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Abstract

We obtain general theorems which enable the calculation of the Dixmier trace in terms of

the asymptotics of the zeta function and of the heat operator in a general semi-finite von

Neumann algebra. Our results have several applications. We deduce a formula for the Chern

character of an odd Lð1;NÞ-summable Breuer–Fredholm module in terms of a Hochschild 1-

cycle. We explain how to derive a Wodzicki residue for pseudo-differential operators along the

orbits of an ergodic Rn action on a compact space X : Finally, we give a short proof of an index

theorem of Lesch for generalised Toeplitz operators.
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1. Introduction

There is a generalisation of the usual setting of noncommutative geometry
[Co1,Co2,Co3] where one replaces spectral triples by Breuer–Fredholm modules. In

this situation one is given a Hilbert space H; a Cn-algebra A represented in a
semifinite von Neumann algebra N which acts on H and a self-adjoint unbounded
operator D0 affiliated to N and such that the commutator ½a;D0� is bounded for a
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dense set of aAA [CPS]. This situation arises for example in the twisted L2-index
theorem of Gromov [Gr]. There are also other interesting invariants of operators

affiliated to N such as L2 spectral flow studied in [CP1,CP2]. We became interested
in the Dixmier trace and its relation to the zeta function partly as a result of the local
index formula of Connes and Moscovici [CM]. In [CM] a formula for spectral flow in

an Lðp;NÞ-summable Fredholm module (the notation for these symmetric ideals is
explained below) is given. It is natural to try to relate this formula and those for
spectral flow in [CP1,CP2].

In the course of this investigation, we became aware of the subtleties in the zeta
function approach to the Dixmier trace especially in the general semifinite case that

we were interested in. Specifically for TALðp;NÞ; we asked the question of when the
functional A-trðATsÞ on N may be used to calculate the Dixmier trace troðATpÞ:
The strongest known result of which we were aware is contained in [Co4,
Proposition 4, p. 306] for compact operators TX0 whose singular values

mnðTÞ satisfy
PN�1

n¼0 mnðTÞ ¼ OðlogðNÞÞ; when either lims-1 ðs � 1Þ trðTsÞ or

limN-N ðlog NÞ�1PN�1
n¼0 mnðTÞ exists they both do and are equal. While the

somewhat nontrivial proof is not given there, it does follow as Connes states from
the Hardy–Littlewood Tauberian Theorem ([H, Theorem 98] is a good reference). In
the Ph.D. Thesis of Prinzis [P] an extension of this latter result was claimed in type II
setting however, the proof was flawed. Additional interesting information is
contained in [Co4, p. 563] where the Dixmier trace is expressed in terms of the

asymptotics of the trace of the ‘heat operator’ el
�2=pT�2

as l-N: Subsequently, a
proof for this result due to Connes was published for p41 in [GVF].

Our aim in this paper is to prove the strongest possible theorem relating the zeta
function, the asymptotics of the trace of the heat operator and the Dixmier trace in

the type I and type II setting of Lðp;NÞ summable (Breuer-)Fredholm modules
ð1ppoNÞ: We obtain the most general results possible in the most general
semifinite case without assuming that any of the above limits exist. To do this we
need a rather novel approach to the Dixmier trace which we explain in the Section 1.
The essence of our approach is contained in Theorem 1.5 where we observe that
there are really two Dixmier traces, one which might naturally be regarded as being
constructed from an invariant mean on LNðRÞ (with the additive group structure on

R) and the other an invariant mean on LNðRn

þÞ with the multiplicative group

structure on Rn

þ: The former trace is natural from the viewpoint of the zeta function

while the latter is that encountered in [Co4]. Our key observation in Section 3, where
we prove the main Theorems 3.1 and 3.8, is that in order to calculate the Dixmier
trace using the zeta function these traces have to be chosen in pairs related one to the

other via the isomorphism from R to Rn

þ given by the exponential function.

Choose a faithful, normal, semi-finite trace t on N (t will be fixed throughout).

Let D0 have resolvent in the ideal of ‘‘compact operators’’ in N: An odd Lð1;NÞ

summable unbounded (Breuer-)Fredholm module for a Banach * -algebra, A is a
triple ðN;A;D0Þ where ACN is such that ½a;D0� is bounded for all a in a dense

subalgebra of A and ð1þ D2
0Þ

�1=2ALð1;NÞ: Our main results (in Section 3) concern
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the asymptotics of tðAð1þ D2
0Þ

�sÞ as s-1=2 for AAN and how this relates to the

Dixmier trace toðAð1þ D2
0Þ

�1=2Þ: Then in Section 4 we consider the asymptotics of

the trace of the heat semigroup of D2
0 deriving in particular the formula of [Co4, p.

563] for the Dixmier trace. Section 5 generalises all of the previous formulae to the

case where ð1þ D2
0Þ

�1=2ALðp;NÞ with p41:

In Theorem 6.2 we apply our results on the zeta function approach to the Dixmier
trace, using [CP1,CP2], to derive a general formula for the Chern character of an

Lð1;NÞ summable Breuer–Fredholm module ðN;A;D0Þ:
In Section 7 we give a brief overview of the results in [P] on a Wodzicki residue

formula for the Dixmier trace of pseudo-differential operators tangential to a
minimal ergodic action of Rn on a compact space. Our aim here is to show how the
results of the earlier sections may be used to overcome a technical difficulty in
Prinzis’ approach.

Section 8 contains our short proof of the theorem of Lesch giving the index of a

generalised Toeplitz operator associated with an action of R on a Cn-algebra
equipped with an invariant trace. The argument depends in an essential way on our
results in Section 3 on the type II Dixmier trace and zeta function and shows that the
index theory of Toeplitz operators with noncommutative symbol is a corollary of
results in noncommutative geometry.

