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Abstract

In the combinatorics of Sturmian words an essential role is played by the setPERof all finite
wordsw on the alphabetA = {a, b} having two periodsp andq which are coprime and such that
|w| = p + q − 2. As is well known, the setStof all finite factors of all Sturmian words equals the
set of factors ofPER. Moreover, the elements ofPERhave many remarkable structural properties. In
particular, the relation Stand= A ∪ PER{ab, ba} holds, whereStandis the set of all finite standard
Sturmian words. In this paper we introduce two proper subclasses ofPERthat we denote byHarm
andGold. We call an element ofHarm a harmonic word and an element ofGold a gold word. A
harmonic wordw beginning with the letterx is such that the ratio of two periodsp/q, with p < q,
is equal to itsslope, i.e.,(|w|y + 1)/(|w|x + 1), where{x, y} = {a, b}. A gold word is an element
of PERsuch thatp andq are primes. Some characterizationsof harmonic words are given and the
number of harmonic words of each length is computed. Moreover, we prove thatSt is equal to the set
of factors ofHarmand to the set of factors ofGold. We introduce also the classesHarm andGold of
all infinite standard Sturmian words having infinitely many prefixes inHarm andGold, respectively.
We prove thatGold ∩ Harm contain continuously many elements. Finally, some conjectures are
formulated.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Sturmian words have been extensively studied by several authors for at least
two centuries. They have many applications in various different fields like algebra,
theory of numbers, physics (symbolic dynamics, crystallography), and computer science
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(computer graphics and pattern matching); the study of the structure and combinatorics of
these words has become a subject of the greatest interest, with a large literature on it (see,
for instance,the excellent overview by Berstel and S´eébold [2]). For all definitions and
notations not explicitly given in the paper, the reader is referred to [9].

Sturmian words can be defined in several different but equivalent ways. Some
definitions are ‘geometrical’ and others of ‘combinatorial’ nature. A ‘geometrical’
definition is the following: a Sturmian word can be defined by considering the sequence of
the cuts (cutting sequence) in asquared-lattice made by a ray having a slope which is an
irrational number. A horizontal cut is denoted by the letterb, a vertical cut bya and a cut
with a corner byabor ba. Sturmian words represented by a ray starting from the origin are
usuallycalledstandardor characteristic.

A combinatorial definition of Sturmian words can be given in terms ofsubword
complexity. We recall that ifw is an infinite word on the alphabetA, then the subword
complexity ofw is the mapfw: N → N, defined as: for eachn ≥ 0

fw(n) = Card(Fact(w) ∩ An),

where Fact(w) is the set of all factors, or subwords, ofw. In other terms for eachn, fw(n)
counts the number of factors ofw of lengthn. Sturmian words are infinite wordsw whose
subword complexityfw is such that

fw(n) = n + 1

for all n ≥ 0. As iswell known [2] this is also equivalent to saying that Sturmian words
have the minimal possible value for subword complexity without being ultimately periodic.
Moreover, sincefw(1) = 2 one has that these words are in a two letter alphabet. From now
on, we shall take the alphabetA equal to the binary alphabet{a,b}.

The most famous Sturmian word is theFibonacci word

f = abaababaabaababaababaabaababaabaab. . .

which is the limit, according to a suitable topology, of the sequence of words( fn)n≥0,
inductively defined as:

f0 = b, f1 = a, and fn+1 = fn fn−1 for n ≥ 1.

The words fn of this sequence are calledfinite Fibonacci words. The name Fibonacci is
due to the fact that for eachn, the length| fn| of the word fn is equal to the(n + 1)th term
of the Fibonacci series:

1,1,2,3,5,8,13, . . . .

Standard Sturmian words can be defined in the following way which is a natural
generalization of the definition of the Fibonacci word. Letc0, c1, . . . , cn, . . . be any
sequence of integers such thatc0 ≥ 0 andci > 0 for i > 0. We define, inductively,
the sequence of words(sn)n≥0, where

s0 = b, s1 = a, and sn+1 = s
cn−1
n sn−1 for n ≥ 1.

The sequence(sn)n≥0 converges to a limits which is an infinite standard Sturmian word.
Any standard Sturmian word is obtained in this way. The sequence(sn)n≥0 is called the
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approximating sequenceof sand(c0, c1, c2, . . .) thedirective sequenceof s. The Fibonacci
word f is the standard Sturmian word whose directive sequence is(1,1, . . . ,1, . . .). We
shall denote byStand the set of all infinite standard Sturmian words and byStandthe set
of all the wordssn, n ≥ 0 of any standard sequence(sn)n≥0. Any word ofStandis called a
finite standard word, or ageneralized Fibonacci word.

2. Finite standard words

Infinite standard Sturmian words are of great interest since [2] for any Sturmian wordt
there exists an infinite standard Sturmian words ∈ Stand such that Fact(t) = Fact(s). If
one is interested in the study of the languageSt of the factors of all Sturmian words, one
can limit oneself to consider only infinite standard Sturmian words. Indeed, one has:

St=
⋃

s∈Stand

Fact(s).

Since any element ofStand is the limit of a sequence of finite standardwords,one has that
any factor of a word ofStand is a factor of a word ofStand. Hence,

St= Fact(Stand).

The setStandhas several characterizations based on quitedifferent concepts [3, 4]. One
of the characterizations is based on periods of words. More precisely, consider the setPER
of all wordsw having two periodsp,q which are coprime and such that|w| = p + q − 2.
Thus a wordw belongs toPER if it is a power of a single letter or is a word of maximal
length for which the theorem of Fine and Wilf (cf. [9]) does not apply. In the sequel we
assume thatε ∈ PER (this is, formally, coherent with the above definition if one takes
p = q = 1). In [6] it has been proved that:

Stand= A ∪ PER{ab,ba}.
Thus, any element ofStandwhich isnot a single letter can be obtained by appendingab
or ba to a word ofPER. Another characterization is based on palindromes. LetPALbe the
set of all palindromes onA. The setΣ is the subset ofA∗ defined as:

Σ = A ∪ (PAL2 ∩ PAL{ab,ba}).
Thus a wordw belongs toΣ if andonly if w is a single letter or satisfies the equation:

w = AB = Cxy,

whereA, B,C ∈ PALand{x, y} = {a,b}. It was proved in [6] that

Stand= Σ .

