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Abstract

Let (AV,d) be the Sullivan model of an elliptic spadeand (AV, d,) be the associated pure
model. We give an algorithm, based on Groebner basis computations, that computes the stage
ls =1g(AV, dy) at which the (Sullivan version of the) Milnor—Moore spectral sequen¢ad &f, dy )
collapses. Whertid — d,)V C A>!oV we call S a Ginsburg space. We show that the rational LS
category of any Ginsburg spade cap(AV,d), coincides with that of the associated pure space
cap(AV,ds). A previous algorithm due to the author computegcat/, d;). So we obtain an
algorithm that determines whether a space is Ginsburg and which in this case computes its rational
LS category.
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1. Introduction

The Lusternik—Schirelmann category [13] of a space is the least number of open sets,
less one, which cover and are contractible in it. It is an important invariant which for a
manifold gives a lower bound for the number of critical points any function must have.
The computation of the LS category of spaces is a very subtle matter in general. Even
when very explicit data, such as Sullivan minimal models, are available, its determination
remains difficult and much effort has been spent in the last 20 years in the pursuit of good
estimates for the LS category. In this paper we first prove a theorem which provides an
algorithm for computing the Ginsburg invariant, another measure of the complexity of a
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space which is a lower bound for the LS category. Then, we show that for spaces (we
call them Ginsburg spaces), that are elliptic and whose minimal model satisfies certain
conditions (that are easy to check once has a Sullivan model in hand), the rational LS
category of these spaces may be computed via a much simpler model, its “associated pure”
model. A previous algorithm due to this author computes the rational category of any pure
elliptic space. So we obtain an algorithm that determines whether a space is Ginsburg and
which in this case computes its rational LS category.

2. Basic facts

Ours results rely heavily on the algebraic machinery of Sullivan models and on
Groebner basis theory. We recall here some basic facts and notation we shall need from
Sullivan’s theory of minimal models, for which [6,12,18] are standard references.

The (Sullivan) minimal model of is a commutative graded differential algelortV, d)
over the rational field which algebraically models the rational homotopy type dfe
denote byAV the tensor product of the exterior algebra 6Ad, the elements of odd
degree, and the symmetric algebralo#®", the elements of even degree. The differential
is a graded derivation which satisfigé= 0 andd (V) c A=2V, where for any, AV is
the subspace of all products of lengtlof elements ofV.

The algebra generators of the minimal model are identified, as a graded vector space,
with the rational homotopy groups of the space. Moreover, the cohomology of the minimal
model is isomorphic to that of the space.

A simply connected spac®such that dinHf *(S; Q) < oo is called rationally elliptic if
dimm.(S) ® Q < oo, otherwises is called rationally hyperbolic. For an elliptic space with
model (AV, d) the formal dimensiomV, i.e., the largest for which H"(AV,d) # 0, is
given by [11, p. 188]

dimVv
N =dimveen— 3 (—1lil|x).
i=1

An element G4 w € HY(AV, d) is called a fundamental or top class.
Definition 1. We define the length af to bel(«) = maxk |« € A=KV},

Consider a general Sullivan algebfaV,d) in which d = do + d1 + ---, with
d; 1V — A1V Filter (AV, d) by the decreasing sequence of idefs= A=?V and set
FO9= AV. This is called the word length filtration. It determines a first quadrant spectral
sequence E;, d;), that is called the Milnor-Moore spectral sequence of the Sullivan
algebra.

We recall the Sullivan version of the invariaft= lg(AV,d) introduced by Gins-
burg [10]. Let(E;, d;) be the Milnor—Moore spectral sequence §arV, d), arising from
the filtration A=V of AV. Thenlo(AV, d) = maxj | d; # 0} whered; is the jth differ-
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ential in the Milnor—Moore spectral sequence. It is an easy exercise in spectral sequences
to prove the following

Lemma 2. [o(AV, d) is the least integef such that for any coboundary there exist®
withdb = f andl(b) = 1(f) — L.

The Lusternik—Schirelmann category, &b, of a topological space is the least
integerm such thatS is the union ofm 4+ 1 open sets, each contractibleSnIf S is a
simple connected CW complex, the rational LS categorg(§atintroduced by Félix and
Halperin in [5], satisfies cafS) = cab(Sg) < cab(S).

We recall the following Sullivan algebra version of a theorem of Ginsburg [10], for
which a simple proof was later given by Ganea [8] and by Jessup [9]. Supgdsel)
is a minimal Sullivan algebra and = {V"},->2. If catg(AV,d) = m thenlp(AV,d) <
cap(AV,d).