1.1. Generalities on singular traces

We have two groups, the additive group R and the multiplicative group Rn

þ of

positive reals. The exponential map and the log are mutually inverse isomorphisms
between these groups. Notice that exp takes translation by aAR to dilation by

expðaÞARn

þ and dilation by bARn

þ to the transformation x/xb on Rn

þ: Let G1 and

G2 be given by taking the semidirect product of the group R and dilations and the

semidirect product of the group of powers with Rn

þ; respectively. That is, G1 is the set

R� Rn

þ with multiplication:

ða; sÞðb; tÞ ¼ ða þ sb; stÞ:

While, G2 is the set Rn

þ � Rn

þ with multiplication:

ðs; tÞðx; yÞ ¼ ðsxt; tyÞ:

Then, exp and log induce mutually inverse isomorphisms of G1 and G2: For example,
the isomorphism G1-G2 is given by

ða; sÞ/ðexpðaÞ; sÞ : G1-G2:

Definition 1.1. We define the isomorphism L : LNðRÞ-LNðRn

þÞ by Lð f Þ ¼ f 3 log:

We also define the Hardy and Cesaro means (transforms) on LNðRÞ and LNðRn

þÞ;
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respectively, by

Hð f ÞðuÞ ¼ 1

u

Z u

0

f ðvÞ dv for fALNðRÞ; uAR

and

MðgÞðtÞ ¼ 1

log t

Z t

1

gðsÞds

s
for gALNðRn

þÞ; t40:

We refer to H as the mean for the additive group R:

Then a brief calculation yields for gALNðRn

þÞ;

LHL�1ðgÞðrÞ ¼ 1

log r

Z log r

0

gðeuÞ du ¼ 1

log r

Z r

1

gðvÞdv

v
¼ MðgÞðrÞ:

So indeed L intertwines the two means.

Definition 1.2. We also define the following families of self-maps on these LN spaces:

let Tb denote translation by bAR; Da denote dilation by aARn

þ and let Pa denote

exponentiation by aARn

þ: That is,

Tbð f ÞðxÞ ¼ f ðx þ bÞ for fALNðRÞ;

Dað f ÞðxÞ ¼ f ðaxÞ for fALNðRÞ

and

Pað f ÞðxÞ ¼ f ðxaÞ for fALNðRn

þÞ:

Some of the basic relations between these LN spaces and their self-maps are
provided for easy access by the following proposition.

Proposition 1.3. LNðRÞ together with the self-maps, Da; Tb; and H ða40; bARÞ is

related to LNðRn

þÞ together with the self-maps, Pa; Da; and M ða40Þ via the

isomorphism

L : LNðRÞ-LNðRn

þÞ

and the following identities:

(1) LDaL�1 ¼ Pa for a40;
(2) LTbL�1 ¼ DexpðbÞ for bAR ðor LTlogðaÞL

�1 ¼ Da for a40Þ;
(3) LHL�1 ¼ M;
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(4) DaH ¼ HDa and PaM ¼ MPa for a40;
(5) limt-N ðHTb � TbHÞ f ðtÞ ¼ 0 for fALNðRÞ and bAR;
(6) limt-N ðMDa � DaMÞ f ðtÞ ¼ 0 for fALNðRn

þÞ and a40:

Proof. We have already shown (3). The calculations for (1), (2), and (4) are equally
straightforward. To see (5), take bAR and fALNðRÞ; then

ðHTb � TbHÞ f ðtÞ ¼ 1

t

Z t

0

f ðx þ bÞ dx � 1

t þ b

Z tþb

0

f ðxÞ dx

¼ 1

t

Z tþb

b

f ðxÞ dx � 1

t þ b

Z tþb

0

f ðxÞ dx

¼ 1

t
� 1

t þ b

� �Z tþb

b

f ðxÞ dx � 1

t þ b

Z b

0

f ðxÞ dx

¼ b

tðt þ bÞ

Z tþb

b

f ðxÞ dx � 1

t þ b

Z b

0

f ðxÞ dx:

In absolute value this is less than or equal to

jj f jj 
 jbj
jt þ bj þ jj f jj 
 jbj

jt þ bj ¼ 2jj f jj 
 jbj
jt þ bj ;

which vanishes as t-N:
The proof of (6) is similar. &

We give G1 and G2 the discrete topology to simplify the discussion and note that
they are amenable being extensions of one abelian group by a second. They act as

groups of homeomorphisms of R and Rn

þ; respectively, via *aa;sðyÞ ¼ a þ sy for

ða; sÞAG1; yAR and as;tðxÞ ¼ sxt for ðs; tÞAG2; xARn

þ: Furthermore, there are actions

of the groups G1 and G2 on LNðRÞ and LNðRn

þÞ: These actions are generated by

fTb;Da j bAR; aARn

þg in the case of G1 and fDa;Pcja; cARn

þg in the case of G2 and L

intertwines these actions. Thus, we have actions

G1 � LNðRÞn-LNðRÞn and G2 � LNðRn

þÞ
n-LNðRn

þÞ
n

given, respectively, by

½ða; sÞ; *o�/*ana;sð *oÞ where *ana;sð *oÞð f Þ ¼ *oð f 3 *a�1
a;s Þ

for ða; sÞAG1; *oALNðRÞn; fALNðRÞ

and

½ðs; tÞ;o�/ans;tðoÞ where ans;tðoÞð f Þ ¼ oð f 3 a�1
s;t Þ

for ðs; tÞAG2;oALNðRn

þÞ
n; fALNðRn

þÞ:
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These are weakn-continuous actions because, for example, if ob-o is a net in

LNðRn

þÞ
n then

jans;tðobÞð f Þ � ans;tðoÞð f Þj ¼ jobð f 3 a�1
s;t Þ � oð f 3 a�1

s;t Þj-0

as f 3 a�1
s;t ALNðRn

þÞ:
If we use these remarks together with the previous proposition we obtain the

following.

Proposition 1.4. Given any continuous functional *o on LNðRÞ which is invariant under

H and G1 then *o 3 L�1 is a continuous functional on LNðRn

þÞ invariant under M and

G2: Conversely, composition with L converts an M and G2 invariant continuous

functional on LNðRn

þÞ into an H and G1 invariant continuous functional on LNðRÞ:

1.2. Existence of invariant singular traces

We denote by C0ðRn

þÞ the continuous functions on Rn

þ vanishing at infinity. Our

aim in this subsection is to prove the following result.

Theorem 1.5. There exists a state o on LNðRn

þÞ satisfying the following conditions:

(1) oðC0ðRn

þÞÞ  0:

(2) If f is real-valued in LNðRn

þÞ then

ess lim inf
t-N

f ðtÞpoð f Þpess lim sup
t-N

f ðtÞ:

(3) If the essential support of f is compact then oð f Þ ¼ 0:
(4) For all cARn

þ; oðDcf Þ ¼ oð f Þ for all fALNðRn

þÞ:
(5) For all aARn

þ and all fALNðRn

þÞ oðPaf Þ ¼ oð f Þ:
(6) For all fALNðRn

þÞ; oðMf Þ ¼ oð f Þ:

Using the preceding proposition we obtain the following:

Corollary 1.6. There exists a state *o on LNðRÞ satisfying the following conditions:

(1) *oðC0ðRÞÞ  0:
(2) If f is real-valued in LNðRÞ then

ess lim inf
t-N

f ðtÞp *oð f Þpess lim sup
t-N

f ðtÞ:

(3) If the essential support of f is compact then *oð f Þ ¼ 0:
(4) For all cAR; *oðTc f Þ ¼ *oð f Þ for all fALNðRÞ:

A. Carey et al. / Advances in Mathematics 173 (2003) 68–113 73



(5) For all aARn

þ and all fALNðRÞ *oðDa f Þ ¼ *oð f Þ:
(6) For all fALNðRÞ; *oðHf Þ ¼ *oð f Þ:

Notice that L sends C0ðRÞ into C0ðRn

þÞ: Also, we observe that condition (2) of the

corollary is equivalent to the statement that if fALNðRÞ is continuous and
limjtj-N f ðtÞ exists then *oð f Þ ¼ limjtj-N f ðtÞ: The rest of this subsection will be

devoted to the proof of the theorem. Introduce the set S consisting of all positive

functionals oALNðRn

þÞ
n normalised so that oð1Þ ¼ 1 and such that condition (1) of

the theorem holds.

