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Abstract

We present results of applied field nonequilibrium molecular dynamics simulations (AF NEMD) of a minimal h-barrel model channel

intended to represent an L-type calcium channel that suggests a possible relationship between glutamate side chain conformational changes

and ion flux in calcium channels. The h-barrel is used to provide a scaffolding for glutamate side chains and a confinement for electrolyte of

dimensions similar to the expected channel structure. It was preloaded with ions to explore relative rates of ion exit for different occupancy

configurations. Our simulations with an asymmetrical flexible selectivity filter represented by four glutamate side chains (EEEE), one of

which differs in initial dihedrals from the other three, indicate a plausible mechanism for the observed anomalous mole fraction effect seen in

calcium channels. Apparent rates of electric field-induced exit from channels preloaded with three Na+ ions are much higher than for

channels with one Ca2 + followed by two Na+ ions, consistent with the common notion that Ca2 + block of Na+ current is due to competition

between the Ca2 + and Na+ ions for the negatively charged (EEEE) locus. In our model, the Ca2 + ion ligates simultaneously to the four

negatively charged glutamate side chains and sterically blocks the permeation pathway. Ca2 +-relief of Ca2 +-block is suggested by a much

higher rate of exit for channels preloaded with three Ca2 + ions than for channels with two Ca2 + ions.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Voltage-gated calcium channels play an important role in

a variety of biological mechanisms in the cell and show

remarkable selectivity towards Ca2 + ions while conducting

f 106 ions per second [1]. Site-directed mutagenesis studies

on the calcium channel have identified a single high affinity

binding locus consisting of four glutamate residues (EEEE)

in the P loop region of the a1 subunit, which is responsible

for the selectivity of the channel [1–5]. Experimental data

suggest that these four glutamate side chains play an

important role in ion permeation [1–7] and project into

the water-filled lumen of the channel [8]. Thus, the mech-

anism of permeation in the Ca2 + channel is very different

from that of the KcSA channel [9,10] in that side chains,
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rather than backbone carbonyls, coordinate the permeating

cations. The side chains may undergo conformational

changes in the process.

Open-state L-type calcium channels transport Na+ in the

absence of Ca2 +, are blocked by AM Ca2 +, and are conduc-

tive in mM Ca2 + solutions [11,12]. This anomalous mole

fraction effect (AMFE) is commonly ascribed to Ca2 +-block

of Na+-current due to high binding affinity of Ca2 + to the

EEEE selectivity filter, with relief of block at high [Ca2 +] by

competition [11]. Although the structure of the calcium

channel is still unknown, many simplified models of the

selectivity filter have been evaluated for ion-binding selec-

tivity, including phenomenological [13], ansatz [14], homo-

geneous colloid [15], tetra-acetate [16], h-barrel [17], infinite
smooth-walled cylinder [18,19], finite smooth-walled cylin-

der [20–22], finite atomistic cylinder [23], finite atomistic

cylinder with atomistic Glu side chains [24], and homology

[25–27] models. The simpler models based on phenomeno-

logical theories and Brownian dynamics or Monte Carlo

simulations have been quite successful at yielding the desired
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behaviors (see especially Refs. [21,22]). But with more

complete models containing explicit solvent, Ca2 +-block of

Na+-current was elusive [23] until explicit side chains were

introduced [24], and Ca2 +-relief of Ca2 +-block remains

difficult to simulate [24], although recent free energy studies

with a homology model [26,27] are suggestively positive.

To explore this idea in more detail, we constructed a

simple h-barrel channel with atomistic side chains. There is

no reason to expect the P-region of a calcium channel to be

a h-barrel; we have merely used this minimal motif as a

flexible scaffolding on which to anchor the glutamates. The

model is also minimal in that neighboring side chains,

whose packing in the P-region is not yet known, are absent.

The h-barrel is comprised of four individual strands of 10

glycine residues each, separated by four decapeptide strands

having nine glycine residues and one glutamate residue at

position 9. These eight h-strands were organized in an anti-

parallel arrangement to form an eight-stranded, untilted

(S = 0) h-barrel with diameter f 10.4 Å, because this

allows room for the Glu side chains to be mobile and to

simultaneously coordinate a cation. It is roughly consistent

with previous estimates of the channel dimensions

[15,16,20–27], after taking the finite size of the glutamate

side chains into account [24]. The side chain of one of the

glutamates was manually rearranged by rotations about side-

chain torsions so that the Cy was ~2.8 Å below the plane

formed by the Cys of the other three glutamate residues.