Let S a simply connected (rationally) elliptic space aatV, d) be its minimal model. If
(E;, d;) is the Milnor—Moore spectral sequencg dfV, d) then by [5], the rational Toomer
invariant (AV, d) is the largesp such thate?* 0. By [5, Lemma 10.1] & AV, d) is
the largest integer such that the top class can be represented by a cocydléii . In [7,
Theorem 3] it is proven that gatS) = ep(S). Hence caf(S) = cap(AV,d) = sudi(w) |
[w]is atop class ofAV, d)}.

2.1. Pure spaces

Henceforth, ifS is a space with minimal mod€lAV, d) we shall denoteX = VEven
Y = Vo4, —dimX, m = dimY. The integery, =n — m is called the Euler homotopy
characteristic of, andzi(—l)" dim(H(S; Q)) is the Euler characteristic f.

A pure space is a space whose minimal modelV,d) = AX ® AY satisfies/ X =0
andd Y C AX. Spheres and compact homogeneous spaces are examples of pure spaces.
If dimV < oo thenS is called a finite pure space. We shall henceforth also use the terms
“pure” and “elliptic” when referring to a minimal model of such a space.

A bigradation on(AV, d) is given byAV = Zn’po(/&j V) where(A; V) =(AX ®
AJY)'. When(AV,d) is pure,d(A; V)" C (Aj_1V)"+1, the differentiald has bidegree
(1, —1) and this induces a bigradation in cohomology.

The following is proved in [11]. If(AV,d) is pure and elliptic therH(AV,d) is
a Poincaré duality algebra and if= —x,, then it is verified thatH;(AV) # 0 and
Hiyp(AV) =0, p > 1. Hence, ifn =m thenH(AV,d) = Ho(AV,d). As an immediate
consequence of these properties we obtain:

Lemma 3. Let(AV, d) be a pure elliptic space. Then there is a cocyelein A,,—,V that
represents the top class and such thate AZ¥V with k = cab(AV, d).

Let d, be the linear map defined it X =0, d, Y C AX and such thatlv — d,v €
ATY ® AX for v e Y. If we extendd, to a derivation of(AV, d), then d§ =0 and
(AV,d,) is then called the associated pure modekfo¥, d). The odd spectral sequence
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is obtained from a filtration of AV, d) by FP7 =3, -, A§?+q. This defines a spectral
sequence of algebras of the first and second quadrant.

Proposition 4 [11]. Let (E;, d;) be the odd spectral sequence forV, d). Then,

(i) (E;,d;) convergestdH*(AV,d),
(ii) its (Eo, do)-term is preciself AV, d,),
(i) each(E;, d;) is a Poincaré duality algebra,
(iv) each(E;,d;) and(AV,d) have the same formal dimension, and finally,
(V) dmH(AV,d) <o < dimH(AV,d,) < oo.

In [17] there is a formula for computing a cocycle representing the fundamental class
of a pure elliptic spac€éAX ® AY,d). A slight modification of this formula gives the
following algorithm.

Proposition 5 [16]. Let {x, ..., x,} and{y1, ..., ym} be homogeneous basesfandY
respectively and lek = s X denote the suspension Bfwith dx; = x;. Choose elements
¥ e AX ® AX for whichd¥; =dy;, j =1,...,m. If wis the coefficient of

n m
H,?i in the development of H(yj —v)),
i=1 j=1
thenw is a cocycle inA,,—, V that represents the fundamental clasg.av, d).

Observe that to construg; it suffices to replace in each termaf; onexy € {x1, ..., x,}
by its suspensiofy.

2.2. Groebner bases for ideals

Here we recall some standard facts and definitions on Groebner bases for which [1,4]
are standard references.

First, we recall that the set of monomials inX = Q[x1,...,x,] is denoted by
T ={xf =xft x| B eN, i=1,....n).

Definition 6. By a term order off” we mean a total ordeg onT” satisfying the following
conditions:

(1) 1< x“forall @ e N".
(2) if x* < xP thenx® . x¥ <xP.x7, forall y e N".

The total degree of? € T" is ||| = Y./, i and we will write hdegf) for the
homological degree of a homogeneous elenyeat(AV, d).

Definition 7. The graded lexicographical ordefgiex on T" with x1 > x2 > --- > x, IS
defined byx* <@,|exx‘3 if and only if« = B or |la|| < ||B]| or |le]l = ||8]| ande; < B; for
the firsti with o; ;ﬁ Bi.
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IRl

The bijectiona — x* show that a term order (say¥x4” induces a compatible total
order onN" via o < B iff x® <1 x”.