Clearly S is a convex and weakn closed subset of the unit ball. Moreover, S is

nonempty as we can define oAðC½0;N�Þn by oð f Þ ¼ f ðNÞ then o is positive and

oð1Þ ¼ jjojj ¼ 1: So extending o to *oALNðRn

þÞ
n by Hahn–Banach yields a

nontrivial element of S (note that positivity of the extension is well known, for
example see [KR, Theorem 4.3.2]).

It is straightforward to verify G2 acts affinely (i.e. preserving convex combina-

tions) on S by restriction of the dual action on LNðRn

þÞ
n: As we have remarked

earlier the action is weakn continuous and G2 is amenable since it is the extension of
an abelian group by an abelian group (and so too is G1). Hence by Rickert’s
Theorem [G] there is a fixed point o0 for this action. This fixed point satisfies
conditions (1), (4) and (5) of the theorem. Condition (3) holds because if fX0 and
has compact support then there is a continuous function gXf a.e. with gðNÞ ¼ 0
and so,

0po0ð f Þpo0ðgÞ ¼ 0:

To see that o0 satisfies condition (2), let f be real valued and let C denote the ess

lim supt-N
f ðtÞ: Then for each e40 there exists a function g with the support of g

compact and ð f � gÞpC þ e a.e. Then o0ð f ÞpC þ e: Similarly o0ð f Þ is bounded
below by the essential lim inf t-N f ðtÞ:

Let Mn denote the linear map on LNðRn

þÞ
n given by Mnoð f Þ ¼ oðMf Þ: Finally,

to prove (6) we note first that M leaves C0ðRn

þÞ and the constant functions invariant

and hence Mn leaves S invariant. By Proposition 1.3 (part (6) and the second half of

part (4)), we see that the action of Mn (on S!) commutes with the dual actions of the
generators, Da and Pa of G2 (on S!). It follows then that for any fixed point o0 of the

G2 action, o0 3 Mn is another fixed point of the G2 action on S: In other words, Mn

leaves the set of G2 fixed points of S invariant. Thus Mn leaves the set of functionals
in S satisfying conditions (1)–(5) invariant. The collection of fixed points for G2 is

clearly a weak-n compact convex set invariant under the (affine) action of Mn: It
follows from the Kakutani–Markov Theorem [E] that Mn itself has a fixed point in
this subset which is therefore a functional satisfying conditions (1)–(6) of the theorem
completing the proof.

Remark. The spirit of the approach of this section goes back to Dixmier [Dix1]. The
approach of Connes [Co4] is different in a slightly subtle way which we will not go
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into fully here. Suffice to say that [Dix1] uses dilation invariant functionals from the
start while [Co4] uses the Cesaro mean to obtain a dilation invariant functional (that

is, starting from a state o on LNðRn

þÞ
n one observes that o 3 Mn is dilation

invariant). This difference is important to us in Sections 5 and 6.

1.3. Notation

We are interested in certain ideals of operators in the von Neumann algebra N
defined using our faithful, normal, semifinite trace t:

Definition 1.7. If SAN the t-th generalized singular value of S for each real t40 is
given by

mtðSÞ ¼ inffjjSEjj j E is a projection in N with tð1� EÞptg:

We will mostly explain the results we need about these singular values later in the
text although a full exposition is contained in [F,FK]. We write T1!!T2 to mean

that
R t

0 msðT1Þ dsp
R t

0 msðT2Þ ds for all t40:

Definition 1.8. If I is a *-ideal in N which is complete in a norm jj 
 jjI then we will

call I an invariant operator ideal if

(1) jjSjjIXjjSjj for all SAI;
(2) jjSnjjI ¼ jjSjjI for all SAI;
(3) jjASBjjIpjjAjj jjSjjIjjBjj for all SAI; A;BAN:

Since I is an ideal in a von Neumann algebra, it follows from 1.1.6, Proposition 10
of [Dix] that if 0pSpT and TAI; then SAI and jjSjjIpjjT jjI:Much more is true,

especially in type I case but we shall not need it here, see [GK].

The main examples of such ideals that we consider in this paper are the spaces

Lð1;NÞðNÞ ¼ TAN j jjT jjLð1;NÞ :¼ sup
t40

1

logð1þ tÞ

Z t

0

msðTÞ dsoN

� �
and with p41;

cpðtÞ ¼
t for 0ptp1;

t
1�1

p for 1pt;

8<:
Lðp;NÞðNÞ ¼ TAN j jjT jjLðp;NÞ :¼ sup

t40

1

cpðtÞ

Z t

0

msðTÞ dsoN

( )
:
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There is also the equivalent definition

Lðp;NÞðNÞ ¼ TAN j sup
t40

t

cpðtÞ
mtðTÞoN

( )
:

It is well-known (see e.g. [Co4,GK]) that for T1AN; T2ALðp;NÞðNÞ; pA½1;NÞ;
the condition T1!!T2 implies that T1ALðp;NÞðNÞ:

As we will not changeN throughout the paper we will suppress the ðNÞ to lighten

the notation. On this point, however, the reader should note that Lðp;NÞ is often

taken to mean an ideal in the algebra *N of measurable operators affiliated to N:
Our notation is, however, consistent with that of [Co4] in the special case
N ¼ BðHÞ:

For most of the paper T is a positive operator in Lð1;NÞ: There is a map from the

positive operators in Lð1;NÞ to LN½0;NÞ given by T-fT where fTðtÞ ¼
1

logð1þtÞ
R t

0 msðTÞ ds: We may extend fT to all of R by defining it to be zero on the

negative reals. Depending on the circumstances we can thus regard fT as either an

element of LNðRÞ or LNðRn

þÞ:
Henceforth, we use the notation toðTÞ for oð fTÞ where oALNðRn

þÞ
n satisfies the

conditions of Theorem 1.5. We also write

toðTÞ ¼ o� lim
t-N

1

logð1þ tÞ

Z t

0

msðTÞ ds:

It follows from [Co4, IV.2.b], (see also [DPSS, Example 2.5]) that toð
Þ is additive

and positively homogeneous on the positive part of Lð1;NÞ and hence extends to a

positive linear functional on Lð1;NÞ (again denoted by to). It is in fact an example of
a singular trace on N (cf. the discussion in [Co4,DPSS]).

