P,

with x, y fixed letters ina, b}, x # y, P, Q € PAL,and|P| < |Q|. Moreover, p= |P|+2
and q= | Q| + 2 are periods ofw such hat p is the minimal period angcd p, q) = 1.

Since any element @tandis a prefix of an element d?#ERone has that
St= FactPER.

There exist several methods to generate standard wargsd, 13]. In [3] the falowing
method to generate the $&ERwas gven. Let us introduce int* the map(—): A* — PAL
which associates with any word € .4* the wordw (™ defined as the shortest palindrome
having the suffixw. We call w™ the palindromic left-closure ofw. If P is the longest
palindromic prefix ofw = Pu, thenone has

w™ =u~ Py,

whereu™ is thereversalof u, i.e., the sequence of the symbolsiofaken in reerse order.
If X is a sibset of4* we denote byX (™) the set

X = {w) e A |we X
The following holds ]:

LemmaZ2.l. Letw € PER and xe {a,b}. Then(xw)™ e PER. Moreover, ifw =
PxyQ, vith P, Q € PALand{x, y} = {a, b}, thenone has

oxaw) ) = QyxPxyQ  (yw)” = PxyQyxP
Now, let us define the map
¥: A* — PER
as follows:yr(¢) = € and for allv € A*, x € A,
Yx) = (X))
The worduv is called thegenerding word of v (v). Onehas that for alb, u € A*
Y () € A"y (v) Ny (v)A” 1)

For instance, in the case of the generating wore: a’ba one hasy (v) = aabaaabaa

Let E be the automorphism od* defined byE(a) = b, E(b) = a. For anyv € A*,
one hagE(v)| = |v| and, moreover, the set of periodstefv) is equal to the set of periods
of v. Therdore,v € PERIf and only if E(v) € PER Oneeasily verifies that for all
ve A

Vv (E@)) = E(W(v).
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It has been proved in3] that the mapy: A* — PERIis a bijection and that the
restriction ofys to aA* is a bijection ofaA* ontoPER, = PERN aA*. Herce one has:

PER, = y(@A") = | J v(@A".

n>0

Setting for eacm > 0

Xn = w(aAn)v
it follows
PER, = ] Xn.
n>0

whereXp = {a} and for anyn > 0 one has:
Xn = (AXn_1) 7.

Let us observe that the SBERcan be expressed as:
PER= {¢} UPER, U E(PERy),

where E(PERy) is equal to PER,, i.e., the set of elements &#ER beginning with the
letterb.

A different, and in some respects dual, way of generating the eleme/@tandlis
obtained by introducing th&ibonacci morphism FA* — A*. defined asF(a) =
ab, F(b) = a. The following proposition hold]:

Proposition 2.2. Stand is the smallest subset.4f containing.4 and closed under the
Fibonacci morphism F and the automorphism E.

In the following we shall mainly refer to the SBER;, i.e., the set oéll elements oPER
beginning with the lettea. One can introduce some suitable maps which are bijections
of the setPER, and the sef of all irreducible fractionsp/q with 0 < p < . These
representations d*ER, are of great interest and have remarkable applications. Moreover,
they are related to each other in a very natural way.

The first map: PER, — Z, that wecall ratio of periods is defined a falows. For all
n > 0, we set

6@") =

n+1

If w € PERy and Cardalph(w)) > 1, then fromProposition 2.1w can be uniquely
factorized as:

w = QyxP=PxyQ
with {x, y} = {a, b}, P, Q € PALand|P| < |Q|. If w € PER, then we set:
_IP|+2 _p

0 = = —.
W =1Q+27 4
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The meaning ob (w) whenw € PER,, is the rdio of the minimal period ofw and the
periodq such tlat gcdp,q) = 1 andjlw| = p+q — 2.
The second map: PER; — 7 is defined as follows: for any € PER,

_|wlh+1
lwla +1°

where|w|, and|w]|p denote, respectively, the number of occurrences of the lettenslb
in w. For anyw € PER,, wecall ¢(w) theslopeof w.

One can prove that the magsand 6 are hijections In order to se this ad the
relationships existing among them we recalhe basic representations of binary words
by irreducible fractions.

We introduce a suitable representation of the Zetby continued fractions. Let

¢ (w)

(a1, ..., an) be asequence of > 0 positive integers. We shall denote by
(ala ey Oln)
the continued fractiofi0; 1, ..., an—1, an + 1]. It is trivial to verify that Z is faithfully

represented by the set of all such continued fractions. . ., an).
Any wordv € aA* can be uniquely represented as:

v =a“h*2...a"n-1pon

wheren is an even integetyj > 0,i = 1,...,n— 1, anday > 0. We call the sequence
of integers(as, . .., am), wherem = nif @ > 0 andm = n — 1 otherwise, théntegral
repreentationof the wordv. The fdlowing holds [L, 3]:

Proposition 2.3. Let (a1, ..., an) be the integral representation of a worde aA* and
w = ¥ (v) € PERy. Thenone has

Z(w) = (o1, ...,0n) and o(w) = {(an, ..., a1).