From this one can easily derive the followingremarkable structure result on the setPER[3].
For a wordw we denote by alph(w) the set of the letters occurring inw.
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Proposition 2.1. Letw be a word such thatCard(alph(w)) > 1. Thenw ∈ PER if and
only ifw can be uniquely represented as:

w = PxyQ= Qyx P,

with x, y fixed letters in{a,b}, x �= y, P, Q ∈ PAL,and|P| < |Q|. Moreover, p= |P|+2
and q= |Q| + 2 are periods ofw such that p is the minimal period andgcd(p,q) = 1.

Since any element ofStandis a prefix of an element ofPERone has that

St= Fact(PER).

There exist several methods to generate standard words [2, 3, 5, 13]. In [3] the following
method to generate the setPERwas given. Let us introduce inA∗ the map(−):A∗ → PAL
which associates with any wordw ∈ A∗ the wordw(−) defined as the shortest palindrome
having the suffixw. We call w(−) the palindromic left-closure ofw. If P is the longest
palindromic prefix ofw = Pu, thenone has

w(−) = u∼Pu,

whereu∼ is thereversalof u, i.e., the sequence of the symbols ofu taken in reverse order.
If X is a subset ofA∗ we denote byX(−) the set

X(−) = {w(−) ∈ A∗ | w ∈ X}.
The following holds [3]:

Lemma 2.1. Let w ∈ PER and x ∈ {a,b}. Then(xw)(−) ∈ PER. Moreover, ifw =
PxyQ, with P, Q ∈ PALand{x, y} = {a,b}, thenone has

(xw)(−) = Qyx PxyQ, (yw)(−) = PxyQyx P.

Now, let us define the map

ψ:A∗ → PER,

as follows:ψ(ε) = ε and for allv ∈ A∗, x ∈ A,

ψ(vx) = (xψ(v))(−).

The wordv is called thegenerating wordof ψ(v). Onehas that for allv,u ∈ A∗

ψ(vu) ∈ A∗ψ(v) ∩ ψ(v)A∗. (1)

For instance, in the case of the generating wordv = a2ba one hasψ(v) = aabaaabaa.
Let E be the automorphism ofA∗ defined byE(a) = b, E(b) = a. For anyv ∈ A∗,

one has|E(v)| = |v| and, moreover, the set of periods ofE(v) is equal to the set of periods
of v. Therefore, v ∈ PER if and only if E(v) ∈ PER. Oneeasily verifies that for all
v ∈ A∗

ψ(E(v)) = E(ψ(v)).
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It has been proved in [3] that the mapψ:A∗ → PER is a bijection and that the
restriction ofψ to aA∗ is a bijection ofaA∗ ontoPERa = PER∩ aA∗. Hence one has:

PERa = ψ(aA∗) =
⋃
n≥0

ψ(aAn).

Setting for eachn ≥ 0

Xn = ψ(aAn),

it follows

PERa =
⋃
n≥0

Xn,

whereX0 = {a} and for anyn > 0 one has:

Xn = (AXn−1)
(−).

Let us observe that the setPERcan be expressed as:

PER= {ε} ∪ PERa ∪ E(PERa),

where E(PERa) is equal to PERb, i.e., the set of elements ofPER beginning with the
letterb.

A different, and in some respects dual, way of generating the elements ofStand is
obtained by introducing theFibonacci morphism F:A∗ → A∗. defined as:F(a) =
ab, F(b) = a. The following proposition holds [5]:

Proposition 2.2. Stand is the smallest subset ofA∗ containingA and closed under the
Fibonacci morphism F and the automorphism E.

In the following we shall mainly refer to the setPERa, i.e., the set ofall elements ofPER
beginning with the lettera. One can introduce some suitable maps which are bijections
of the setPERa and the setI of all irreducible fractionsp/q with 0 < p < q. These
representations ofPERa are of great interest and have remarkable applications. Moreover,
they are related to each other in a very natural way.

The first mapθ : PERa → I, that wecall ratio of periods, is defined as follows. For all
n > 0, we set

θ(an) = 1

n + 1
.

If w ∈ PERa and Card(alph(w)) > 1, then fromProposition 2.1, w can be uniquely
factorized as:

w = Qyx P= PxyQ

with {x, y} = {a,b}, P, Q ∈ PALand|P| < |Q|. If w ∈ PERa then we set:

θ(w) = |P| + 2

|Q| + 2
= p

q
.
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The meaning ofθ(w) whenw ∈ PERa, is the ratio of the minimal period ofw and the
periodq such that gcd(p,q) = 1 and|w| = p + q − 2.

The second mapζ : PERa → I is defined as follows: for anyw ∈ PERa

ζ(w) = |w|b + 1

|w|a + 1
,

where|w|a and|w|b denote, respectively, the number of occurrences of the lettersa andb
in w. For anyw ∈ PERa, wecall ζ(w) theslopeof w.

One can prove that the mapsζ and θ are bijections. In order to see this and the
relationships existing among them we recall some basic representations of binary words
by irreducible fractions.

We introduce a suitable representation of the setI by continued fractions. Let
(α1, . . . , αn) be a sequence ofn > 0 positive integers. We shall denote by

〈α1, . . . , αn〉
the continued fraction[0; α1, . . . , αn−1, αn + 1]. It is trivial to verify that I is faithfully
represented by the set of all such continued fractions〈α1, . . . , αn〉.

Any wordv ∈ aA∗ can be uniquely represented as:

v = aα1bα2 · · · aαn−1bαn,

wheren is an even integer,αi > 0, i = 1, . . . ,n − 1, andαn ≥ 0. We call the sequence
of integers(α1, . . . , αm), wherem = n if αn > 0 andm = n − 1 otherwise, theintegral
representationof the wordv. The following holds [1, 3]:

Proposition 2.3. Let (α1, . . . , αn) be the integral representation of a wordv ∈ aA∗ and
w = ψ(v) ∈ PERa. Thenone has

ζ(w) = 〈α1, . . . , αn〉 and θ(w) = 〈αn, . . . , α1〉.
Example 2.1. Let v be the wordv = ab2abhaving the integral representation(1,2,1,1).
One has:

ψ(v) = w = ababaabababaababa

and

ζ(w) = 〈1,2,1,1〉 = 8
11 and θ(w) = 〈1,1,2,1〉 = 7

12.

The mapsθ andζ can be naturally extended to maps fromPERto I ∪ {1/1} by setting

θ(ε) = ζ(ε) = 1
1

and forw ∈ PERb,

θ(w) = θ(E(w)) and ζ(w) = ζ(E(w)).