2. Preliminary results

It is useful to have an estimate on the singular values of the operators in Lð1;NÞ:

Lemma 2.1. For TALð1;NÞ positive there is a constant K40 such that for each pX1;Z t

0

msðTÞp
dspKp

Z t

0

1

ðs þ 1Þp ds:

Proof. By Fack and Kosaki [FK], Lemma 2.5(iv), for all 0pTAN and all
continuous increasing functions f on ½0;NÞ with f ð0ÞX0; we have msð f ðTÞÞ ¼
f ðmsðTÞÞ for all s40: Combining this fact with the well-known result of Hardy–
Littlewood–Pólya (see e.g. [F, Lemma 4.1]), we see that T1!!T2; 0pT1;T2AN
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implies T
p
1!!T

p
2 for all pAð1;NÞ: Now, by definition of Lð1;NÞ the singular values

of T satisfy
R t

0 msðTÞ ds ¼ Oðlog tÞ so that for some K40;Z t

0

msðTÞ dspK

Z t

0

1

ðs þ 1Þ ds 8t40:

In other words msðTÞ!!K=ð1þ sÞ and the assertion of lemma follows
immediately. &

Theorem 2.2 (Weakn-Karamata theorem). Let *oALNðRÞn be a dilation invariant

state and let b be a real valued, increasing, right continuous function on Rþ which is

zero at zero and such that the integral hðrÞ ¼
R
N

0 e�
t
r dbðtÞ converges for all r40 and

C ¼ *o� limr-N
1
r
hðrÞ exists. Then

*o� lim
r-N

1

r
hðrÞ ¼ *o� lim

t-N

bðtÞ
t
:

Remark. The classical Karamata theorem states, in the notation of the theorem, that

if the ordinary limit limr-N
1
r
hðrÞ ¼ C exists then C ¼ limt-N

bðtÞ
t
: The proof of this

classical result is obtained by replacing, in the proof of Theorem 2.2, *o� lim
throughout by the ordinary limit.

Proof. Let

gðxÞ ¼
x�1 for e�1pxp1;

0 for 0pxoe�1;

(

so that g is right continuous at e�1: Then for r40; t-e�t=rgðe�t=rÞ is left continuous
at t ¼ r: Thus, the Riemann–Stieltjes integral

R
N

0 e�t=rgðe�t=rÞ dbðtÞ exists for each

r40: We claim that for any polynomial p

*o� lim
r-N

1

r

Z
N

0

e�t=rpðe�t=rÞ dbðtÞ ¼ C

Z
N

0

e�tpðe�tÞ dt:

To see this first compute for pðxÞ ¼ xn;

1

r

Z
N

0

e�t=re�nt=r dbðtÞ ¼ 1

r

Z
N

0

e�ðnþ1Þt=r dbðtÞ:

Therefore

1

n þ 1
*o� lim

r-N

1

r=ðn þ 1Þ

Z
N

0

e�ðnþ1Þt=r dbðtÞ ¼ C

n þ 1
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by dilation invariance of *o: Thus

*o� lim
r-N

1

r

Z
N

0

e�t=re�nt=r dbðtÞ ¼ C

Z
N

0

e�tðe�tÞn
dt:

Since *o is linear the claim follows for all p:
Choose sequences of polynomials fpng; fPng such that for all xA½0; 1�

�1ppnðxÞpgðxÞpPnðxÞp3

and such that pn and Pn converge a.e. to gðxÞ: Then since *o is positive it preserves
order:

C

Z
N

0

e�tpnðe�tÞ dt ¼ *o� lim
r-N

1

r

Z
N

0

e�t=rpnðe�t=rÞ dbðtÞ

p *o� lim
r-N

1

r

Z
N

0

e�t=rgðe�t=rÞ dbðtÞ

p?pC

Z
N

0

e�tPnðe�tÞ dt:

By the Lebesgue Dominated Covergence Theorem both
R
N

0 e�tpnðe�tÞdt andR
N

0
e�tPnðe�tÞdt converge to

R
N

0
e�tgðe�tÞdt as n-N: But a direct calculation yieldsR

N

0 e�tgðe�tÞ dt ¼ 1 and Z
N

0

e�t=rgðe�t=rÞ dbðtÞ ¼ bðrÞ:

Hence

C ¼ *o� lim
r-o

1

r

Z
N

0

e�t=rgðe�t=rÞ dbðtÞ ¼ *o� lim
r-N

bðrÞ
r

: &

Recall that for any t-measurable operator T ; the distribution function of T is
defined by

ltðTÞ :¼ tðwðt;NÞðjT jÞÞ; t40;

where wðt;NÞðjT jÞ is the spectral projection of jT j corresponding to the interval ðt;NÞ
(see [FK]). By Proposition 2.2 of [FK],

msðTÞ ¼ infftX0: ltðTÞpsg;

we infer that for any t-measurable operator T ; the distribution function lð
ÞðTÞ
coincides with the (classical) distribution function of mð
ÞðTÞ: From this formula and

the fact that l is right-continuous, we can easily see that for t40; s40

sXlt3mspt:

A. Carey et al. / Advances in Mathematics 173 (2003) 68–11378



Or equivalently,

solt3ms4t:

Using Remark 3.3 of [FK] this implies that:Z lt

0

msðTÞ ds ¼
Z
½0;ltÞ

msðTÞ ds ¼ tðjT jwðt;NÞðjT jÞÞ; t40: ð*Þ

Lemma 2.3. For TALð1;NÞ and C4jjT jjLð1;NÞ we have eventually

l1
t

ðTÞpCt log t:

Proof. Suppose not and there exists tnmN such that l1
tn

ðTÞ4Ctn log tn and so for

spCtn log tn we have msðTÞXmCtn log tn
ðTÞ41

tn
: Then for sufficiently large nZ Ctn log tn

0

msðTÞ ds4
1

tn

Ctn log tn ¼ C log tn:

Choose d40 with C � d4jjT jjLð1;NÞ : Then for sufficiently large n

C log tn ¼ðC � dÞ log tn þ d log tn4jjT jjLð1;NÞ logðCtnÞ þ jjT jjLð1;NÞ logðlogðtn þ 1ÞÞ

¼ jjT jjLð1;NÞ logðCtn logðtn þ 1ÞÞ:

This is a contradiction with the inequality
R t

0
msðTÞ dspjjT jjLð1;NÞ logðt þ 1Þ; which

holds for any t40 due to the definition of the norm in Lð1;NÞ: &

An assertion somewhat similar to Proposition 2.4 was formulated in [P] and
supplied with an incorrect proof. We use a different approach.