Example 2.1. Letv be the wordy = ab?ab having the integral representati¢h 2, 1, 1).
One has:

¥ (v) = w = ababaabababaababa
and
tw)=(L21Y==L and Ow =(1121=75.
The map® and¢ can be naturally extended to maps fr®BRto Z U {1/1} by setting
0(e) =¢(e) = 1
and forw € PER,,
0(w) = 6(E(w)) and  ¢(w) =¢(E(w)).
We note that ifw € PER,, then he slope ofw is givenby:

_lwla+1

cw) = T




A. Carpi, A. de Luca/ European Journal of Combinateics 25 (2004 685-706 691

Table 1
Values ofz (w), for w € Harm, alph(w) = A, |w| < 100 (gold—harmonic fractions in bold)

¢ (w) [w] ¢(w) [w] ¢(w) [w] ¢ (w) [w] ¢(w) [w]

2/3 3 10/23 31 2330 51 29/41 68 1372 83
3/5 6 13/21 32 2134 53 3537 70 2859 85
3/7 8 6/29 33 2729 54 19/53 70 4345 86
5/7 10 17/19 34 1541 54 1755 70 2365 86
5/8 11 631 35 13/43 54 27/46 71 2167 86
4/11 13 1425 37 2037 55 31/43 72 34/55 87
7/9 14 1921 38 17/41 56 26/49 73 19/71 88
4/13 15 11/29 38 29/31 58 37/39 74 2764 89
9/11 18 931 38 19/41 58 34/43 75 4547 90
8/13 19 932 39 1149 58 2553 76 37261 91
11/13 22 13/29 40 11/50 59 3941 78 3956 93
7/17 22 21/23 42 g55 61 3749 78 4749 94
5/19 22 1926 43 3133 62 971 78 3165 94
7/18 23 2325 46 1947 63 973 80 17/79 94
5/21 24 17/31 46 14/51 63 41/43 82 22/75 95
13/15 26 7/41 46 8/57 63 2955 82 1089 97
12/17 27 7/43 48 23/43 64 13/71 82 4951 98
11/19 28 16/35 49 3335 66 3947 83 1091 99
15/17 30 2527 50 2247 67 1669 83 3567 100

3. Harmonicwords

A word w € PERwiIll be calledharmonicif its slope is equal tohe ratio of its periods,
i.e.,
¢(w) =60 (w).
We shall ¢énote byHarmthe set otharmonic words.

Example3.1. The wordsw; = abaabaand w, = aabaaabaaabaare harmonic.
Indeed,

tw)=F=0w) and {(wp) =] =O(wo).

The worde is harnmonic sinced (¢) = ¢(¢) = 1. The wordws = babbahis harnonic since
w3 = E(w1).

The value of¢(w) = 6(w) for the wordsw € Harm with Cardalph(w)) > 1 and
|lw| < 100 are reported ifable 1

Awordv € A* is called asesqupalindromeif v = E(v™) = (E(v))™. For instarce,
the wordv = a®b%a®b? is a sequipalindrome. We note that if is a sequipalindrome,
then|v| is an even integer.

Proposition 3.1. A word of PER is harmonic if and only if its generating word is a
palindrome or a sesquipalindrome.
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Proof. The result is trivial if the harmonic word is €. In sud a case the generating
word of w is € which is a palindrome. Therefore, we assume tiat£ . We first
suppose thatw € PER,. Let w = v (v) where thegenerating word has the integral
represetation («1, ..., an). If w € Harm, then¢(w) = 6(w) and byProposition 2.3
(@1, ...,an) = {an, ..., a1), i.e,

[O;ala"'van—laan+1] = [O;ana"'aa25a1+1]'
Henceone hasfor i <n,

QA = on—ji+1- (2)
If nisodd, then

v =a*h*...a™m,
so that by Eq.%), v is a palndrome. Ifn is even, then

v =a*h*...a%-1p%n

so that by Eq.%), v is a seguipalindrome.

Conversely, ifv € aA* is a palindome or a sesquipalindrome, then its integral
represetation(as, .. ., an) is such to satisfy Eq2). Thisimplies that the wordv = v (v)
is such that (w) = 6(w), i.e., w is harnonic.

If w € PER,, thenE(w) = ¢ (E(v)) with E(v) € aA*. Therdore, sinceE(w) €
PER,, from what we have proved before one has th&tv) € Harm if and only if its
generating wordE (v) is a palindome or a sesquipalindrome. This occurs if and only if
is a palindome or a sesquipalindrome. Sineec Harmif and only if E(w) € Harm, we
conclude the proof. O

As a mnsequence we derive the following:

Proposition 3.2. Any word of PER can be extended on the right (on the left) to a harmonic
word.