This was done to represent an asymmetrical filter region,

suggested by experimental studies [1,4,5]. Although the

exact position of these glutamate side chains is subject to

speculation [1,28], we used this simple structural arrange-

ment as a reasonable starting point.

Molecular dynamics (MD) simulations can be performed

in a canonical or an isothermal, isobaric ensemble, and can

be used for nonequilibrium problems, such as steered MD

simulation of atomic force microscopy [29], polymer

stretching [30], and water transport through aquaporin

[31] or grand canonical ensemble simulation of transport

in a concentration gradient [32]. Here, we use one aspect of

a similar methodology designed to simulate current flow

through membrane channels when equilibrium is disturbed

by application of an external electric field [33,34]. In the

complete implementation, current passes continually

through periodic boundaries and resistive heating is com-

pensated with a system thermostat, producing a ‘‘steady

state’’ on the millisecond time scale. Here, the external

electric field and thermostat are used in the same way,

but trajectories are truncated within a few nanoseconds

after a preloaded ion escapes from Glu side chains. This

method allows one to evaluate the ion-exit process, which,

for channel block conditions, is probably rate-limiting.

Compared to featureless channels [33,34], the glutamate

side chains inhibit flow quite dramatically [24]. There-

fore, we employed the statistical strategy employed in the

Fold@Home protein-folding project [35]. Several different

trajectories were initialized with a preloaded selectivity fil-
ter. Under the assumption that dwell times are approxi-

mately exponentially distributed, the average survival time

for that preloaded state was estimated.

In this approach, the dwell time of mobile cations in the

selectivity filter region was reduced to measurable lengths

by the application of a strong electric field. In the spirit of

steered molecular dynamics, this allowed a crude but direct

measure of the differences in the barrier to ion exit for

various loading states of the channel. It is reasonable to

expect that the ratios of rates for different loading states,

measured at high membrane potentials, would be similar to

those at physiological potentials.
2. Simulation methods

2.1. System structure

The two ends and interior of the h-barrel were solvated

using two spheres of TIP3P water molecules [36], each with

a radius of 15 Å (a total of 620 molecules) and constrained

with a spherical potential (Fig. 1A). One sphere was centered

at [17.00, 0.00, 0.00] and the other at [� 8.08, � 0.23,

� 0.05]. The system was neutralized using appropriate

counterions (Cl� or Na+, depending on the ion configuration

in the filter region). For example, if the starting configuration

of the selectivity filter (EEEE) had three Na+ ions, an extra

Na+ ion was placed in one of the two baths such that the sum

of atomic charges was equal to zero.

The channel axis was aligned with the Z-axis. The total

number of atoms in the system was approximately 2400. A

harmonic constraint was applied on the Cas. The ions were

freely mobile, but remained associated with the water,

which was held within the channel sterically by the channel

walls and within the water balls at each end of the channel

by the spherical potential.

2.2. Force field and ensemble

All calculations were performed using the academic

version c27b4 of the biomolecular simulation program,

CHARMM [37]. Non-bonded cutoffs were set to a value

greater than the system dimensions. During equilibration

and simulation phases, an electric field of 6.67� 108 V/m

was applied in the Z direction to the mobile ions in the filter

region using the CHARMM PULL command, which applies

a force proportional to atom charge to each selected atom.

This corresponds to the field that would be experienced by

an ion in a channel where a membrane potential of 2.0 V

drops linearly through a distance of 30 Å. A smaller electric

field, corresponding to 0.20 V of potential across a 30-Å

membrane, was applied to the rest of the system. The mixed

applied field was designed to simulate protein distortion and

water polarization expected under reasonably realistic con-

ditions while allowing better sampling of occupancy state

transitions. The smaller applied field had minimal effects



Fig. 1. (A) Side view of the eight stranded h-barrel (S = 0) structure (colored green) with two water spheres (colored red) on each end. (B) State diagrams of the

various hypothetical ion configurations in the selectivity filter imposed on a stylized AMFE curve to illustrate presumed, approximate relevant loading states for

the different experimental conditions. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.