Definition 8. Let f =", 4 dax® € Q[x1, ..., x,], With Va € A, aq # 0, and let< be a
total order orN". Then

(1) The total degree of is tded f) = max, (||x|)).

(2) The multidegree of is multided f) = maxa, « € A).
(3) The leading coefficient of is Ic(f) = amultideq ) € K.
(4) The leading monomial of is Im( ) = x™ultideq.f)

(5) The leading term of is It(f) =Ic(f) - Im(f).

Definition 9. Fix a term order. Givery, g, h in Q[x1, ..., x,] with g # 0, we say thatf

reduces td: modulog in one step, writtery 5, b, ifand only if lt(¢) divides a non-zero
term Z that appears irf andh = f — %g.

Let f,h, and f1, ..., f; be polynomials inQ[x1, ..., x,], with f; # 0, and letF =

{f1,..., fs}. Fix a term order, we say thgt reduces ta: modulo F, denotedf £ +h,if
and only if there exists a sequence of indi¢gs», ...,i; € {1,...,s} and a sequence of
polynomialshy, ..., h;—1 such that

fghlghzg'ubht_li)h.
A polynomial r is called reduced with respect to a set of non-zero polynontiais
{f1,..., fs} if r =0 0r no monomial that appearsrins divisible by any one of the Iqy;),
i=1,...,5.

If f —F>+ r andr is reduced with respect t#, then we callr a remainder forf
with respect toF'. Note thatr is not unique in general. The reduction process allows us to
define a division algorithm that mimics the usual division algorithm in one variable. Given
f and a family of non-zero polynomial; € Q[x1, ..., x,] | fi # 0};_;, this algorithm
returns quotientsy, ..., us; € Q[x1, ..., x,] and a remainder € Q[x1, ..., x,], such that
f=uifi+ -+ usfs +r. We shall call- a remainder off after division by{ f;}.

For a subsetA of Q[x1,...,x,], we define the leading term ideal af to be the
ideal It(A) = (It(a | a € A)), where(B) denotes the ideal generated by the BetWe
recall that a set of non-zero polynomials= {g1, ..., g/} contained in an ideal, is
called a Groebner (or standard) basis faf and only if It(G) = It(I). A setG of non-
zero polynomials is called a Groebner or standard basis if it is a Groebner bdsis. of
If f is a polynomial inQ[x1,...,x,] and G is a Groebner basis for some ideal, then
the remainder off after division by G is unique. It is called the normal form of
with respect toG and we denote it by N&(f). Moreover, [1, Theorem 1.6.2] a crucial
property of the reduction is that NFg(f)) < It(f). If G is a Groebner basis and
f € (G), the division algorithm provides an expansion in the fofre= > _; u; g; with
IM(f) = maxgi < (Im(u;) - Im(g;)). When for allg; € G, Ic(g;) =1 andg; is reduced
with respect taG \ {g;}, we callG a reduced Groebner basis.
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2.3. Groebner bases for modules

For S a pure space with Sullivan moddlV = AX ® AY, we regardAV as a module
over AX. We fix the baside; | 1 <i < 2"} of AV consisting of all non-zero products
of elements in(l, y1, ..., yn}. BecauselX = 0, we observe that the vector spaces!of
coboundaries and-cocycles are botlt X-submodules ofAV. By Hilbert basis theorem,
AX and AV are Noetherian. By a monomial inV we mean a vector of the type
Ze; (1<i < q) whereZ is a monomial inAX. If Re; andZe; are monomials iV,
we say thatRe; dividesZe; provided that = j andR dividesZ. In this case we define

Z . Z . . .
RZ =% Similarly, by a term, we mean a vector of the typd wherec € k, andM is a
monomial.

Definition 10. By a term order on the monomials dfV we mean a total ordeg on these
monomials satisfying the following two conditions:

(i) M <ZM, for every monomial of AV and monomial # 1 of AX.
(i) f M < N, thenZM < ZN for all monomialsM, N € AV and every monomial
Z e AX.

Fix a term order< on the monomials ofAV. Then for all f € AV, with f # 0, we
may write f =ai1M1+axM>+ - - -+ a,M,, whereg; £ 0 for L <i < r are scalars and the
M; are monomials iV satisfyingM1 > M> > --- > M,. We recall that Inaf) = M is
the leading monomial, () = a3 is the leading coefficient of, and It /) = a1 M is the
leading term off. We define I§0) = 0, Im(0) = 0, and 1g0) = 0.