Proof. Let w € PERandwv be its generating word, i.ewy = v (v). Let v’ be any right
extenson of v to a palindome or sesquipalindrome. One hds= v with A € A*. By
Proposition 3.1

w =y @) e Harm.
Moreover, by Eq. 1),
Y =Ew=wg".
This proves our assertion.[]
Proposition 3.3. St= FactHarm).
Proof. FromProposition 3.2ne has that
PERC FaciHarm) C St
SinceSt= FactPER it follows thatSt= FactHarm). [
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Let us recall B] that anys € Stand, can be generated as follows: ldt’ be the set of
all infinite words on the alphabet. One ©nsiders anynfinite wordx € A“\A*{a®, b®},
i.e., X # vz?, with v € A* andz € A. Any such ifinite wordx can be uniquely written
as:

X = bOZOaalbO‘Z .. bOZZnaa2n+1 e

with g > 0 ande; > 0 fori > 0. Then one constructs recursively the sequence of words
(on)n>0, Whereog = € and for alln > 1

on = (Xnon-1)) = Y (X1 Xn),
wherex, denotes, for alh > 0, thenth letter ofx. Onehas that

s= lim on.
n—o00

We shall sets = (x) and callx thegenerding word of s.
It has been proved that the set of all palindromic prefixes afis equal to the set
{on | n =0}

Lemma3.1. Let x = X1X2- - - Xp - - - be an infinite word witralph(x) = {a, b}. The word
X sdisfies he condition:

(C) Any prefix of x is either a palindrome or a sesquipalindrome

if and only if x= (ab)® or x = (ba)®.

Proof. Without loss of generality we may suppose tlat= a. Let k be the ninimal
integer sich thatxx = b. Herce,xp - - - xx = ak~1p. From condtion (C) one derivek = 2
andxixz = ab. We prove now by induction that; = a for all oddintegers and; = b for
all even integers. We have already proved the base of the induction. Suppose the statement
is true up ton and pove it forn + 1. If nis even, therx; ---xn = (ab)"/2, so that
X1 - - - XnXn41 Satisfies (C) if and only ikn,1 = a. If nis odd, therx; - - - x, = (ab)!"/2a,
so thatxs - - - XnXn4+1 Satisfies (C) if and only ifk,+1 = b. From thisone derives that
X = (ab)® which proves the asertion.
Conversely, it is trivial to verify that the word&@b)® and (ba)® satisfy condition
(©. O

Proposition 3.4. An infinite standard Sturmian word is such that all palindromic prefixes
are harmonic if and only if it is the Fibonacci word f or(E).

Proof. Lets be an infinite standard Sturmian word having the generating infinite word
so thats = ¢ (x) ands = limp_ « on, Wheresg = € and for alln > 0,0, = ¥ (X1 - - - Xp).
The words has all palindromic prefixes which are harmonic if and only if forrat+ 0,
on € Harm. By Proposition 3.1his latter condition is satisfied if and only if any prefix of
X is either a palindromeraa seguipalindrome. ByLemma 3.1this occurs if and only if
X = (ah)® or x = (ba)®. In the fistcases = f and in the second case= E(f). O

We say thata infinite standard Sturmian wosde Stand is harmonicif s has infinitely
many palindromic prefixes which are harmonic. FrBroposition 3.4he infinitestandard
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Sturmian wordsf and E(f) are harmonic. We shall denote byarm the set of all
harmonic infinite standard Sturmian words.

Proposition 3.5. An infinite standard Sturmian word is harmonic if and only if its
generding word has infinitely rany prefixes which are palindromes or sesquipalindromes.

Proof. Lets € Stand andx € A® be its generating word, i.es,= ¥ (X). Let us suppose
thatx has infinitely many prefixes

X(hil=Xg Xn;, i > 1,

with hy < hy < --- < hy < ---, which are palindromes or sesquipalindromes. By
Proposition 3.Jone has that for all > 1

Y (X[hi]) € Harm.

Since bralli > 1,y (x[h;]) is a prefix ofs it follows thats is an infinite harmonic standard
Sturmian word.

Conversely, suppose thatis an infinite harmonic stand& Sturmian word and let be
its generating wrd, so thas = v (x) ands = limy_, » on, Wheresg = € and for alln > 0,
on = ¥ (X1 - Xn). By hypothesis there exist integdts < ko < --- < ky < -+ - suchthat
s[ki] € Harm. This imgies that there exists aequence of integefls; < hy < .. <
hn < -.-suchthatforalli > 1

slkil = on = ¥ (X1 - Xn,) = ¥ (X[hi ]).

Sinces[ki] € Harm one obtains byProposition 3.1that its generating wordc[h;] is
either a palindrome or a sesquipalindrome. Thumsas infinitely many prefixes which are
palindromes or sesquipalindromes which concludes the pragf.

From the preceding proposition one derives that if an infinite standard Sturmiarn word
has a generating word which is an infinite standard Sturmian word} tisdmarnonic.

Corollary 3.1. If s € Stand, theny(s) € Harm.

Proof. It is sufficient to observe that any infinite standard Sturmian word has infinitely
many palindromic prefixes, so that the result follows frBroposition 3.5 [

Corollary 3.2. There exist continuously many infinite harmonic words.