V. Ramakrishnan et al. / Biochimica et Biophysica Acta 1664 (2004) 1–8 3
on system configuration and temperature during the short

equilibration phase and could therefore be considered

representative of any physiological potential. The direction

of the fields was such that cations would be driven to more

negative values of z, which for convenience we will refer

to as ‘‘into the cell.’’ The glutamate cluster is thus

positioned at the intracellular end of the h-barrel, repre-
senting the intracellular side of the putative P-region of the

calcium channel, and the water droplet at the intracellular

end, which we refer to below as the intracellular droplet,

conceptually represents the assumed reservoir region in the

center of the membrane region [9]. The SHAKE algorithm

[38] was used to constrain the lengths of bonds to

hydrogen atoms.

2.3. Procedure

Ions were placed in the vicinity of the selectivity filter

glutamates along the channel axis, spanning a total dis-

tance of approximately 5 Å. All runs were either termi-

nated after 2 ns or, as far as analysis was concerned, the

exit of the bottom ion. Exit was defined as the point at

which the ion was no longer bound to any of the glutamate

side chains (i.e. within 4 Å of a carboxylate O) and was

free to move around in the bath. This point varied from

one trajectory to another, but was unambiguously defined

by subsequent diffusive motion and progress to the far side

of the exit water droplet. In preliminary studies, a low

applied voltage (0.2 V) was used for two preload config-

urations, ACa2 +-Na+-Na+A and ACa2 +-Ca2 +-Ca2 +A. In

five different runs of 2 ns each, only one ion exited for

the total 10-ns simulation. Therefore, a 2-V applied voltage

was used for the bulk of the study.

Different configurations representing probable loading

states of the filter region during current flow under
experimental conditions were created and multiple runs

were performed on each of the loading states for better

sampling (Fig. 1B). For each state, either two or three ions

were positioned within f 5 Å of the center of the EEEE

filter, which is located at zf� 10.5 Å. One was placed

on the channel axis at the center of the EEEE filter with

z =� 10.5 Å and, depending on the initial state of interest,

either one or two cations were placed above at z =� 7.5

Å, either on the axis (for two-ion occupancy states) or off

axis by a few angstroms (for three-ion states). The

positioning of the upper ion or ions was randomized and

did not appear to affect the outcome because it, or they,

moved considerably from their original positions long

before the lower ion exited the filter. These configurations

represent steps that may occur during Ca2 +-block of Na+-

current and Ca2 +-relief of Ca2 +-block in an L-type calci-

um channel. The arrows in Fig. 1 are intended to loosely

suggest both the reaction coordinate for transport at a

given concentration and the shift in the dominant reaction

pathway as [Ca2 +]o is increased in the typical AMFE

experiment.

The rationale for each case is as follows. Three Na+ ions

were placed in the filter region to represent the experimental

condition where the calcium channel is permeable only to

monovalent ions (Fig. 1B, structure I). This represents the

conditions expected at the extreme left end of the current vs.

log(Ca2 +) curve [4,7]. We use ANa+-Na+-Na+A as a label

for this configuration. In our convention, the ion on the left

will represent the topmost (i.e. positive z, or extracellular)

ion in the Z-direction while the ion on the right represents

the bottom (negative z, or intracellular) ion. Next, we

examined the configuration ACa2 +-Na+-Na+A in the filter

region (Fig. 1B, structure II). This was done to determine

whether an incoming Ca2 + ion could cause either of two

Na+ ions to exit from the filter. Two configurations, ANa+-
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Na+-Ca2 +A and ANa+-Ca2 +-Ca2 +A (Fig. 1B, structures V

and VI), were used to evaluate Ca2 + block of Na+ entry,

while a slightly reorganized version of VI, ACa2 +-Na+-
Ca2 +A (Fig. 1B, structure IV) served as a control with the

same excess positive charge as structure VI. In the first case

(structure V), we wished to observe whether it was possible

for a single Ca2 + ion to coordinate all the glutamates and

prevent the two Na+ ions from entering the filter region. In

the second case (VI), we explored whether two Ca2 + ions

could prevent a single Na+ ion from entering an electrically

net neutral filter region. We also examined pure Ca2 +

loading configurations, ACa2 +-Ca2 +A and ACa2 +-Ca2 +-
Ca2 +A, to represent experimental conditions where the

channel is occupied exclusively by Ca2 + ions (Fig. 1B,

structures VII and VIII).