Proposition 2.4. For TALð1;NÞ positive let o be a G2 invariant state on LNðRn

þÞ: For

every C40

toðTÞ ¼o� lim
t-N

1

logð1þ tÞ

Z t

0

msðTÞ ds

¼o� lim
t-N

1

logð1þ tÞtðTwð1
t
;NÞðTÞÞ

¼o� lim
t-N

1

logð1þ tÞ

Z Ct log t

0

msðTÞ ds

and if one of the o-limits is a true limit then so are the others.
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Proof. We first note thatZ t

0

msðTÞ dsp
Z l1

t

ðTÞ

0

msðTÞ ds þ 1; t40:

Indeed, the inequality above holds trivially if tpl1
t

ðTÞ: If t4l1
t

ðTÞ; then

Z t

0

msðTÞ ds ¼
Z l1

t

ðTÞ

0

msðTÞ ds þ
Z t

l1
t

ðTÞ
msðTÞ ds:

Now s4l1
t

ðTÞ implies that msðTÞp1
t
so we have

Z t

0

msðTÞ dsp
Z l1

t

ðTÞ

0

msðTÞ ds þ 1

t
ðt � l1

t

ðTÞÞp
Z l1

t

ðTÞ

0

msðTÞ ds þ 1:

Using this observation and the lemma above we see that for C4jjT jjLð1;NÞ and any

fixed a41 eventuallyZ t

0

msðTÞ dsp
Z l1

t

ðTÞ

0

msðTÞ ds þ 1p
Z Ct log t

0

msðTÞ ds þ 1

p
Z ta

0

msðTÞ ds þ 1

and so eventually

1

logð1þ tÞ

Z t

0

msðTÞ dsp
1

logð1þ tÞ

Z l1
t

ðTÞ

0

msðTÞ ds þ 1

 !

p
1

logð1þ tÞ

Z Ct log t

0

msðTÞ ds þ 1

� �
p

logð1þ taÞ
logð1þ tÞ logð1þ taÞ

Z ta

0

msðTÞ ds þ 1

� �
:

Taking the o-limit we get

toðTÞpo� lim
t-N

1

logð1þ tÞ

Z l1
t

ðTÞ

0

msðTÞ ds

po� lim
t-N

1

logð1þ tÞ

Z Ct log t

0

msðTÞ ds

po� lim
t-N

a
logð1þ taÞ

Z ta

0

msðTÞ ds ¼ atoðTÞ;

where the last line uses G2 invariance. Since this holds for all a41 and using ð*Þ we
get the conclusion for o-limits and C4jjT jjLð1;NÞ : The assertion for an arbitrary
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0oCpjjT jjLð1;NÞ follows immediately by noting that for C04jjT jjLð1;NÞ one has

eventually Z t

0

msðTÞ dsp
Z Ct log t

0

msðTÞ dsp
Z C0t log t

0

msðTÞ ds:

To see the last assertion of the proposition suppose that

limt-N
1

logð1þtÞ
R t

0 msðTÞ ds ¼ A then by the above argument we get

Ap lim inf
t-N

1

logð1þ tÞtðTwð1
t
;NÞðTÞÞp lim sup

t-N

1

logð1þ tÞtðTwð1
t
;NÞðTÞÞpaA

for all a41 and hence limt-N
1

logð1þtÞtðTwð1
t
;NÞðTÞÞ ¼ A: On the other hand if the

limit limt-N
1

logð1þtÞtðTwð1
t
;NÞðTÞÞ exists and equals B say then

lim sup
t-N

1

logð1þ tÞ

Z t

0

msðTÞ dspBpa lim inf
t-N

1

logð1þ tÞ

Z t

0

msðTÞ ds

for all a41 and so

lim
t-N

1

logð1þ tÞ

Z t

0

msðTÞ ds ¼ B

as well. The remaining claims follow similarly. &

3. The zeta function and the Dixmier trace

The zeta function of positive TALð1;NÞ is given by

zðsÞ ¼ tðTsÞ

and for AAN we set

zAðsÞ ¼ tðATsÞ:

We are interested in the asymptotic behaviour of zðsÞ and zAðsÞ as s-1:
Now it is elementary to see that the discussion of singular traces is relevant

because by Lemma 2.1 we have for some K40 and all s41

tðTsÞ ¼
Z

N

0

mrðTsÞ dr ¼
Z

N

0

mrðTÞs
dr

p
Z

N

0

Ks

ð1þ rÞs dr ¼ Ks

s � 1
:
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From this it follows that fðs � 1ÞtðTsÞ j s41g is bounded. Now for A bounded
jðs � 1ÞtðATsÞjpjjAjjðs � 1ÞtðTsÞ so that ðs � 1ÞtðATsÞ is also bounded and hence

for any *oALNðRÞn satisfying conditions (1)–(3) of Corollary 1.6

*o� lim
r-N

1

r
tðAT1þ1

rÞ ð3:1Þ

exists.

Here, we think of r-1
r
tðAT1þ1

rÞ as a function on all of R by extending it to be

identically zero for ro1: For notational convenience one might like to think of (3.1)
as *o� lims-1 ðs � 1ÞtðATsÞ but this of course does not (strictly speaking) make

sense whereas if lims-1 ðs � 1ÞtðATsÞ exists then it is limr-N
1
r
tðAT1þ1

rÞ:
In the following theorem, we will take TALð1;NÞ positive, jjT jjp1 with spectral

resolution T ¼
R
l dEðlÞ: We would like to integrate with respect to dtðEðlÞÞ;

unfortunately, these scalars tðEðlÞÞ are, in general, all infinite. To remedy this
situation, we instead must integrate with respect to the increasing (negative) real-
valued function NT ðlÞ ¼ tðEðlÞ � 1Þ for l40: Away from 0, the increments
tðDEðlÞÞ and DNTðlÞ are, of course, identical.

In a recent email, Alain Connes has sent us a proof of the more difficult
implication of Proposition 4 of [Co4, p. 306]. This is the essential point in the proof
of the second statement of the theorem below for N ¼ BðHÞ:While his argument is
admittedly simpler it is similar in spirit to the proof below as it uses Karamata’s
approach to the classical Hardy–Littlewood Tauberian Theorem [H, Theorem 98], as
suggested by Connes in [Co4].