Proof. Asiswell known, there exist continuously many infinite standard Sturmian words.
Indeed, with each positive irrational numheione can injectively associate the standard
Sturmian wordhaving slopex. Sincethe mapy is injective the result follows from the
preceding corollary. [J

Corollary 3.3. There exist infinite standard Sturmian words which are not harmonic.

Proof. Itis sufficient to consider an infinite standard Sturmian wehéving a generating
word of the kind x = ab?a3b*a®.--b2a2"t1... or x’ = a(ab)®. These words have
only finitely many prefixes which are palindromes or sesquipalindromes, so that by
Proposition 3.5t follows thats = 1 (x) ands’ = vr(x’) are not harmonic. [J
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Let u be the Thue-Morse endomorphism4f defined byu(a) = abandu(b) = ba.

Lemma3.2. If w € A" is a palindrome (resp. a sesquipalindrome), thetw) is a
sesqupalindrome (resp. a palindrome).

Proof. The proof is by induction on the length af. If the length of w is equal to 1 or
2 the result is trivially verified. Let us then suppose that > 2. We first suppose that
w is a palindrome. We can write = xux, with x € 4 andu a palhdrome. One has
nw) = p(X)u(u)u(x). By induction the wordu(u) is a sequipalindrome. Ifx = a,
one obtainsu(w) = abu(u)ab which is a sesqpialindrome. Ifx = b, one obtains
u(w) = bau(u)bawhich is a seguipalindrome.

In a simlar way if w is a sequipalindrome, then we can write = xuy, with X # y
andu a esquipalindrome. By induction one easily derives fhab) is a palndrome. [

Proposition 3.6. The infinite standard Sturmian word having as generating word the
Thue-Morse word in two symbols is harmonic.

Proof. As is well known P] the Thue-Morse word in two synbols can be defined as
t= lim u"(a),
n—oo

where u%@) = a and for alln > 0, u"(@) = wu(u""1(@). From the preceding
lemma it follows that for alln > 0, x?"(a) is a palindrome, whereas?*1(a) is a
sesqupalindrome. FronProposition 3.5t follows that the infinite standard Sturmian word
¥ (t) is harmonic. O

Let F be the Fibonacci morphism ardlthe mophismD = E o F, so thatD(a) = a
andD(b) = ab. Onecan easily prove (cf.9)) that if w € PERy, thenF(w)a, D(w)a €
PER,. We shalldenote byHarm, the set oharmonic words beginning with the lettar

Proposition 3.7. Let w € Harm,. Onehas that Hw)a € Harmy if and only ifw is a
palindromic prefix of the Fibonacci word f. Moreover(®)a ¢ Harms.

Proof. Let (a1, ..., an) be the integral representation of the generating word.ddince
w € Harmy, one hasy; = ap_j+1 foralli =1,...,n. The sbpe of F(w)a is given by
F(walp+1 wla+1 1
((Fwya) = L@t [vla Lo, ... an).

Fwala+1  [wlat wb+2 1+iw)
By Proposition 2.3one has that (F(w)a) = (an,...,a1,1). Therdore, F(w)a is in
Harmy if andonly if oy = 1 and for alli = 1,...,n — 1 one hasy; = op—j. One
derives that- (w)a is in Harmy if and only if foralli = 1,...,n one hasy; = 1, which

concludes the proof of the first assertion.
The slope oD (w)a is givenby:

ID(w)alp + 1 [wlp+1 ¢(w)
D — — = = 1 5 EREICICIE) ’
B = D el 1~ Twlat o+ 2 Lt c(w) o1 o2 on)
whereas byProposition 2.3ne hasD(F(w)a) = (an, ..., a2, a1 + 1). If one imposes

that D(F(w))a is harnonic one obtains ¥ o1 = an. Sincea1 = apn one reaches a
contradiction. OJ
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4. Combinatorics of harmonic words

In this section we give a combinatorial characterization of harmonic words which allows
us to obtain a formula counting for any integeethenumber of harmonic words of length

We say that a tdonal numbere > 1 has asymmetric deelopment in continued
fractionsif « = [qo; Q1, ..., Qn] With g = gn—j fori =0, ..., n.

Lemma4.l. Awordw € PER is harmonicif and only  + 1/¢(w) (or 1+ 1/6(w)) has
a synmetric devalpment in continued fractions.

Proof. If z(w) = (a1, ..., an—1, an), then
1
1+ —=Jo1+ L ao,...,0n-1,0n + 1] (3)
¢(w)
and
1+ =lon+ L on-g,...,02, 01 +1].

o(w)

If w € Harm, then ly Eq. 2) one hasyj = an—iy+1 forl < i < nso that 14+ 1/¢(w),

as well as H 1/6(w), have a sspnmetric development in continued fractions. Conversely,
suppose that % 1/¢ (w) has a symmetric developmentin continued fractions. Necessarily,
this is given by Eq. ) with oj = an_j+1 for 1 <i < n. By Proposition 2.3ne derives
¢(w) = O(w) so thatw € Harm. Smilarly, one reaches the same result if one supposes
that 1+ 1/6(w) has a symmetric developmentin continued fractiors.