2.4. Molecular dynamics trajectories

The entire structure was first minimized using steepest

gradient and adopted basis Newton–Raphson energy min-

imization algorithms [37]. A random number generator

was used as a seed to assign velocities for similar starting

configurations in the selectivity filter. This was followed

by 0.6 ps of heating with a 1-fs time step to 300 K.

Equilibration (200 ps of dynamics using a 2-fs time step)

was carried out with the applied field. This was followed

by multiple simulations of f 1–2 ns with the electric field

applied for each preloaded state. The time step was 2 fs.

2.5. Analysis

Time-to-exit for the ion deepest in the filter was deter-

mined manually with 100-fs accuracy using plots of zion vs. t

and rion-glu vs. t for each trajectory. The times to exit from

independent runs were assumed to be samples of a Poisson

process, truncated by trajectory termination in some cases.

The best estimate of the mean rate constant for exit (or its
Fig. 2. (A) Configuration ACa2 +-Na+-Na+A after 500 ps of AF NEMD simulation.

(orange spheres) for the glutamate oxygens (colored red), thus excluding the Na+ i

After expelling one Na+ ion from the EEEE locus, the Ca2 + ion binds tightly to th

Na+ ion to the filter region. For interpretation of the references to colour in this
upper bound), koff, was therefore taken as the number of

exits observed (N) divided by the sum of all times to exit (T):

koff ¼ N=T ð1Þ

The assumption here is that an exit could take place in

any short interval, yt, and that the Poisson rate constant is

the probability of an exit in any one such qualified interval

divided by the interval length. Because the variance of a

Poisson-distributed random variable is equal to the mean,

the rate constants determined from a few measurements,

such as are observed here, must be taken as approximations,

but qualitative trends are expected to be informative.
3. Results

A typical trajectory is illustrated in Fig. 2. This trajectory

was initiated with one Na+ ion in the filter region

(z =� 10.5 Å) and Na+ and Ca2 + ions extracellular to the

filter region (z =� 7.5 Å). In Fig. 1B, this corresponds to

state II. At t = 200 ps, the Ca2 + ion abruptly entered the

filter region (Fig. 2B), coincident with the Na+ ion depar-

ture from the filter. This resulted in the configuration shown

in Fig. 2A, state III. The Ca2 + ion is well coordinated by the

four Glu side chains, one of which has changed conforma-

tion so that two side chains coordinate from above and two

from below. The results of all the simulations with the h-
barrel model are summarized in Table 1. Due to fluctuations

in the positions of the glutamate residues, the escape point

varied between z=� 11 Å and z =� 15 Å, depending on the

trajectory, but in all cases it was readily and unambiguously

identified in the plot of zion vs. t. As shown in Fig. 2B, once

the ion leaves the last glutamate contact, it rapidly ‘‘falls’’ to

the bottom of the intracellular water droplet (zf� 18 Å)

under the force of the applied field. No reentries were

observed.
The Ca2 + ion (yellow sphere) competes more effectively than the Na+ ions

ons from the filter region. (B) Z-coordinate of the ions as a function of time.

e glutamate oxygens and simultaneously prevents the binding of the second

figure legend, the reader is referred to the web version of this article.



Table 1

Exit rates for different channel occupancies in the h-barrel model

State Initial configuration Number

of runs

Number

of escapes

Total pre-escape

time (ns)

Total simulation

(ns)

koff (s
� 1)