We note that ifw ∈ PERb, then the slope ofw is givenby:

ζ(w) = |w|a + 1

|w|b + 1
.
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Table 1
Values ofζ(w), for w ∈ Harm, alph(w) = A, |w| ≤ 100 (gold–harmonic fractions in bold)

ζ(w) |w| ζ(w) |w| ζ(w) |w| ζ(w) |w| ζ(w) |w|
2/3 3 10/23 31 23/30 51 29/41 68 13/72 83
3/5 6 13/21 32 21/34 53 35/37 70 28/59 85
3/7 8 6/29 33 27/29 54 19/53 70 43/45 86
5/7 10 17/19 34 15/41 54 17/55 70 23/65 86
5/8 11 6/31 35 13/43 54 27/46 71 21/67 86
4/11 13 14/25 37 20/37 55 31/43 72 34/55 87
7/9 14 19/21 38 17/41 56 26/49 73 19/71 88
4/13 15 11/29 38 29/31 58 37/39 74 27/64 89
9/11 18 9/31 38 19/41 58 34/43 75 45/47 90
8/13 19 9/32 39 11/49 58 25/53 76 32/61 91
11/13 22 13/29 40 11/50 59 39/41 78 39/56 93
7/17 22 21/23 42 8/55 61 31/49 78 47/49 94
5/19 22 19/26 43 31/33 62 9/71 78 31/65 94
7/18 23 23/25 46 18/47 63 9/73 80 17/79 94
5/21 24 17/31 46 14/51 63 41/43 82 22/75 95
13/15 26 7/41 46 8/57 63 29/55 82 10/89 97
12/17 27 7/43 48 23/43 64 13/71 82 49/51 98
11/19 28 16/35 49 33/35 66 38/47 83 10/91 99
15/17 30 25/27 50 22/47 67 16/69 83 35/67 100

3. Harmonic words

A wordw ∈ PERwill be calledharmonicif its slope is equal to the ratio of its periods,
i.e.,

ζ(w) = θ(w).

We shall denote byHarm the set ofharmonic words.

Example 3.1. The wordsw1 = abaabaandw2 = aabaaabaaabaaare harmonic.
Indeed,

ζ(w1) = 3
5 = θ(w1) and ζ(w2) = 4

11 = θ(w2).

The wordε is harmonic sinceθ(ε) = ζ(ε) = 1. The wordw3 = babbabis harmonic since
w3 = E(w1).

The value ofζ(w) = θ(w) for the wordsw ∈ Harm with Card(alph(w)) > 1 and
|w| ≤ 100 are reported inTable 1.

A word v ∈ A∗ is called asesquipalindromeif v = E(v∼) = (E(v))∼. For instance,
the wordv = a2b3a3b2 is a sesquipalindrome. We note that ifv is a sesquipalindrome,
then|v| is an even integer.

Proposition 3.1. A word of PER is harmonic if and only if its generating word is a
palindrome or a sesquipalindrome.
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Proof. The result is trivial if the harmonic wordw is ε. In such a case the generating
word of w is ε which is a palindrome. Therefore, we assume thatw �= ε. We first
suppose thatw ∈ PERa. Let w = ψ(v) where thegenerating wordv has the integral
representation (α1, . . . , αn). If w ∈ Harm, thenζ(w) = θ(w) and byProposition 2.3,
〈α1, . . . , αn〉 = 〈αn, . . . , α1〉, i.e.,

[0; α1, . . . , αn−1, αn + 1] = [0; αn, . . . , α2, α1 + 1].
Hence,one has for 1≤ i ≤ n,

αi = αn−i+1. (2)

If n is odd, then

v = aα1bα2 · · · aαn,

so that by Eq. (2), v is a palindrome. Ifn is even, then

v = aα1bα2 · · · aαn−1bαn

so that by Eq. (2), v is a sesquipalindrome.
Conversely, ifv ∈ aA∗ is a palindrome or a sesquipalindrome, then its integral

representation(α1, . . . , αn) is such to satisfy Eq. (2). Thisimplies that the wordw = ψ(v)

is such thatζ(w) = θ(w), i.e.,w is harmonic.
If w ∈ PERb, then E(w) = ψ(E(v)) with E(v) ∈ aA∗. Therefore, sinceE(w) ∈

PERa, from what we have proved before one has thatE(w) ∈ Harm if and only if its
generating wordE(v) is a palindrome or a sesquipalindrome. This occurs if and only ifv

is a palindrome or a sesquipalindrome. Sincew ∈ Harm if and only if E(w) ∈ Harm, we
conclude the proof. �

As a consequence we derive the following:

Proposition 3.2. Any word of PER can be extended on the right (on the left) to a harmonic
word.

Proof. Let w ∈ PERandv be its generating word, i.e.,w = ψ(v). Let v′ be any right
extension of v to a palindrome or sesquipalindrome. One hasv′ = vλ with λ ∈ A∗. By
Proposition 3.1

w′ = ψ(v′) ∈ Harm.

Moreover, by Eq. (1),

ψ(v′) = ξw = wξ∼.

This proves our assertion.�

Proposition 3.3. St= Fact(Harm).

Proof. FromProposition 3.2one has that

PER⊆ Fact(Harm) ⊆ St.

SinceSt= Fact(PER) it follows thatSt= Fact(Harm). �
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Let us recall [3] that anys ∈ Stand, can be generated as follows: letAω be the set of
all infinite words on the alphabetA. One considers anyinfinite wordx ∈ Aω\A∗{aω,bω},
i.e., x �= vzω, with v ∈ A∗ andz ∈ A. Any such infinite wordx can be uniquely written
as:

x = bα0aα1bα2 · · · bα2naα2n+1 · · ·
with α0 ≥ 0 andαi > 0 for i > 0. Then one constructs recursively the sequence of words
(σn)n≥0, whereσ0 = ε and for alln ≥ 1

σn = (xnσn−1)
(−) = ψ(x1 · · · xn),

wherexn denotes, for alln > 0, thenth letter ofx. Onehas that

s = lim
n→∞ σn.

We shall sets = ψ(x) and callx thegenerating wordof s.
It has been proved [6] that the set of all palindromic prefixes ofs is equal to the set

{σn | n ≥ 0}.
Lemma 3.1. Let x = x1x2 · · · xn · · · be an infinite word withalph(x) = {a,b}. The word
x satisfies the condition:

(C) Any prefix of x is either a palindrome or a sesquipalindrome

if and only if x= (ab)ω or x = (ba)ω.