Theorem 3.1. For TALð1;NÞ positive, jjT jjp1 and *oALNðRÞn satisfying all the

conditions of Corollary 1.6, let *o ¼ o 3 L where L is given in Section 1.1, then we have

toðTÞ ¼ *o� limrN
1

r
tðT1þ1

rÞ:

If limr-N
1
r
tðT1þ1

rÞ exists then

toðTÞ ¼ lim
r-N

1

r
tðT1þ1

rÞ

for an arbitrary dilation invariant functional oALNðRn

þÞ
n:

Proof. By (3.1) we can apply the weakn-Karamata theorem to 1
r
tðT1þ1

rÞ: First write

tðT1þ1
rÞ ¼

R 1
0þ l1þ

1
r dNTðlÞ: Thus setting l ¼ e�u

tðT1þ1
rÞ ¼

Z
N

0

e�
u
r dbðuÞ;
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where bðuÞ ¼
R 0

u
e�vdNTðe�vÞ ¼ �

R u

0 e�vdNT ðe�vÞ: Since the change of variable l ¼
e�u is strictly decreasing, b is, in fact, nonnegative and increasing. By the weakn-

Karamata theorem applied to *oALNðRÞn

*o� lim
r-N

1

r
tðT1þ1

rÞ ¼ *o� lim
u-N

bðuÞ
u

:

Next with the substitution r ¼ e�v we get

*o� lim
u-N

bðuÞ
u

¼ *o� lim
u-N

1

u

Z 1

e�u

r dNTðrÞ: ð3:2Þ

Set f ðuÞ ¼ bðuÞ
u
: We want to make the change of variable u ¼ log t or in other

words to consider f 3 log ¼ Lf : We use the discussion in Section 1.1 which tells us

that if we start with a G2 and M invariant functional oALNðRn

þÞ
n then the

functional *o ¼ o 3 L is G1 and H invariant as required by the theorem. Then we
have

*o� lim
r-N

1

r
tðT1þ1

rÞ ¼ *o� lim
u-N

bðuÞ
u

¼ *o� lim
u-N

f ðuÞ

¼ o� lim
t-N

Lf ðtÞ ¼ o� lim
t-N

1

log t

Z 1

1=t

l dNTðlÞ:

Now, by Proposition 2.4

o� lim
t-N

1

log t

Z 1

1=t

l dNTðlÞ ¼ o� lim
t-N

1

log t
tðwð1

t
;1�ðTÞTÞ ¼ toðTÞ:

This completes the proof of the first part of the theorem.
The proof of the second part is similar. Using the classical Karamata theorem (see

the remark following the statement of Theorem 2.2) we obtain the following
analogue of (3.2):

lim
r-N

1

r
tðT1þrÞ ¼ lim

bðuÞ
u

¼ lim
u-N

1

u

Z 1

e�u

r dNTðrÞ:

Making the substitution u ¼ log t on the right-hand side we have

lim
u-N

1

u

Z 1

e�u

r dNTðrÞ ¼ lim
t-N

1

log t

Z 1

1
t

l dNTðlÞ ¼ toðTÞ;

where in the last equality we need only dilation invariance of the state oALNðRn

þÞ
n

and not the full list of conditions of Corollary 1.6. &
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The map on positive TALð1;NÞ to R given by T-toðTÞ can be extended by

linearity to a C valued functional on all of Lð1;NÞ: Then the functional

A/toðATÞ ð* *Þ

for AAN and fixed TALð1;NÞ is well defined. We intend to study the properties of
ð* *Þ: Part of the interest in this functional stems from the following result as well as
the use of the Dixmier trace in noncommutative geometry [Co4].

Lemma 3.2. Let TALð1;NÞ; then

(i) For AAN we have

toðATÞ ¼ toðTAÞ:

(ii) Assume that D0 is an unbounded self adjoint operator affiliated with N such that

T ¼ ð1þ D2
0Þ

�1=2ALð1;NÞ: If ½Aj ; jD0j� is a bounded operator for AjAN; j ¼ 1; 2

then

toðA1A2TÞ ¼ toðA2A1TÞ:

Proof. (i) This is Proposition A.2 of [CM]. The proof is elementary, first show that

toðUTUnÞ ¼ toðTÞ then use linearity to extend to arbitrary TALð1;NÞ: Replace T

by TU then use linearity again.
(ii) We remark that ½Aj; jD0j� defining a bounded operator means that the Aj leave

domðjD0jÞ ¼ domðD0Þ invariant and that ½Aj; jD0j� is bounded on this domain (see

[BR, 3.2.55], and its proof for equivalent but seemingly weaker conditions). As

jD0j � ð1þ D2
0Þ

1=2 is bounded, ½Aj; ð1þ D2
0Þ

1=2� defines a bounded operator whenever

½Aj; jD0j� does. As T�1 ¼ ð1þ D2
0Þ

1=2 and T :H-domðT�1Þ; we see that the formal

calculation:

½Aj;T � ¼ AjT � TAj ¼ TðT�1Aj � AjT
�1ÞT ¼ T ½T�1;Aj�T

makes sense as an everywhere-defined operator on H: That is,

½Aj;T � ¼ T ½ð1þ D2
0Þ

1=2;Aj�TAðLð1;NÞÞ2DL1:

Then we have, using part (i),

toðA1A2TÞ ¼ toðA2A1TÞ � toð½A1;T �A2Þ:

Since the operator in the last term is trace class we are done. &
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As a corollary of this lemma we see that (**) can be used to define a trace on
certain subalgebras of N: We aim to give several formulas for it. The first involves
the zeta function. We begin with some preliminary lemmas.