Proposition 4.1. Awordw € PER is harmonic if and only if
p? = +1 (mod|w| + 2),

where p is the minimal period af.

Proof. Letw e PERDbe such thatw| = p + q — 2, wherep is the minimal period ofv.
We observe that
1  p+q |w+2
ow)  p p
From the previous propositiom € Harm if and only if (jw| + 2)/p has a symmeic

development in continued fractions. By a classical result {f. Chapter 24]) this occurs
if andonly if p+ q = |w| + 2 dividesp? £ 1, i.e.,p? = +1 (mod|w| + 2). O

1+

Proposition 4.2. Thenumber of harmonic words of lengthza 0 is equal to the number
of roots of the equation®= +1 (modn + 2).

Proof. The statement is trivially true in the case = 0, since there exists a unique
harmonic word of length 0, namely the empty word, and a unique root of the equation
x2 = +1(mod 2. For anyn > 0, we consider the sets

Hn = Harmg N A"
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and

n+2

Kn:{peN 0§p<T and szzlzl(mOdn+2)}.

We prove thatthere exists a bijectioh,, : Hy — Kp. For anyw € Harmg N A", let An(w)
be the ninimal periodp of w. We know that|jw| = p + g — 2 with g > p. Therdore,
p < (n+ 2)/2. Sincew is harnonic, by Proposition 4.1 p> = 41 (modn + 2). Thus
An(w) € Kn. The maphy is injective. Indeed, it € Harma N A™ andin(v) = An(w) = p,
thené(v) = 6(w) = p/q so thatv = w. Now we veify that A, is surjective. Indeed, let
p € K, and seh = p+q—2. Sincep? = +1 ( mod n+2), one derives that ggg, ) = 1.
Moreover, sincep < (n+ 2)/2, one ha® < g. Herce there exists a unique elementf
PER,N A" having periodg andg. As p? = £1 (mod n+2) by Proposition 4.1t follows
thatw € Harmy andin(w) = p. Sinceiy, is bijective, it follows CardH,) = Card Kp).
Now, we prove that Car&K,) = CardK},), where

Ké:{peN‘nT—i_zgp<n+2 and szzl:l(mOdn+2)}.

The map defined ok, ason(p) = n + 2 — p is a bijection ontoK},. Indeed, since
(en(p))? = p? = +1(modn + 2) and(n + 2)/2 < on(p) < N+ 2, one hagn(p) € K.
The mapon : Kn — Kj, is trivially injective. Let us prove that it is surjective. Lete K;,
and suppose thatis odd orq # (n+2)/2. Ifwe setp = n+2—q,then0< p < (n+2)/2
andp? = g2 = +1(modn + 2), so thatp € K, andq = on(p). Now we suppose thah
is even and] = (n + 2)/2. Since 2| = 0(modn + 2) it follows 2g2 = 0 (modn + 2) so
thatg? # +1(modn + 2), i.e,,q ¢ K/,.
Since Car@Harmg N A") = CardHarm, N A™), one derives

CardHarmn A") = 2 CardHarmy N A") = Card K, U K})),
which proves the asertion. [J

For anyn > 0 the set of oots of the equatior? = +1 (modn + 2) is a finite2-group
G since, for any rook, x* = 1 (modn + 2) so thatany element of5 has an order which
is a power of two. As is well knowifrom group theory, the order @& is a powver of 2.
Hence, fromProposition 4.2ne derives that the number of harmonic words of lemgth
a power of2. The following theorem gives for any > 0 the exact number of harmonic
words of engthn.

Theorem 4.1. Let n be a positive integer and factorizeH?2 as:
n+2=22pf"...pfr

where , ..., pr, r > 0, are diginct oddprimes,« > 0,andg; > 0,1 <i <r.The
number of harmonic words of length n is given by

2+lifa <landforl<i <r, pj =1(mod4,

2" if @ < 1andthere exists il <i <r suchhat p = 3(mod 4,
2Hlifa =2,

2+2if o > 2.
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Proof. By the previous proposition, we have to count for eachenumber of roots of the
equationx? = 1 (modn + 2) and of the equatior? = —1 (modn + 2). From thetheory

of congruential equations (cf7[11]) the number of roots of the equations above is equal,
respectively, to the product of the numbers of roots of the equations

x? = 1(mod 2), x2 =1(modp;), i=1...,r1,
and
x2 = —1(mod 2), x%2 = —1(modp;), i=1...,r1.