Proof. Without loss of generality we may suppose thatx1 = a. Let k be the minimal
integer such thatxk = b. Hence,x1 · · · xk = ak−1b. From condition (C) one derivesk = 2
andx1x2 = ab. We prove now by induction thatxi = a for all oddintegers andxi = b for
all even integers. We have already proved the base of the induction. Suppose the statement
is true up ton and prove it for n + 1. If n is even, thenx1 · · · xn = (ab)n/2, so that
x1 · · · xnxn+1 satisfies (C) if and only ifxn+1 = a. If n is odd, thenx1 · · · xn = (ab)�n/2�a,
so thatx1 · · · xnxn+1 satisfies (C) if and only ifxn+1 = b. From thisone derives that
x = (ab)ω which proves the assertion.

Conversely, it is trivial to verify that the words(ab)ω and (ba)ω satisfy condition
(C). �

Proposition 3.4. An infinite standard Sturmian word is such that all palindromic prefixes
are harmonic if and only if it is the Fibonacci word f or E( f ).

Proof. Let s be an infinite standard Sturmian word having the generating infinite wordx,
so thats = ψ(x) ands = limn→∞ σn, whereσ0 = ε and for alln > 0,σn = ψ(x1 · · · xn).
The words has all palindromic prefixes which are harmonic if and only if for alln ≥ 0,
σn ∈ Harm. By Proposition 3.1this latter condition is satisfied if and only if any prefix of
x is either a palindrome or a sesquipalindrome. ByLemma 3.1this occurs if and only if
x = (ab)ω or x = (ba)ω. In the first cases = f and in the second cases = E( f ). �

We say that an infinite standard Sturmian words ∈ Stand is harmonicif s has infinitely
many palindromic prefixes which are harmonic. FromProposition 3.4the infinitestandard
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Sturmian words f and E( f ) are harmonic. We shall denote byHarm the set of all
harmonic infinite standard Sturmian words.

Proposition 3.5. An infinite standard Sturmian word is harmonic if and only if its
generating word has infinitely many prefixes which are palindromes or sesquipalindromes.

Proof. Let s ∈ Stand andx ∈ Aω be its generating word, i.e.,s = ψ(x). Let us suppose
thatx has infinitely many prefixes

x[hi ] = x1 · · · xhi , i ≥ 1,

with h1 < h2 < · · · < hn < · · ·, which are palindromes or sesquipalindromes. By
Proposition 3.1one has that for alli ≥ 1

ψ(x[hi ]) ∈ Harm.

Since for all i ≥ 1,ψ(x[hi ]) is a prefix ofs it follows thats is an infinite harmonic standard
Sturmian word.

Conversely, suppose thats is an infinite harmonic standard Sturmian word and letx be
its generating word, so thats = ψ(x) ands = limn→∞ σn, whereσ0 = ε and for alln > 0,
σn = ψ(x1 · · · xn). By hypothesis there exist integersk1 < k2 < · · · < kn < · · · suchthat
s[ki ] ∈ Harm. This implies that there exists a sequence of integersh1 < h2 < · · · <
hn < · · · such that for all i ≥ 1

s[ki ] = σhi = ψ(x1 · · · xhi ) = ψ(x[hi ]).
Since s[ki ] ∈ Harm one obtains byProposition 3.1that its generating wordx[hi ] is
either a palindrome or a sesquipalindrome. Thusx has infinitely many prefixes which are
palindromes or sesquipalindromes which concludes the proof.�

From the preceding proposition one derives that if an infinite standard Sturmian wordt
has a generating word which is an infinite standard Sturmian word, thent is harmonic.

Corollary 3.1. If s ∈ Stand, thenψ(s) ∈ Harm.

Proof. It is sufficient to observe that any infinite standard Sturmian word has infinitely
many palindromic prefixes, so that the result follows fromProposition 3.5. �

Corollary 3.2. There exist continuously many infinite harmonic words.

Proof. As is well known, there exist continuously many infinite standard Sturmian words.
Indeed, with each positive irrational numberα one can injectively associate the standard
Sturmian wordhaving slopeα. Sincethe mapψ is injective the result follows from the
preceding corollary. �

Corollary 3.3. There exist infinite standard Sturmian words which are not harmonic.

Proof. It is sufficient to consider an infinite standard Sturmian words having a generating
word of the kind x = ab2a3b4a5 · · · b2na2n+1 · · · or x′ = a(ab)ω. These words have
only finitely many prefixes which are palindromes or sesquipalindromes, so that by
Proposition 3.5it follows thats = ψ(x) ands′ = ψ(x′) are not harmonic. �
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Letµ be the Thue-Morse endomorphism ofA∗ defined byµ(a) = ab andµ(b) = ba.

Lemma 3.2. If w ∈ A+ is a palindrome (resp. a sesquipalindrome), thenµ(w) is a
sesquipalindrome (resp. a palindrome).

Proof. The proof is by induction on the length ofw. If the length ofw is equal to 1 or
2 the result is trivially verified. Let us then suppose that|w| > 2. We first suppose that
w is a palindrome. We can writew = xux, with x ∈ A andu a palindrome. One has
µ(w) = µ(x)µ(u)µ(x). By induction the wordµ(u) is a sesquipalindrome. Ifx = a,
one obtainsµ(w) = abµ(u)ab which is a sesquipalindrome. Ifx = b, one obtains
µ(w) = baµ(u)ba which is a sesquipalindrome.

In a similar way if w is a sesquipalindrome, then we can writew = xuy, with x �= y
andu a sesquipalindrome. By induction one easily derives thatµ(w) is a palindrome. �

Proposition 3.6. The infinite standard Sturmian word having as generating word the
Thue-Morse word in two symbols is harmonic.

Proof. As is well known [9] the Thue-Morse wordt in two symbols can be defined as

t = lim
n→∞µn(a),

whereµ0(a) = a and for all n > 0, µn(a) = µ(µn−1(a)). From the preceding
lemma it follows that for alln ≥ 0, µ2n(a) is a palindrome, whereasµ2n+1(a) is a
sesquipalindrome. FromProposition 3.5it follows that the infinite standard Sturmian word
ψ(t) is harmonic. �

Let F be the Fibonacci morphism andD the morphismD = E ◦ F , so thatD(a) = a
andD(b) = ab. Onecan easily prove (cf. [5]) that if w ∈ PERa, thenF(w)a, D(w)a ∈
PERa. We shalldenote byHarma the set ofharmonic words beginning with the lettera.