I ANa+-Na+-Na+A 9 1 11.25 11.40 9� 107

II ACa2 +-Na+-Na+A 5 5 1.91 6.80 2� 109

III ANa+-Ca2 +A 4 0 8.30 8.30 < 1.2� 108

IV ACa2 +-Na+-Ca2 +A 5 0a 9.00 9.00 ****b

V ANa+-Na+-Ca2 +A 11 0 18.20 18.20 < 5.5� 107

VI ANa+-Ca2 +-Ca2 +A 7 0 8.35 8.35 < 1.2� 108

VII ACa2 +-Ca2 +A 5 1 10.16 11.00 9� 107

VIII ACa2 +-Ca2 +-Ca2 +A 6 6 5.60 13.20 1�109

Number of observed ion escapes and estimation of exit rates for various ion configurations in the selectivity filter. The applied voltage was 2.0 V for all the

configurations. The koff was calculated by dividing the number of escapes (for any given configuration) by the total pre-escape time (ns). A random number

generator was used to initiate velocities yielding multiple distinct trajectories for each configuration.
a Although Ca2 + never exited from the filter, in every case the Na+ ion was ejected from the filter against the applied potential.
b Estimate not possible, no exits observed.
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From state I, ANa+-Na+-Na+A, we observed only one

escape in 11.4 ns of simulation time with nine different

runs (Table 1). The estimated rate constant for escape, koff,
is f 9.0� 107 s� 1, higher than physiologically observed

exit rates (f 106 s� 1), presumably due to the high applied

potential (2 V). This value can be compared to the case with

three Ca2 + ions, where, in each of six runs, the lower Ca2 +

ion left the filter within 830 ps on average. The apparent exit

rate constant, in this case well-defined statistically, is 1�109

s� 1, an order of magnitude higher. Clearly the configuration

ACa2 +-Ca2 +-Ca2 +A is less stable, probably due to the lower

overall net charge in the filter region.

From state II, ACa2 +-Na+-Na+A, the Ca2 + ion displaced

a Na+ ion in all five trajectories, the total simulation time

being approximately 6.8 ns (Table 1). The calculated koff is

f 2.0� 109 s� 1, showing that the presence of a Ca2 + ion

increases the exit rate f 20-fold over that of the ANa+-
Na+-Na+A state and that the Na+ ion does not bind to the

filter region very tightly. This implies that it is very

probable that a single Na+ ion or two Na+ ions cannot

prevent the Ca2 + ion from entering the filter region and

binding to the glutamate side chains. Ion juxtaposition can

be inferred by noting that the configuration in the structure

(Fig. 2A) corresponds to the 500-ps point in the plot (Fig.

2B). By this point, the lower Na+ ion has left the EEEE

filter (z =� 18 Å) and has been replaced in the center of

the filter (z =� 10.5 Å) by the middle Ca2 + ion. The Ca2 +

ion is fourfold coordinated by the glutamate side chains.

The upper Na+ ion is still positioned near where it and the

Ca2 + ion started (� 8 Å < z < � 7 Å).

State IV, ACa2 +-Na+-Ca2 +A, was unstable. All five

different runs, totaling approximately 9.0 ns of simulation

time, resulted in a backward ejection of the Na+ ion

against the voltage gradient such that the filter assumed

the configuration ACa2 +-Ca2 +A (Table 1). This shows that

an incoming Ca2 + ion can outcompete a Na+ ion in

binding to the negatively charged glutamate side chains

while the downstream Ca2 + ion blocks the Na+ exit in the

forward direction.
From state V, ANa+-Na+-Ca2 +A, in seven different runs

totaling 8.35 ns of simulation time, we observed no exits, i.e.

complete Ca2 +-block of Na+-exit (Table 1). Analysis of the

coordinates shows that the Ca2 + ion is simultaneously

coordinated to the four-glutamate side chains, similar to what

is seen with Ca2 + chelators (Fig. 3), [1,3,11,39]. Similar

results were observed for state III, ANa+-Ca2 +A where a

single Ca2 + ion was able to prevent the entry of a Na+ ion in

the filter region. Likewise, in state VI, ANa+-Ca2 +-Ca2 +A,
during 18.2 ns of simulation time with 11 different trajecto-

ries, the two Ca2 + ions consistently prevented binding of the

Na+ ion to the glutamate side chains (Table 1). Analyses of

the ion trajectories show that in all three types of simulation

(starting from configuration III, V, or VI) the Ca2 + ions bind

to the glutamate residues and prevent the entry of another Na+

ion in the filter region (Fig. 3C and D).