For a subseW of AV, the leading term module d¥ is the submodule oAV given
by It(W) = (Ilt(w) | w € W), where(B) here denotes tha X module generated bg.

A set on non-zero vectors = {g1, g2, . . ., g/} contained in the submodul&V is called
a Groebner basis fat V if and only if It(G) = t(AV). We say that the s&t is a Groebner
basis provided; is a Groebner basis for the submoduyl@), it generates. The definitions
of: reduction, reduced, and the division algorithm are word for word as above.

Definition 11. For monomialsM = Re; and N = Ze; of AV, we defineM <op N iff
M = N or hdeg¥ < hdegV or hdegM) = hdedN) andZ <gjex R or (R = Z andi < j).

That s, in the ordeKop, we order first by homological degree, then we refine this ordering
by the opposite of the graded lexicographic order and finally we refine this ordering so that
Re; < Rej wheni < j. Clearly, the<op order is a term order.

The proof of the following are straightforward.

Lemma 12. Let G C AV be a Groebner basis with respect tQop. If A € AX and
v, w € (A,V)? for somep andgq, then it is verified that

@) 1(v) =1(t(v)).
@iy I(A-v)=IRA)+1(v).
(iii))y if lt(v) = Zej, withZ € AX ande; € A,V thenl(a) = | Z| + p.
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(iv) It(v) <toplt(w) theni(v) = I(w).
V) (0 -2 o) => I(v) < (v0).

Theorem 13. Let (AV, d) be a pure elliptic space and1 = {g1, ..., g} be the reduced
Groebner basis of the module of boundariBswith respect to<iop. ConsiderA =
{1, ..., ar} whereo; satisfies!(«;) = g;. LetG2 be the reduced Groebner basis of module
of d-cocycles with respect tgiop. Now letl” = {y; = NFg, ()} |i =1,...,k}. Thenthe
rational Ginsburg invariant off AV, d) is given bylg(AV,d) = maxX{i(g;) —I(y;): i =
1,...,k}

Proof. Observe that the graduation @AV, d) by lower degree induces a graduation in
both kerd and Imd. This implies that the elements@y and those irG, are homogeneous
with respect to the lower degree.

Denotelg = lo(AV,d) and letg € {1,...,k} be such that = I(g,) — I(yy) =
maxl(g;) — l(yl-)}f.‘zl. By Lemma 2 there existg such thatd(8) = g, and [(B) >
1(gq) — lo. Sincey, — a4 is a cocycle, we havey, = do, = g, = dp so thaty, —
is a cocycle. Hence NE; (B) = NFg,(v4) = 4. Thus, l(y,) <twplt(B) and by Lemma 12,
I(yq) = 1(B) 2 1(gq) — lo. So thatlp > I(g,) — I(y,). This provesgp > t.

We proceed to prove the reverse inequality. lfebe a coboundary. Recall that the
Groebner basis division algorithm providgs= 3 ;. ; A jg;, with It(f) = max;{lt(2;g;)}.
By Lemma 12, for eacli € J itis verified that (A ;g;) =1(x;)+1(g;) = I(f). Subtracting
I(gj) — I(yj) from both sides we obtain(i;y;) > I(f) — ((gj) —I(y;)). Thus,u =
Zjej Ljy; satisfiesl(u) > I(f) —t anddu = f. By Lemma 2 this proves > lp. We
conclude thatg =t =max{i(g;) —I(y;) | 1<i < k}asclaimed. O

As an immediate consequence we obtain:

Proposition 14. Let (AV, d) be a pure elliptic model, then the following algorithm yields
1,(AV,d).

Foreachj =0,...,m — 1.
ComputeS; = {d(yiy -+~ yij;1): 1<it <.+ <ijy1 <m}.
Apply Buchberger’s algorithm to obtain a Groebner basjs for S; with respect to<op.
Compute (by standard techniques as in [1, Proposition 3.7.2 and Algorithm 3.5.2]) the
syzygy modulel; of {d(yi,---yi;): 1<i1<--- <ij <m}.
Compute a Groebner basig; of T; with respect to<op.
For eaclg;; € G1; apply the division algorithm to obtaim; such thaddo;; = g;;.
For eachy;; compute the normal form;; = NFg, («;;).
Computer; = max{i(g;;) — I(yij)}. Thent =maxt;: j =0,...,m — 1} is the rational
Ginsburg invariant of AV, d).