Now, thenumber of roots of the equatio«? =1l(mod?)islifa <1,2ifa=2,and
4 for all @ > 2. The number of roots of the equatiad = 1(modp;) is exactly 2 for
anyi = 1,...,r. Thenumber of roots of the equatiO(? =-1(mod2)islifa <1,
and O for alle > 1. Finally, for anyi = 1,...,r the number of roots of the equation
x2 = —1(modp) is 2 if p = 1(mod4 and 0 otherwise (i.ep; = 3(mod4). From
this, onederives the statement.[]

Example4.1l. Letn = 8. Sincen +2 = 10 = 2.5 and 5= 1(mod4, there are 4
harmonic words of length 8, namely,

as, b, (a’b)?a?, (b%a)?b?.
FromTheorem 4.Jone has in particular:

Corollary 4.1. If n = pf — 2with 8 > 0 and p odd prime, then there are 4 harmonic
words if p= 1 (mod 4 and 2 harmonic words otherwise.

A consequence of the previous corollarytiat there are infinitely many integersuch
that CarqHarmn A") = 2.

Proposition 4.3. For any p > 0 there exists at least one haamic word having minimal
period p.

Proof. If p < 2 the resulis trivial, as, for instance, the wordsandaba are harmonic
words having minimal periods 1 and 2, respectively. Thus we suppose2 and take
q = p?— p=+ 1. One hag > p and sincep? = +1 (modp + q) a wordw € PERsuch
thatd(w) = p/q is harmonic by Proposition 4.1 [

Proposition 4.4. Letw be a harmonic word of minimal period 1. Then
lw| < p2.
Moreover, the upper bound is optimal.
Proof. By Proposition 4.bne hagp? = +1 (mod |w| + 2) so thatjw| + 2 dividesp?+ 1.
Sincep > 1, |w|+2< p?+1,i.e.,|w < p%

This bound is optimal since a wond € PERsuchthaté(w) = p/(p?> — p+ 1) is
harmonic and such théw| = p2—1. O
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5. Gold words

A word w € PERwiIll be called agold wordif the ratio of its period® (w) = p/qgis an
irreducible fraction withp andg prime numbers. The set of all gold words will be denoted
by Gold.

For instance, the wordsv; = aabaabaaandw,; = aaaaabaaaaaabaaaaare gold
sincef (w1) = 3/7 andf(wz2) = 7/13, whereasws = aaabaaaabaads not gold since
6(w3) = 5/9.

By the definition ifg € Gold, thenE(g) € Gold. Moreover, the lengtm = p+q — 2
of a gold word is either an odd prime or an even integer. Inde@dsifin odd integer, then
the minimal periodp of g has to be equal to 2 andhas to be equal tq which is anodd
prime. In such a case there exist two gold wagds PER, andE(g) suchthat|g| = nand
6(g) = 2/n. Thegenerating word of is

aptn/2!
and

g = (ab"?a.

If nis an even integer, the periogsandq of g have to be odd primes with # . As a
consequence there do not exist gold wordsfets 2 andn = 4. One can easily verify by
a conputer that there exist gold words for all even lengths 4 and lesghan very large
integers. Theefore, it is natural to set the following:

Conjecture5.1. For any even iteger n> 6 there exists a gold @rd of length n.

We remak that this conjecture is equivalent tiee statement that every even integer
greater than 6 is the sum of two different odd primes. This is a statement stronger than
the famous Goldbach’s conjecture (see, for instanggsfating that any even integet6
is the sum of two odd primes. Hencedbnjecture 5.1s true also Goldbach’s conjecture
will be true.

Now, we shall prove that any elementBERcan be extended on the right (left) to a
gold word. To this end, we recall the following proposition proveddh [

Proposition 5.1. Letw be an element of PER having the generating woghd ratio of
periods p/q. If x is the lat letter ofv and y # x is theother letter ofA4, one has

p
0 X)) = forallk >0
(¥ (vx™)) q+Kp >
and

0 (vyk)) = — forallk = 0.

p+kq
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Proof. We auppose without loss of generality thabegins withthe lettera. We can write
v = a*1p*2...x% wherex = aif nisodd andx = b otherwise. Let (v (v)) = p/q =
{an, ..., a1). By Proposition 2.3ne has that for ak > 0,

1
k
O (y")) =K, an,...,a1) = k+ap'
In a similar way one has that for &> 0,
1
O (X9 = K+an,an1,...00) = — T

which mncludes the proof. O

Proposition 5.2. Any elementv of PER can be extended on the right (left) to a gold word
g sudthat|g| > |w|. Moreover, if v is the generating word ab, then here exist &itrarily
large positive integersds ho such hatvakob™ is the generating word of g.

Proof. Letw be an element d’ERhaving the generating wordand ratio of periodp/qg.
First we suppose that the last letteroif a. Since gcdp, q) = 1, by the famous theorem
of Dirichlet on primes in arithmetical progressions (see, for instarik®) pne has that
there exist infinitely many positive integekssuchthatqg + kp is a prime number. Lekg
be an integer such thgt+ kop = 71 is a prime number. By the preceding proposition

6(y (vak0)) = 2.