Lemma 3.3. Let TX0; bX0 be bounded operators

(i) If jjbjjpM then for any 1pso2

ðb1=2Tb1=2ÞspMs�1b1=2Tsb1=2:

(ii) If m40; 1 denotes the identify operator and bXm1 then for any 1pso2

ðb1=2Tb1=2Þs
Xms�1b1=2Tsb1=2:

Proof. One can prove a weaker version of part (i) using singular values as a special
case of [FK, Lemma 4.5]. However, we feel that the stronger version has some
independent interest. Now (i) is equivalent to

b

M

� �1=2

T
b

M

� �1=2
 !s

p
b

M

� �1=2

Ts b

M

� �1=2

:

So we can assume that M ¼ 1 and therefore bp1: Letting A ¼ b1=2 we have 0pAp1

and we want

ðATAÞspATsA:

Equivalently, we want

ðATAÞðATAÞs�1pATTs�1A

or, letting r ¼ s � 1 we want

ðATAÞðATAÞrpATTrA

for 0pro1: Using the integral formula for the rth power of a positive operator, we
want Z

N

0

t�rðATAÞð1þ tATAÞ�1
ATA dtp

Z
N

0

t�rATð1þ tTÞ�1
TA dt;

which would follow fromZ
N

0

t�r½ATðAð1þ tATAÞ�1
A � ð1þ tTÞ�1ÞTA� dtp0:
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So, it would be enough to see that

Að1þ tATAÞ�1
Apð1þ tTÞ�1:

Since the left-hand side of this inequality is a norm-continuous function of A; we can
approximate A by a sequence fAng with 0oAnp1: Then it suffices to prove that

Anð1þ tAnTAnÞ�1
Anpð1þ tTÞ�1:

Or

ð1þ tAnTAnÞXAnð1þ tTÞAn

or

1XA2
n:

So, (i) holds.
The argument for (ii) is very similar but easier. As in the proof of (i) we can assume

m ¼ 1 and letting A ¼ b1=2 we have AX1 and we want

ðATAÞs
XATsA

for 1pso2: We argue as above with all of the inequalities reversed. Since AX1 it is
invertible and we need no approximations. Our final line for the argument then

becomes 1pA2 and so (ii) is done. &

Lemma 3.4. For TX0 in Lð1;NÞ and any b in N with bXm140;

lim
s-1þ

½ðs � 1ÞtðbTsÞ � ðs � 1Þtððb1=2Tb1=2ÞsÞ� ¼ 0:

Proof. Let M ¼ jjbjj then by Lemma 3.3

ðMs�1 � 1Þtðb1=2Tsb1=2ÞXt½ðb1=2Tb1=2Þs � b1=2Tsb1=2�Xðms�1 � 1Þt½b1=2Tsb1=2�:

Hence

ðMs�1 � 1Þðs � 1Þtðb1=2Tsb1=2Þ

Xðs � 1Þt½ðb1=2Tb1=2Þs� � ðs � 1Þt½b1=2Tsb1=2�

Xðms�1 � 1Þðs � 1Þtðb1=2Tsb1=2Þ:
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Now let s-1þ:

0X lim sup
s-1þ

ððs � 1Þt½ðb1=2Tb1=2Þs� � ðs � 1Þt½bTs�Þ

X lim inf
s-1þ

ððs � 1Þt½ðb1=2Tb1=2Þs� � ðs � 1Þt½bTs�ÞX0: &

Lemma 3.5. If bX0; TX0; TALð1;NÞ and bAN then there is a constant C40
depending on b;T such that for all 0oeo1:

lim sup
s-1þ

jðs � 1Þt½ðb1=2Tb1=2Þs� � ðs � 1Þt½ððb þ eÞ1=2Tðb þ eÞ1=2Þs�jpCe1=4:

Proof. To shorten the notation let A ¼ b1=2Tb1=2 and B ¼ ðb þ eÞ1=2Tðb þ eÞ1=2Þ so
that there is an M40 such that jjAjjspMjjT jjs and jjBjjspMjjT jjs for all 0oeo1

and 1oso2; where jj 
 jjs is the Schatten class norm. Then

jt½ðb1=2Tb1=2Þs� � t½ððb þ eÞ1=2Tðb þ eÞ1=2Þs�jpjjAs � Bsjj1

and

jjAs � Bsjj1pjjAs=2ðAs=2 � Bs=2Þjj1 þ jjðAs=2 � Bs=2ÞBs=2jj1:

Apply the [BKS] inequality to the RHS of the previous line (for a discussion of this
inequality for operator ideals in semifinite von Neumann algebras see the references
in [CPS]) using 14s=2 to obtain

jjAs � Bsjj1p jjAs=2jj2jjAs=2 � Bs=2jj2 þ jjAs=2 � Bs=2jj2jjBs=2jj2

p jjAs=2jj2jj jA � Bjs=2jj2 þ jj jA � Bjs=2jj2jjBs=2jj2

¼ jjAjjs=2s jjA � Bjjs=2s þ jjA � Bjjs=2s jjBjjs=2s

p 2Ms=2jjT jjs=2s jjA � Bjjs=2s

¼ 2Ms=2ðtðTsÞÞ1=2jjA � Bjjs=2s :

Hence

jðs � 1Þtðb1=2Tb1=2Þs � ðs � 1Þt½ððb þ eÞ1=2Tðb þ eÞ1=2Þs�j

p2Ms=2ððs � 1ÞtðTsÞÞ1=2½ðs � 1ÞjjA � Bjjss�
1=2:

Now using the argument at the beginning of this section there is a K40 depending
only b;T such that

lim sup
s-1þ

2Ms=2ððs � 1ÞtðTsÞÞ1=2pK :
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On the other hand,

jjA � Bjjsp jjb1=2Tðb1=2 � ðb þ eÞ1=2Þjjs þ jjððb þ eÞ1=2 � b1=2ÞTðb þ eÞ1=2Þjjs

p jjb1=2jj jjT jjsjjb1=2 � ðb þ eÞ1=2jj þ jjðb þ eÞ1=2 � b1=2jj jjT jjsjjðb þ eÞ1=2jj

pK2

ffiffi
e

p
jjT jjs ¼ K2

ffiffi
e

p
ðtðTsÞÞ1=s

for some constant K240: Thus

lim sup
s-1þ

½ðs � 1ÞjjA � Bjjss�
1=2p lim sup

s-1þ
½ðs � 1ÞtðTsÞ�1=2ðK2

ffiffi
e

p
Þs=2pðconstÞe1=4

as required. &

Proposition 3.6. If bX0;TX0; TALð1;NÞ and bAN then lim
s-1þ

ðs � 1ÞtðbTsÞ exists

if and only if lim
s-1þ

ðs � 1Þtððb1=2Tb1=2ÞsÞ exists and in this case they are equal.

Moreover, in any case for any *oALNðRÞn satisfying conditions (1)–(4) of

Corollary 1.6.