We recall [14] that if dimX = dimY then ca§(AV, d) is the index of nilpotency [19] of
I ={dy1,...,dy,) minus one. The following example is a version of Kollar [2] and shows
that on amodel witd V ¢ AS*V, the rational category afA V, d) can grow exponentially
in dimX. And it suggests that upper bounds fgfAV, d) based ori(dy;) should be very
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close to upper bounds on gat vV, d) based ori(dy;), that is upper bounds fég(AV, d)
should grow exponentially in dirk.

Example 15. Let (AV, d) be such thal = (x1, x2, x3, x4, xs5), With |x;| = 64 x 2~ and
Y = (y1, y2, y3, y4, y5), with the differential given by:

dylzxf, dyzzxf —xg, dygzxg —xé,
dy4=x§—xf, dy5=x§—xé.

We illustrate the use of a computer algebra program such as CoCoA [3] to perform the
computation oflo(AV, d). The following program, written in the CoCoA programming
language, computes Ginsburg’s invariant of any pure elliptic space. The input to this
program are the values &fX = dim X andDyi = [dy1, ..., dym]-

NX: =5;
Use R= O x[1..NX], Od(-DeglLexMat(NX)), ToPos;
Dyi := [x[1]"3, x[1]”2 - x[2]"4, x[2]"2 - x[3]"4,

x[3]"2 - x[4]"4,x[4]"2 - x[5]"4];

I := ldeal (Li stOf Dyi);
MEMORY. | : =I;
MM : = Len(Gens(1));

Define D(Q

F: = Gens(MEMORY. 1) ;
M = Len(F);

S: = Newector (2"M ;
Si ghus: =1;

P:=Q 1;

For 1:=M-1 To O Step -1 Do

If P >= 27 Then

P.=P - 2"; SS=S + Signus *F[I1+1] * E_(Q 2"l ,2"M;
Si ghus: = - Si gnus;

End;

End;

Return(S);

End;

ListD:=[DX) | XIn 2..(2"M- 1)];
Boundary := Modul e(ListD);

Gl : = GBasi s(Boundary);

& := Syz(ListD);

Alpha :=[0 | I In 1..(Len(Gl))];
Ganma : = Al pha;
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For K =1 To Len(Gl) Do

Al pha][ K] := GenRepr(GLl[ K], Boundary);

Gamma[ K] : = NF(Cast (Al pha[ K], VECTOR), &) ;

End;

T := [Deg(LT(GL[K]))

- Deg(LT(Gamma[K])) | KIn 1..(Len(@&))];

LO := Max(T) -1;

Print 'The rational invariant of G nsburg is’, LO;

We obtainlp(AV,d) = 62. The exact value of agitAV, d), obtained applying Proposi-
tion 5 and Theorem 19, is GAAV, d) = [ (x2x3x4xE3) = 66.

The order just defined in the above example is not a term order. We have dropped the
requirement of ordering first by homological degree. Since the elements we are working
with are homogeneous with respect to the homological degree, both orders agree when
comparing homogeneous elements. Clearly, when we reduce or perform the computation
of a Groebner basis of a set of homogeneous elements, both orders produce the same
results.

Theorem 16. Let (AV,d) be an elliptic space such thail — d,)V c A>l>V where
(AV,dy) is the associated pure model argd = Io(AV,d,). Then,cap(AV,d) =
cap(AV,dy).

Before giving the proof, we recall that the following is provenin [14].

Proposition 17. Let (AV, d) be an elliptic model andAV, d,) its associated pure model.
Ifd,Y c A'X and(d — d,)V C A=V, then

cap(AV,d) =cap(AV,d,) =n( —2) +m.

This proposition corresponds to the trivial case for the computation of the Ginsburg
invariant, because the conditia Y c A'V easily implies thalg(AV,d,) =1 — 1 and

so, by Theorem 16 cgtAV, d) = cab(AV,d,). The proof of Theorem 16 is similar to
that of Proposition 17 and we include it for completeness. First, we need a preliminary

Proposition 18. Let (AV,d) be an elliptic space. Then the following procediii,
Proposition 6computes a cocycle that represents the fundamental classlafd).