1
Since gcdp, 71) = 1 by using agin Dirichlet's theorem it follows that there exist
infinitely many positive integerk suchthat p 4+ hxy is a prime number. Lehg be an
integer sich thatp + hgm1 is a primenumberm,. By usingagainProposition 5.1one
derives

6 (v (vakob)) = ?
2

Therefore, the worg) = v (vakobo) is gold. Moreover,
g=vyW§=wf=§"w
with & # € which proves our assertion in this case.
Now suppose that the last letter ofis b, and setv’ = va. By theprevious argument,
there are arbitrarily large positive integdgs hy suchthaty (v'a%b") = y (valtkopho)
is gold, concluding the proof. O

Example5.1. The wordw = (a’ba)*a € PERhas the generating word = a’ba®
and ratio of periods AL5. It can be extended on the right (left) to the wayd=
(aba)®(abad)® = wabaaba?)® = (a?ba)®abaw which is gold sinced(g) = 19/23.
The generating word df is a2ba%b. In thiscasekg = hg = 1.

We remak that following the same argument of the proofRrfoposition 5.2if w €
PERhas a minimal periogh which is prime, therw can be extended on the right (left) to
agold word having the same minimal period.
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FromProposition 5.2ne derives:
Proposition 5.3. St= FactGold).
Proof. FromProposition 5.2ne has that
PERC Fact(Gold) C St
SinceSt= FactPER it follows thatSt= FactGold). [
An infinite standard Sturmian word will be callgald if it has infinitely many prefixes

which aregold. We shall denote bgold the class of all infinitegold standard Sturmian
words. The ftlowing lemma will be useful in the sequel.

Lemmab.1l. Letu= x¥ty*2x*3y®4...with {x,y} ={a,b}ande; > 0,i=1,...,n,...
be the generating word of an infinite standard Sturmian word(tyek= 1 be the sequence
of integers defined as:

g-1=0 go=1 q=o01+1 Ok=okOk1+0k2 fork>1 4)
For any n> 0 let v, be the wordvy, = x*1y®2...z* where z= x if n isodd and z= vy,
otherwise. Then the ratio of periods¥{vy) is givenby:

6y (vn)) = qa‘l.

n

Proof. By Proposition 2.3ne has that

O (vn) = (an,...,a1) = [0; an, ..., a2, @1 + 1].

From the heory of continued fractions], one has that this continued fraction is equal to
On—1/09n Where for anyn > 0, g, is the denominator of theth convergentp,/qn of the
continued fractionO; o1 + 1, o2, ..., an, ...]. O

Proposition 5.4. The classGold contains continuously many elements.

Proof. Let us consider the sequence of integers as defined in4gi.€.,q1 = O,
o = 1,01 = a1 + 1,0k = akOk—1 + k-2 for k > 1. There exisinfinitely many
values ofa1 for which g is prime. Moreove since br all k > 0, gcdgk, Gk-1) = 1,
by Dirichlet’s theorem one has that there exist infinitely many valuegpk > 1, for
which gk = akOk—1 + gk—2, is a primenumber. For any such choice consider the word

u = a“th*2a*3p* . ..

which generates an infinite standard Sturmian werBy Lemma 5.1for anyn > 0 the
prefix vn, = a*tb*2 ...z of u, wherez = a if n is odd andz = b otherwise, generates
the elemeni) (v,) of PERsuchthat
-1
O ) = T

n

Therefore,y(vn) € Gold ands € Gold. Since there exist continuously many such
generating infinite words, the resulfollows. [
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Proposition 5.5. There exist infinite standard Sturmian words which have no gold
palindromic prefixes.

Proof. Consider thesquence of integers as defined in E¢). One can always choose the
integersxs, oo, ..., an, . .. in such a way that for anly > 0, the integery is a conposite
number. Now, without loss of generality, consider the infinite word

u = a*1h*2a*p*...
and take any prefikof u. We have to onsider two cases:
Case 1)t| < |a1|. Onehast(y (1)) = 1/(|t| + 1). Therdore,y(t) ¢ Gold.
Case 2|t| > |a1|. There exsts an integen > 1 for which
t = a®ih2a3h . .. xnyK,
wherek > 0,y # x, andx = aif nis odd,x = b otherwise. One has lyemma 5.1

1 On

9 t:k, yoeeey == - .
WO =leen o) = e T = g g

Since br all n > 0 the irtegersq, are composite, one derives(t) ¢ Gold which
concludes the proof.

Example5.2. Letu be the infinite word
u = a’b?(a%b%)®.

According to Eq.4) one has); = 4,2 = 9 and forn > 2,0y = 20n—1 + gn—2 if nis odd
andg, = 3gn—1+ gn—2 if nis even. One easilgerives that, is a multiple of 2 ifn is odd
and a multiple of 3 ifn is even. Ther®re, the wordy (u) has no gold palindromic prefix.

The following proposition shows, in particular, that the Fibonacci wbid not gold.
Proposition 5.6. Theonly gold prefixes of the Fibonacci word f are aba and abaaba.

Proof. Let (Fn)n>1 be the Fibonacci series. As is well knownis a palndromic prefix of
f,ifandonly if ju| = F, — 2 for a sutablen > 3. In this casef (u) = Fn_2/Fn-1.