From state VII, ACa2 +-Ca2 +A, we observed only one

escape in five different runs totaling 11.0 ns of simulation

time (kofff 9.0� 107, Table 1), demonstrating that the filter

region binds the two Ca2 + ions with a moderately high

affinity. The EEEE complex allows binding of the second

Ca2 + ion despite the electrostatic repulsion from the first

Ca2 + ion.
4. Discussion

The combination of AF NEMD simulations and the use

of atomistic side chains demonstrates that a flexible selec-

tivity filter (EEEE) is capable of demonstrating properties

analogous to experimental AMFE in the calcium channel.

The simulation results are consistent with the notions that:

(a) Ca2 + ions compete successfully with Na+ ions to bind to

the glutamate oxygens, (b) Ca2 + ions block Na+ current due

to simultaneous binding of a single Ca2 + ion to the

glutamate side chains, which not only occludes the perme-

ation pathway sterically but may also, by virtue of carbox-

ylate positioning, prevent Na+ ions from entering the

selectivity filter in spite of a net negative charge, and (c)



Fig. 4. (A) Configuration ACa2 +-Ca2 +-Ca2 +A. The flexible glutamate side chains form low affinity binding sites that bind to entering and exiting Ca2 + ions.

(B) Snapshot (450 ps) showing the exit of the Ca2 + ion from the filter region as the topmost Ca2 + ion enters the selectivity filter. (C) Z-coordinates of the three

Ca2 + ions during an AF NEMD simulation. (D) Lowermost glutamate vs. exiting Ca2 + ion distance as a function of time.

Fig. 3. (A) Configuration ANa+-Na+-Ca2 +A. A single Ca2 + ion in the filter region prevents two Na+ ions from entering the filter. (B) Z-coordinates of the two

Na+ ions (blue and tan traces) and the Ca2 + ion (red trace) during an AF NEMD simulation. The Ca2 + ion fluctuations are small when compared to the Na+

ions showing that it binds to the glutamate side chains tightly, preventing the entry of Na+ ions. (C) Configuration ANa+-Ca2 +-Ca2 +A. The two Ca2 + ions in the
filter region prevent a single Na+ ion from entering the selectivity filter. (D) Z coordinates of the two Ca+ ions (red and purple trace) and a Na+ ion (blue trace).

For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.
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Ca2 + relief of Ca2 + block takes place through a combination

of electrostatic repulsion and stepwise changes in affinity,

and may commonly involve three rather than just two Ca2 +

ions. In this regard, the present results disagree with those of

some previous calculations (e.g. Refs. [11,14,39]) that favor

a maximal stable occupancy by one Ca2 + ion, but are

consistent with other recent calculations [23,24] that suggest

stable occupancy by two Ca2 + ions. With three Ca2 + ions in

the filter region (state VIII), we found that the first Ca2 + ion

is always rapidly ejected from the filter, with an apparent

koff rate of f 1.0� 109 (Table 1). X-ray crystal structures of

several calcium binding proteins, calmodulin, calbindin,

cadherin and troponin [30–43] show that it is possible that

two Ca2 + ions can exist in close proximity. The flexible

glutamate side chains could possibly provide low affinity

sites that facilitate stepwise dehydration of Ca2 + ions.

In the presence of multiple Ca2 + ions, the flexible gluta-

mate side chains in the current model were observed to

undergo conformational changes that provide flanking low-

affinity sites for an ion to enter and exit the selectivity filter.

In a related study [26] with a homology model based on

the KcSA structure [25] having a symmetrical arrangement

of filter glutamates, no Ca2 + ion exit was observed even

from the Ca2 +-Ca2 +-Ca2 + preloaded state, implying that an

asymmetrical selectivity filter is an important prerequisite

for ion flux. Experimental studies of mutant channels

lacking a single glutamate or two glutamates have shown

that these channels still exhibit Ca2 +-block of Li+-current

[1,4,6]. This implies that tetra-coordination of the Ca2 + ion

is not an absolute requirement for Ca2 + block of monova-

lent current and also indirectly points to the fact that the

pore region is probably narrow in diameter, thus allowing a

tri-coordinated or bi-coordinated Ca2 + ion to block the

permeation pathway. Our simulations with the configuration

ANa+- Ca2 +- Ca2 +A show that it is possible for a tri-

coordinated or bi-coordinated filter to block monovalent

ions from entering the selectivity filter by fully ligating the

available carboxylates (Fig. 4A). Presumably a similar

process might take place in the mutant channels lacking

one or two glutamate residues.
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