Let (AV,d,) the associated pure model @AV, d). Observe thatg, the top class
of the associated pure model Ii\(es mX ® A_’""fY)N in which N is the formal
dimension. Recall the bigradingV! = (AX ® A7Y)’ thendwo = af+ad+- +af,
with o € AVN*L - and there isg1 such thatd, 1 = o. If w1 = wo — p1 thendwy =

a3 +ai +---+of and again there i8, such thatl, B> = 3. Hence we inductively define
elementsw; andg; satisfyingw; =w;_1 — g; anddw; Zf-‘=2j+1 AVNHL . Then, for

m—n+i"
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the first jo such that 2o 4+ 1 > n this process stops andl;, is a cocycle representing the
fundamental class qfAV, d).

Proof of Theorem 16. Let (AV,d) be a pure elliptic model ana, € A=*V be a
cocycle that represents a top class(dfV, d,). Then apply Proposition 18 to compute
the cocyclew with [w] a top class of AV, d) and note that the assumption @h— a’g)
shows that we can choose tifés of Proposition 23 so thatv still lives in A=KV,
Hence caf(AV,d,) < cab(AV,d). To prove the reverse inequality, let be a cocycle
representing the top class AV, d), with w € AZXV andk = cap(AV,d). Then, for
somep, we may writtw = af + a3 with & € 4,V anded € A.,V. Now, we apply
Proposition 4 and the fact that if = m — n then HN(A,,V, ds) = 0. It follows thatozg

is ad, boundary, so there i1 such thatd, 81 = ozz, and the assumption o — d,)

show that we may chooga so thatwi = w —df € A>k 41V still represents the top class
of (AV,d). Iterating this process shows that< m — “n (otherW|se[w] 0) and so we
obtainw; € AZ¥V such thatoz‘ € A,—nV represents the top class 6AV, d,). Hence
cap(AV,d) <cap(AV,dy). This proves ca(AV,d) =cap(AV,d,). O

Theorem 19 [15]. Let (AV, d) be a pure elliptic modelG be a Groebner basis for the
coboundary modulé@ with respect to<p, w € A,—, V be a cocycle that represents the
top class, andvg = NFg (w). Thencab(AV, d) = [(wg).

As an immediate consequence of the above results we obtain:

Proposition 20. The following algorithm computes the rational category of any elliptic
space in whichid — d,)V ¢ A>l>V wherel, is Ginsburg’s invariant of AV, d,,).

Consider the associated pure mogdgV, d,) of (AV,d).

Apply Proposition 5 to the modglAV, d,). This providesw € A,,—, V with [w] the top
class of(AV, d,).

ComputeS = {ds (yiy - Yip_py): 1<i1 <+ <imopt1 <m}.

Apply Buchberger’s algorithm to obtain a Groebner basir S with respect to<op.
Obtain the normal formwg of w with respect taG by the division algorithm.

Compute = || It(wo)]|.

Thenk =1(wp) = m — n + 1 is the rational category afAV, d).

Proof. By Theorem 16, cat{ AV, d) = cab(AV, d,) and by [15], this algorithm provides
cab(AV,d,). O

Example 21. Let (AV,d) be a model such that is spanned by{x1, x2, x3} andY by

{y1, 2, 3, y4, ys}, with the graduationxi| = [x2| = |x3| = 2, [y1] = |y2| =3, [y3| =
|y4] =5, and|ys| = 15 and with differential given by

dy1=x3, dys==x3, dys = —xZx2x3y1y2 + X1X5X3Y1Y4 — X3X3y2Y4,

dy; = x%, dys = x1x2x3.
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In [16, Proposition 6] is proven that the cocycle
X fx% y3ys — X1X2X§ Yays + xfx§x3y1y2y3y4

represents the top class of the non-pure elliptic spat¥®, d). Thus, caj(AV,d) >
I(w) = 6. Now we are going to prove that gat\ V', d) = 6.

The modelg AV, d,) and(AV, d) have both the same differential except thhats = 0.
We apply the algorithm of Proposition 14 ta\V, d,) and obtain, = lp(AV,d,) = 2.
Then,(d — d;)V Cc A%V c AV>loV shows that(AV,d) is the model of a Ginsburg
space. Thus, by Proposition 16, gatV, d) = cab(AV, d,). Now we proceed to obtain
cab(AV,d,). First, we apply Proposition 5 and obtain the cocyale= xZx3y3ys —
x1x2x§y4y5 that represents the top class(efV, d,). Then, we compute a Groebner basis
G of the module ofl,-coboundaries. Finally, the reductionofwith respect taG yields

wo=NF(w,G1) = xfxg’mys - x1X2X§Y4y5-
Thus, ca§(AV,d) =cap(AV,d,) =I(wg) = 6.

We wish to thank the referee for many useful suggestions.
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