Proposition 3.7. Let w ∈ Harma. Onehas that F(w)a ∈ Harma if and only ifw is a
palindromic prefix of the Fibonacci word f . Moreover, D(w)a /∈ Harma.

Proof. Let (α1, . . . , αn) be the integral representation of the generating word ofw. Since
w ∈ Harma, one hasαi = αn−i+1 for all i = 1, . . . ,n. The slope ofF(w)a is given by

ζ(F(w)a) = |F(w)a|b + 1

|F(w)a|a + 1
= |w|a + 1

|w|a + |w|b + 2
= 1

1 + ζ(w)
= 〈1, α1, . . . , αn〉.

By Proposition 2.3one has thatθ(F(w)a) = 〈αn, . . . , α1,1〉. Therefore, F(w)a is in
Harma if and only if αn = 1 and for all i = 1, . . . ,n − 1 one hasαi = αn−i . One
derives thatF(w)a is in Harma if and only if for all i = 1, . . . ,n one hasαi = 1, which
concludes the proof of the first assertion.

The slope ofD(w)a is givenby:

ζ(D(w)a) = |D(w)a|b + 1

|D(w)a|a + 1
= |w|b + 1

|w|a + |w|b + 2
= ζ(w)

1 + ζ(w)
= 〈1 + α1, α2, . . . , αn〉,

whereas byProposition 2.3one hasD(F(w)a) = 〈αn, . . . , α2, α1 + 1〉. If one imposes
that D(F(w))a is harmonic one obtains 1+ α1 = αn. Sinceα1 = αn one reaches a
contradiction. �
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4. Combinatorics of harmonic words

In this section we give a combinatorial characterization of harmonic words which allows
us to obtain a formula counting for any integern thenumber of harmonic words of lengthn.

We say that a rational numberα > 1 has asymmetric development in continued
fractionsif α = [q0; q1, . . . ,qn] with qi = qn−i for i = 0, . . . ,n.

Lemma 4.1. A wordw ∈ PER is harmonic if and only if1+ 1/ζ(w) (or 1+ 1/θ(w)) has
a symmetric development in continued fractions.

Proof. If ζ(w) = 〈α1, . . . , αn−1, αn〉, then

1 + 1

ζ(w)
= [α1 + 1; α2, . . . , αn−1, αn + 1] (3)

and

1 + 1

θ(w)
= [αn + 1; αn−1, . . . , α2, α1 + 1].

If w ∈ Harm, then by Eq. (2) one hasαi = αn−i+1 for 1 ≤ i ≤ n so that 1+ 1/ζ(w),
as well as 1+ 1/θ(w), have a symmetric development in continued fractions. Conversely,
suppose that 1+1/ζ(w) has a symmetric development in continued fractions. Necessarily,
this is given by Eq. (3) with αi = αn−i+1 for 1 ≤ i ≤ n. By Proposition 2.3one derives
ζ(w) = θ(w) so thatw ∈ Harm. Similarly, one reaches the same result if one supposes
that 1+ 1/θ(w) has a symmetric development in continued fractions.�

Proposition 4.1. A wordw ∈ PER is harmonic if and only if

p2 ≡ ±1 (mod|w| + 2),

where p is the minimal period ofw.

Proof. Letw ∈ PERbe such that|w| = p + q − 2, wherep is the minimal period ofw.
We observe that

1 + 1

θ(w)
= p + q

p
= |w| + 2

p
.

From the previous propositionw ∈ Harm if and only if (|w| + 2)/p has a symmetric
development in continued fractions. By a classical result (cf. [10, Chapter 24]) this occurs
if andonly if p + q = |w| + 2 dividesp2 ± 1, i.e.,p2 ≡ ±1 (mod|w| + 2). �

Proposition 4.2. Thenumber of harmonic words of length n≥ 0 is equal to the number
of roots of the equation x2 ≡ ±1 (modn + 2).

Proof. The statement is trivially true in the casen = 0, since there exists a unique
harmonic word of length 0, namely the empty word, and a unique root of the equation
x2 ≡ ±1 (mod 2). For anyn > 0, we consider the sets

Hn = Harma ∩ An
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and

Kn =
{

p ∈ N

∣∣∣∣ 0 ≤ p <
n + 2

2
and p2 ≡ ±1 (modn + 2)

}
.

We prove thatthere exists a bijectionλn : Hn → Kn. For anyw ∈ Harma ∩ An, letλn(w)

be the minimal periodp of w. We know that|w| = p + q − 2 with q > p. Therefore,
p < (n + 2)/2. Sincew is harmonic, byProposition 4.1, p2 ≡ ±1 (modn + 2). Thus
λn(w) ∈ Kn. The mapλn is injective. Indeed, ifv ∈ Harma ∩ An andλn(v) = λn(w) = p,
thenθ(v) = θ(w) = p/q so thatv = w. Now we verify that λn is surjective. Indeed, let
p ∈ Kn and setn = p+q−2. Sincep2 ≡ ±1 ( mod n+2), one derives that gcd(p,q) = 1.
Moreover, sincep < (n + 2)/2, one hasp < q. Hence there exists a unique elementw of
PERa ∩ An having periodsp andq. As p2 ≡ ±1 (mod n+2) by Proposition 4.1it follows
thatw ∈ Harma andλn(w) = p. Sinceλn is bijective, it follows Card(Hn) = Card(Kn).

Now, we prove that Card(Kn) = Card(K ′
n), where

K ′
n =

{
p ∈ N

∣∣∣∣n + 2

2
≤ p < n + 2 and p2 ≡ ±1 (modn + 2)

}
.

The map defined onKn as
n(p) = n + 2 − p is a bijection ontoK ′
n. Indeed, since

(
n(p))2 ≡ p2 ≡ ±1 (modn + 2) and(n + 2)/2 ≤ 
n(p) < n + 2, one has
n(p) ∈ K ′
n.

The map
n : Kn → K ′
n is trivially injective. Let us prove that it is surjective. Letq ∈ K ′

n
and suppose thatn is odd orq �= (n+2)/2. If we setp = n+2−q, then 0≤ p < (n+2)/2
and p2 ≡ q2 ≡ ±1 (modn + 2), so thatp ∈ Kn andq = 
n(p). Now we suppose thatn
is even andq = (n + 2)/2. Since 2q ≡ 0 (modn + 2) it follows 2q2 ≡ 0 (modn + 2) so
thatq2 �≡ ±1 (modn + 2), i.e., q /∈ K ′

n.
Since Card(Harma ∩ An) = Card(Harmb ∩ An), one derives

Card(Harm∩ An) = 2 Card(Harma ∩ An) = Card(Kn ∪ K ′
n),

which proves the assertion. �

For anyn ≥ 0 the set of roots of the equationx2 ≡ ±1 (modn + 2) is a finite2-group
G since, for any rootx, x4 ≡ 1 (modn + 2) so thatany element ofG has an order which
is a power of two. As is well knownfrom group theory, the order ofG is a power of 2.
Hence, fromProposition 4.2one derives that the number of harmonic words of lengthn is
a power of2. The following theorem gives for anyn > 0 the exact number of harmonic
words of lengthn.