We recall [7] that if n # 4 is a conposite number, therF, is composite.
Hence, forn > 6 at least one of the two integefs,_», Fn—1 has to be composite.
Thus the only cases whefg,_> and F,_1 are both primes are whan= 5 orn = 6.
The corresponding palindromic prefixes bfare aba andabaabag respectively, which
concludes the proof. [

Now, we consider the clagdoldNHarm, i.e., the class of all infinite standard Sturmian
words having infiitely many gold prefixes as well as infinitely many harmonic prefixes.

Proposition 5.7. The clasg50ld N Harm contains continuously many elements.

Proof. We shall prove that there exist continuously many infinite words which generate
elements ofGold N Harm. In fact, each of these words will have infinitely many
palindromic prefixes which generate harmonic words as well as infinitely many prefixes
generating gold words.
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Table 2

Gold—harmonic fractionp/q with p+q — 2 < 500
2/3 29/31 23109 107109 41/239 179181 107317
3/5 23/43 4389 89131 17271 61/311 109331
3/7 29/41 17/127 73149 97/197 67/307 199241
5/7 19/53 7173 97/127 73223 157229 199251
5/19 31/43 53103 37191 107199 127257 37419
7/17 1371 29139 59173 149151 197193 227229
11/13 41/43 41127 53181 113191 79311 43419
11/19 1971 7197 41/199 79233 89307 157317
17/19 17/79 13/157 89151 131181 197199 31449
11/29 23/83 71/109 83163 107211 10%307 79401
13/29 4171 47/137 71181 89241 137271 239241
7/41 11/109 89109 79181 137199 73337 83409
17/31 19101 67/137 23241 97/239 79337 167331
7/43 31/89 10%/103 67/197 113223 41379
13/43 41/79 29181 47229 10%/239 71349
17/41 5961 71/139 137139 89271 139281
19/41 47/83 53163 29251 109251 181239

Let us consider any sequen@g)n>o Of finite words whereag = b and, forn > 0
vn = vn_lak” b gkn Vn_1s

where (kn, hy) is an arbitrary pair of positive integers such that 1akbM is the
generating word of a gold word. Byroposition 5.2here exist infinitely many such pairs.
The sequencén)n=o has dimit v which is thegenerating word of an infinite standard
Sturmian wordyr(v) € Gold N Harm since br anyn > 0, vy is a palndrome and
¥ (vn—1ab™) e Gold.
As different choices of the values kf or hy, n > 0, lead to different generating words
andy is an injective map, the result follows [

It is interesting to consider the cla&old N Harm, i.e., the tass of all finite words
which areboth harmonic and gold. A wordh € PER belongs toGold N Harm if
0(w) = ¢(w) = p/g with p andq primes.

Example5.3. The wordsw; = aabaabaaandw, = ab(a*b)3a? belong tothe class
GoldN Harmast(w1) = ¢(w1) = 3/7 andd (w2) = ¢(w2) = 5/19.

An irreducible fractionp/q with p < g will be calledgold—harmonidf p andq are
both primes anc? = +1 (modp + q). By Proposition 4.1it is clear that there exists a
bijection of the setGold N Harmy and the set of gold—harmonic fractioff&ble 2 gives
the set of algold—harmonic fractionp/q with p+ g — 2 < 500.

We observe that there exist only 2 gold—harmonic words having an odd length, namely
aba andbab. Indeed, a gold—harmonic word having an odd length has minimal period
p = 2 so that, byProposition 4.4|w| < 3 andfrom this the asséion follows.

Let us state the following:

Conjecture5.2. The set Goldh Harm is infinite.
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The preceding conjecture is trivially egalent to the statement that the set of
gold—harmonic fractions is infinite. Let us remark thatpifandq aretwin odd primes,
i.e., pandq are odd primes such thgt= p + 2, thenthe fractionp/q is gold—harmonic
asp? = 1(mod 2 p + 1)). In such a casene has

P_ <1, p-1 1>.
q 2
The corresponding word of GoldN Harm, beghning with the letter a, has tle gererating
word
p—1
abz a

so thatw = ((ab)P~D/2a)2. It follows that if there exist infinitely many twin primes (and
this is a classic conjecture oumber theory), theonjecture 5.2has a positive answer.
However, by inspectindable 2 it is noteworthy that the great majority of gold—harmonic
fractions consists of fractions/q with p andq primes such thaq > p + 2, at least when
p-+q—2<500.

By Proposition 4.1if p andq are primes such that = p? — p £ 1, thenthe fraction
p/q is gold—harmonic. Therefore, if there exist infinitely many pairs of primes of the form
(p, p?> — p % 1), thenConjecture 5.2as a positive answer.

Finally, we remark that, as one can easilyifyeby a computer, for any odd prime
p < 2693 there exists a primg > p such that the fractiorp/q is gold—harmonic.

However, the primep = 2693 is the least odd prime such that this property is not
verified.
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