Theorem 4.1. Let n be a positive integer and factorize n+ 2 as:

n + 2 = 2α pβ1
1 · · · pβr

r

where p1, . . . , pr , r ≥ 0, are distinct oddprimes,α ≥ 0, andβi > 0, 1 ≤ i ≤ r . The
number of harmonic words of length n is given by

• 2r+1 if α ≤ 1 and for1 ≤ i ≤ r , pi ≡ 1 (mod 4),
• 2r if α ≤ 1 and there exists i ,1 ≤ i ≤ r such that pi ≡ 3 (mod 4),
• 2r+1 if α = 2,
• 2r+2 if α > 2.
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Proof. By the previous proposition, we have to count for eachn thenumber of roots of the
equationx2 ≡ 1 (modn + 2) and of the equationx2 ≡ −1 (modn + 2). From thetheory
of congruential equations (cf. [7, 11]) the number of roots of the equations above is equal,
respectively, to the product of the numbers of roots of the equations

x2 ≡ 1 (mod 2α), x2 ≡ 1 (mod pi ), i = 1, . . . , r,

and

x2 ≡ −1 (mod 2α), x2 ≡ −1 (mod pi ), i = 1, . . . , r.

Now, thenumber of roots of the equationx2 ≡ 1 (mod 2α) is 1 if α ≤ 1, 2 if α = 2, and
4 for all α > 2. The number of roots of the equationx2 ≡ 1 (modpi ) is exactly 2 for
any i = 1, . . . , r . Thenumber of roots of the equationx2 ≡ −1 (mod 2α) is 1 if α ≤ 1,
and 0 for allα > 1. Finally, for anyi = 1, . . . , r the number of roots of the equation
x2 ≡ −1 (modpi ) is 2 if pi ≡ 1 (mod4) and 0 otherwise (i.e.,pi ≡ 3 (mod4)). From
this, onederives the statement.�

Example 4.1. Let n = 8. Sincen + 2 = 10 = 2 · 5 and 5 ≡ 1 (mod4), there are 4
harmonic words of length 8, namely,

a8, b8, (a2b)2a2, (b2a)2b2.

FromTheorem 4.1one has in particular:

Corollary 4.1. If n = pβ − 2 with β > 0 and p odd prime, then there are 4 harmonic
words if p≡ 1 (mod 4) and 2 harmonic words otherwise.

A consequence of the previous corollary isthat there are infinitely many integersn such
that Card(Harm∩ An) = 2.

Proposition 4.3. For any p> 0 there exists at least one harmonic word having minimal
period p.

Proof. If p ≤ 2 the resultis trivial, as, for instance, the wordsa andaba are harmonic
words having minimal periods 1 and 2, respectively. Thus we supposep > 2 and take
q = p2 − p ± 1. One hasq > p and sincep2 ≡ ±1 (mod p + q) a wordw ∈ PERsuch
thatθ(w) = p/q is harmonic byProposition 4.1. �

Proposition 4.4. Letw be a harmonic word of minimal period p> 1. Then

|w| < p2.

Moreover, the upper bound is optimal.

Proof. By Proposition 4.1one hasp2 ≡ ±1 (mod |w|+2) so that|w|+2 dividesp2 ±1.
Sincep > 1, |w| + 2 ≤ p2 + 1, i.e.,|w| < p2.

This bound is optimal since a wordw ∈ PERsuchthat θ(w) = p/(p2 − p + 1) is
harmonic and such that|w| = p2 − 1. �
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5. Gold words

A wordw ∈ PERwill be called agold wordif the ratio of its periodsθ(w) = p/q is an
irreducible fraction withp andq prime numbers. The set of all gold words will be denoted
by Gold.

For instance, the wordsw1 = aabaabaaandw2 = aaaaabaaaaaabaaaaaare gold
sinceθ(w1) = 3/7 andθ(w2) = 7/13, whereasw3 = aaabaaaabaaais not gold since
θ(w3) = 5/9.

By the definition ifg ∈ Gold, thenE(g) ∈ Gold. Moreover, the lengthn = p + q − 2
of a gold word is either an odd prime or an even integer. Indeed, ifn is an odd integer, then
the minimal periodp of g has to be equal to 2 andn has to be equal toq which is anodd
prime. In such a case there exist two gold wordsg ∈ PERa andE(g) suchthat|g| = n and
θ(g) = 2/n. Thegenerating word ofg is

ab�n/2�

and

g = (ab)�n/2�a.

If n is an even integer, the periodsp andq of g have to be odd primes withp �= q. As a
consequence there do not exist gold words forn = 2 andn = 4. One can easily verify by
a computer that there exist gold words for all even lengthsn > 4 and lessthan very large
integers. Therefore, it is natural to set the following:

Conjecture 5.1. For any even integer n≥ 6 there exists a gold word of length n.

We remark that this conjecture is equivalent tothe statement that every even integern
greater than 6 is the sum of two different odd primes. This is a statement stronger than
the famous Goldbach’s conjecture (see, for instance, [7]) stating that any even integer≥6
is the sum of two odd primes. Hence, ifConjecture 5.1is true also Goldbach’s conjecture
will be true.

Now, we shall prove that any element ofPERcan be extended on the right (left) to a
gold word. To this end, we recall the following proposition proved in [3]:

Proposition 5.1. Letw be an element of PER having the generating wordv and ratio of
periods p/q. If x is the last letter ofv and y �= x is theother letter ofA, one has

θ(ψ(vxk)) = p

q + kp
for all k ≥ 0

and

θ(ψ(vyk)) = q

p + kq
for all k > 0.
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Proof. We suppose without loss of generality thatv begins withthe lettera. Wecan write
v = aα1bα2 · · · xαn , wherex = a if n is odd andx = b otherwise. Letθ(ψ(v)) = p/q =
〈αn, . . . , α1〉. By Proposition 2.3one has that for allk > 0,

θ(ψ(vyk)) = 〈k, αn, . . . , α1〉 = 1

k + p
q

.

In a similar way one has that for allk ≥ 0,

θ(ψ(vxk)) = 〈k + αn, αn−1, . . . , α1〉 = 1

k + q
p

,

which concludes the proof. �

Proposition 5.2. Any elementw of PER can be extended on the right (left) to a gold word
g such that|g| > |w|. Moreover, ifv is the generating word ofw, then there exist arbitrarily
large positive integers k0,h0 such thatvak0bh0 is the generating word of g.

Proof. Letw be an element ofPERhaving the generating wordv and ratio of periodsp/q.
First we suppose that the last letter ofv is a. Since gcd(p,q) = 1, by the famous theorem
of Dirichlet on primes in arithmetical progressions (see, for instance, [12]) one has that
there exist infinitely many positive integersk suchthatq + kp is a prime number. Letk0
be an integer such thatq + k0p = π1 is a prime number. By the preceding proposition

θ(ψ(vak0)) = p

π1
.

Since gcd(p, π1) = 1 by using again Dirichlet’s theorem it follows that there exist
infinitely many positive integersh suchthat p + hπ1 is a prime number. Leth0 be an
integer such that p + h0π1 is a primenumberπ2. By usingagainProposition 5.1one
derives

θ(ψ(vak0bh0)) = π1

π2
.

Therefore, the wordg = ψ(vak0bh0) is gold. Moreover,

g = ψ(v)ξ = wξ = ξ∼w

with ξ �= ε which proves our assertion in this case.
Now suppose that the last letter ofv is b, and setv′ = va. By theprevious argument,

there are arbitrarily large positive integersk′
0, h′

0 suchthatψ(v′ak′
0bh′

0) = ψ(va1+k′
0bh′

0)

is gold, concluding the proof. �

Example 5.1. The wordw = (a2ba)4a ∈ PER has the generating wordv = a2ba3

and ratio of periods 4/15. It can be extended on the right (left) to the wordg =
(a2ba)5(aba2)5 = waba(aba2)5 = (a2ba)5abaw which is gold sinceθ(g) = 19/23.
The generating word ofg is a2ba4b. In thiscasek0 = h0 = 1.

We remark that following the same argument of the proof ofProposition 5.2, if w ∈
PERhas a minimal periodp which is prime, thenw can be extended on the right (left) to
a gold word having the same minimal period.
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FromProposition 5.2one derives:

Proposition 5.3. St= Fact(Gold).

Proof. FromProposition 5.2one has that

PER⊆ Fact(Gold) ⊆ St.

SinceSt= Fact(PER) it follows thatSt= Fact(Gold). �

An infinite standard Sturmian word will be calledgold if it has infinitely many prefixes
which aregold. We shall denote byGold the class of all infinitegold standard Sturmian
words. The following lemma will be useful in the sequel.

Lemma 5.1. Let u = xα1 yα2xα3 yα4 · · · with {x, y} = {a,b} andαi > 0, i = 1, . . . ,n, . . .
be the generating word of an infinite standard Sturmian word. Let(qk)k≥−1 be the sequence
of integers defined as:

q−1 = 0, q0 = 1, q1 = α1 + 1, qk = αkqk−1 + qk−2 for k > 1. (4)

For any n> 0 let vn be the wordvn = xα1 yα2 · · · zαn where z= x if n is odd and z= y,
otherwise. Then the ratio of periods ofψ(vn) is givenby:

θ(ψ(vn)) = qn−1

qn
.

Proof. By Proposition 2.3one has that

θ(ψ(vn)) = 〈αn, . . . , α1〉 = [0; αn, . . . , α2, α1 + 1].
From the theory of continued fractions [8], one has that this continued fraction is equal to
qn−1/qn where for anyn > 0, qn is the denominator of thenth convergentpn/qn of the
continued fraction[0; α1 + 1, α2, . . . , αn, . . .]. �

Proposition 5.4. The classGold contains continuously many elements.

Proof. Let us consider the sequence of integers as defined in Eq. (4), i.e., q1 = 0,
q0 = 1,q1 = α1 + 1,qk = αkqk−1 + qk−2 for k > 1. There existinfinitely many
values ofα1 for which q1 is prime. Moreover, since for all k > 0, gcd(qk,qk−1) = 1,
by Dirichlet’s theorem one has that there exist infinitely many values ofαk, k > 1, for
whichqk = αkqk−1 + qk−2, is a primenumber. For any such choice consider the word

u = aα1bα2aα3bα4 · · ·
which generates an infinite standard Sturmian words. By Lemma 5.1for anyn > 0 the
prefix vn = aα1bα2 · · · zαn of u, wherez = a if n is odd andz = b otherwise, generates
the elementψ(vn) of PERsuchthat

θ(ψ(vn)) = qn−1

qn
.

Therefore,ψ(vn) ∈ Gold and s ∈ Gold. Since there exist continuously many such
generating infinite wordsu, the resultfollows. �
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Proposition 5.5. There exist infinite standard Sturmian words which have no gold
palindromic prefixes.

Proof. Consider the sequence of integers as defined in Eq. (4). One can always choose the
integersα1, α2, . . . , αn, . . . in such a way that for anyk > 0, the integerqk is a composite
number. Now, without loss of generality, consider the infinite word

u = aα1bα2aα3bα4 · · ·
and take any prefixt of u. We have to consider two cases:

Case 1.|t| ≤ |α1|. Onehasθ(ψ(t)) = 1/(|t| + 1). Therefore,ψ(t) /∈ Gold.

Case 2.|t| > |α1|. There exists an integern ≥ 1 for which

t = aα1bα2aα3bα4 · · · xαn yk,

wherek > 0, y �= x, andx = a if n is odd,x = b otherwise. One has byLemma 5.1

θ(ψ(t)) = 〈k, αn, . . . , α1〉 = 1

k + qn−1
qn

= qn

kqn + qn−1
.

Since for all n > 0 the integersqn are composite, one derivesψ(t) /∈ Gold which
concludes the proof. �
Example 5.2. Let u be the infinite word

u = a3b2(a2b3)ω.

According to Eq. (4) one hasq1 = 4, q2 = 9 and forn > 2, qn = 2qn−1 + qn−2 if n is odd
andqn = 3qn−1 + qn−2 if n is even. One easilyderives thatqn is a multiple of 2 ifn is odd
and a multiple of 3 ifn is even. Therefore, the wordψ(u) has no gold palindromic prefix.

The following proposition shows, in particular, that the Fibonacci wordf is not gold.

Proposition 5.6. Theonly gold prefixes of the Fibonacci word f are aba and abaaba.

Proof. Let (Fn)n≥1 be the Fibonacci series. As is well known,u is a palindromic prefix of
f , if andonly if |u| = Fn − 2 for a suitablen ≥ 3. In this case,θ(u) = Fn−2/Fn−1.

We recall [7] that if n �= 4 is a composite number, thenFn is composite.
Hence, forn > 6 at least one of the two integersFn−2, Fn−1 has to be composite.
Thus the only cases whereFn−2 and Fn−1 are both primes are whenn = 5 or n = 6.
The corresponding palindromic prefixes off areaba andabaaba, respectively, which
concludes the proof. �

Now, we consider the classGold∩Harm, i.e., the class of all infinite standard Sturmian
words having infinitely many gold prefixes as well as infinitely many harmonic prefixes.

Proposition 5.7. The classGold ∩ Harm contains continuously many elements.

Proof. We shall prove that there exist continuously many infinite words which generate
elements ofGold ∩ Harm. In fact, each of these words will have infinitely many
palindromic prefixes which generate harmonic words as well as infinitely many prefixes
generating gold words.
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Table 2
Gold–harmonic fractionsp/q with p + q − 2 ≤ 500

2/3 29/31 23/109 107/109 41/239 179/181 107/317
3/5 23/43 43/89 89/131 17/271 61/311 109/331
3/7 29/41 17/127 73/149 97/197 67/307 199/241
5/7 19/53 71/73 97/127 73/223 151/229 199/251
5/19 31/43 53/103 37/191 101/199 127/257 37/419
7/17 13/71 29/139 59/173 149/151 191/193 227/229
11/13 41/43 41/127 53/181 113/191 79/311 43/419
11/19 19/71 71/97 41/199 79/233 89/307 157/317
17/19 17/79 13/157 89/151 131/181 197/199 31/449
11/29 23/83 71/109 83/163 107/211 101/307 79/401
13/29 41/71 47/137 71/181 89/241 137/271 239/241
7/41 11/109 89/109 79/181 131/199 73/337 83/409
17/31 19/101 67/137 23/241 97/239 79/337 167/331
7/43 31/89 101/103 67/197 113/223 41/379
13/43 41/79 29/181 47/229 101/239 71/349
17/41 59/61 71/139 137/139 89/271 139/281
19/41 47/83 53/163 29/251 109/251 181/239

Let us consider any sequence(vn)n≥0 of finite words wherev0 = b and, forn > 0

vn = vn−1aknbhnaknv∼
n−1,

where (kn,hn) is an arbitrary pair of positive integers such thatvn−1aknbhn is the
generating word of a gold word. ByProposition 5.2there exist infinitely many such pairs.

The sequence(vn)n≥0 has alimit v which is thegenerating word of an infinite standard
Sturmian wordψ(v) ∈ Gold ∩ Harm since for any n > 0, vn is a palindrome and
ψ(vn−1aknbhn) ∈ Gold.

As different choices of the values ofkn or hn, n ≥ 0, lead to different generating words
andψ is an injective map, the result follows.�

It is interesting to consider the classGold ∩ Harm, i.e., the class of all finite words
which areboth harmonic and gold. A wordw ∈ PER belongs toGold ∩ Harm if
θ(w) = ζ(w) = p/q with p andq primes.

Example 5.3. The wordsw1 = aabaabaaandw2 = a3b(a4b)3a3 belong tothe class
Gold∩ Harmasθ(w1) = ζ(w1) = 3/7 andθ(w2) = ζ(w2) = 5/19.

An irreducible fractionp/q with p < q will be calledgold–harmonicif p andq are
both primes andp2 ≡ ±1 (modp + q). By Proposition 4.1it is clear that there exists a
bijection of the setGold ∩ Harma and the set of gold–harmonic fractions.Table 2 gives
the set of allgold–harmonic fractionsp/q with p + q − 2 ≤ 500.

We observe that there exist only 2 gold–harmonic words having an odd length, namely
aba andbab. Indeed, a gold–harmonic word having an odd length has minimal period
p = 2 so that, byProposition 4.4, |w| ≤ 3 andfrom this the assertion follows.

Let us state the following:

Conjecture 5.2. The set Gold∩ Harm is infinite.
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The preceding conjecture is trivially equivalent to the statement that the set of
gold–harmonic fractions is infinite. Let us remark that ifp andq are twin odd primes,
i.e., p andq are odd primes such thatq = p + 2, thenthe fractionp/q is gold–harmonic
as p2 ≡ 1 (mod 2(p + 1)). In such a caseone has

p

q
=

〈
1,

p − 1

2
,1

〉
.

The corresponding wordw of Gold∩Harm, beginning with the lettera, has the generating
word

ab
p−1

2 a

so thatw = ((ab)(p−1)/2a)2. It follows that if there exist infinitely many twin primes (and
this is a classic conjecture ofnumber theory), thenConjecture 5.2has a positive answer.
However, by inspectingTable 2, it is noteworthy that the great majority of gold–harmonic
fractions consists of fractionsp/q with p andq primes such thatq > p + 2, at least when
p + q − 2 ≤ 500.

By Proposition 4.1, if p andq are primes such thatq = p2 − p ± 1, thenthe fraction
p/q is gold–harmonic. Therefore, if there exist infinitely many pairs of primes of the form
(p, p2 − p ± 1), thenConjecture 5.2has a positive answer.

Finally, we remark that, as one can easily verify by a computer, for any odd prime
p < 2693 there exists a primeq > p such that the fractionp/q is gold–harmonic.
However, the primep = 2693 is the least odd prime such that this property is not
verified.
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[10] É. Lucas, Th´eorie des Nombres, vol. I, Gauthier-Villars, Paris, 1891.
[11] O. Ore, Number Theory and Its History, Dover Publications, New York, 1988.
[12] H. Rademacher, Lectures on Elementary Number Theory, R. E. Krieger Publishing Company, Huntington,

NY, 1977.
[13] G. Rauzy, Motsinfinis en arithmétique, in: M. Nivat, D. Perrin (Eds.), Automata on infinite words, Lecture

Notes in Computer Science, vol.192, Springer, Berlin, 1984, pp. 165–171.


	Harmonic and gold Sturmian words
	Introduction
	Finite standard words
	Harmonic words
	Combinatorics of harmonic words
	Gold words
	Acknowledgements
	References