*o� lim
r-N

1

r
tðbT1þ1

rÞ ¼ *o� lim
r-N

1

r
tððb1=2Tb1=2Þ1þ

1
rÞ:

Proof. It suffices to prove

lim sup
r-N

1

r
tðbT1þ1

rÞ � 1

r
tððb1=2Tb1=2Þ1þ

1
rÞ

���� ���� ¼ 0:

Now,

lim sup
r-N

1

r
jtðbT1þ1

rÞ � tððb1=2Tb1=2Þ1þ
1
rÞj

p lim sup
r-N

1

r
jtðbT1þ1

rÞ � tððb þ eÞT1þ1
rÞj

þ lim sup
r-N

1

r
jtððb þ eÞ1=2T1þ1

rðb þ eÞ1=2Þ � t½ððb þ eÞ1=2Tðb þ eÞ1=2Þ1þ
1
r �j

þ lim sup
r-N

1

r
jt½ððb þ eÞ1=2Tðb þ eÞ1=2Þ1þ

1
r � � tððb1=2Tb1=2Þ1þ

1
rÞj

p lim sup
r-N

1

r
tðT1þ1

rÞeþ 0þ Ce1=4

by Lemmas 3.4 and 3.5. As this holds for all e40 we are done. &
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Corollary 3.7. If bX0;TX0; TALð1;NÞ and bAN then if any one of the following

limits exist they all do and if o is chosen to satisfy the conditions of Theorem 1.5 they

are all equal to toðbTÞ

(1) limt-N
1

logð1þtÞ
R t

0 msðb1=2Tb1=2Þ ds;

(2) limr-N
1
r
tðbT1þ1

rÞ;

(3) limr-N
1
r
tððb1=2Tb1=2Þ1þ

1
rÞ:

Proof. The simultaneous existence and equality of (2) and (3) follows from
Proposition 3.6. If (3) exists then (1) exists and is equal to (3) by the second part
of Theorem 3.1.

Conversely, if (1) exists then it equals toðb1=2Tb1=2Þ by definition. Then applying
Lemma 3.2(i), we have (1) equal to toðbTÞ and so for all e40 there is an M40 such
that for tXM

toðbTÞ � ep
1

logð1þ tÞ

Z t

0

msðb1=2Tb1=2Þ dsptoðbTÞ þ e:

Hence for tXM

ðtoðbTÞ � eÞ
Z t

0

1

1þ s
dsp

Z t

0

msðb1=2Tb1=2Þ dspðtoðbTÞ þ eÞ
Z t

0

1

1þ s
ds:

Following [P] introduce three functions

g2ðtÞ ¼
1

M

RM

0 msðb1=2Tb1=2Þ ds if toM;

mtðb1=2Tb1=2Þ if tXM;

(

g1ðtÞ ¼
ðtoðbTÞ � eÞ 1

M

RM

0
1

1þs
ds if toM;

ðtoðbTÞ � eÞ 1
1þt

if tXM;

(

g3ðtÞ ¼
ðtoðbTÞ þ eÞ 1

M

RM

0
1

1þs
ds if toM;

ðtoðbTÞ þ eÞ 1
1þt

if tXM:

(
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Then g1!!g2!!g3 and thus g
1þ1

r
1 !!g

1þ1
r

2 !!g
1þ1

r
3 : So we have for tXM

ðtoðbTÞ � eÞ1þ
1
r M

1

M

Z M

0

1

1þ s
ds

� �1þ1
r

þ
Z t

M

1

1þ s

� �1þ1
r

ds

24 35
pM

1

M

Z M

0

msðb1=2Tb1=2Þds

� �1þ1
r

þ
Z t

M

msðb1=2Tb1=2Þ1þ
1
r ds

pðtoðbTÞ þ eÞ1þ
1
r M

1

M

Z M

0

1

1þ s
ds

� �1þ1
r

þ
Z t

M

1

1þ s

� �1þ1
r

ds

24 35:
Let t-N so that

ðtoðbTÞ � eÞ1þ
1
r M

1

M

Z M

0

1

1þ s
ds

� �1þ1
r

þr
1

1þ M

� �1
r

24 35
pM

1

M

Z M

0

msðb1=2Tb1=2Þ ds

� �1þ1
r

þtððb1=2Tb1=2Þ1þ
1
rÞ �

Z M

0

msðb1=2Tb1=2Þ1þ
1
r ds

pðtoðbTÞ þ eÞ1þ
1
r M

1

M

Z M

0

1

1þ s
ds

� �1þ1
r

þr
1

1þ M

� �1
r

24 35:
Multiply by 1

r
and let r-N;

toðbTÞ � ep lim
r-N

1

r
tððb1=2Tb1=2Þ1þ

1
rÞpðtoðbTÞ þ eÞ:

Hence the result. &

Theorem 3.8. Let AAN; TX0; TALð1;NÞ:

(i) If lims-1þ ðs � 1ÞtðATsÞ exists then it is equal to toðATÞ where we choose o as in

the proof of Theorem 3.1.
(ii) More generally, if we choose functionals o and *o as in the proof of Theorem 3.1

then

*o� lim
r-N

1

r
tðAT1þ1

rÞ ¼ toðATÞ:
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Proof. For part (i) we first assume that A is self-adjoint. Write A ¼ aþ � a� where

a7 are positive. Choose *o as in the proof of Theorem 3.1, then

lim
s-1þ

ðs � 1ÞtðATsÞ ¼ *o� lim
r-N

1

r
tðAT1þ1

rÞ

¼ *o� lim
r-N

1

r
tðaþT1þ1

rÞ � *o� lim
r-N

1

r
tða�T1þ1

rÞ

¼ toðaþTÞ � toða�TÞ

¼ toðATÞ:

Here, the third equality uses first Proposition 3.6 and then Theorem 3.1. The
reduction from the general case to the self-adjoint case now follows in a similar way.

For part (ii), we assume that A is positive. By Lemma 3.2(i), Theorem 3.1, and
Proposition 3.6 we have

toðATÞ ¼ toðA1=2TA1=2Þ ¼ *o� lim
r-N

1

r
tððA1=2TA1=2Þ1þ

1
rÞ

¼ *o� lim
r-N

1

r
tðAT1þ1

rÞ:

For general A we reduce to the case A positive as in the proof of part (i). &

4. The heat semigroup formula

Throughout this section TX0: We define e�T�2

as the operator that is zero on

ker T and on ker T> is defined in the usual way by the functional calculus. We

remark that if TX0; TALðp;NÞ for some pX1 then e�tT�2

is trace class for all t40:
Our aim in this section is to prove the following:

Theorem 4.1. If AAN; TX0; TALð1;NÞ then,

o� lim
l-N

l�1tðAe�l�2T�2Þ ¼ Gð3=2ÞtoðATÞ

for oALNðRn

þÞ
n

satisfying the conditions of Theorem 1.5.

Let zAðp þ 1
r
Þ ¼ tðATpþ1

rÞ: Notice that 1
2
Gðp

2
Þ *o� limr-N

1
r
zAðp þ 1

r
Þ always exists.

Hence we can reduce the hard part of the proof of Theorem 4.1 to the following
preliminary result.
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Proposition 4.2. If AAN; TX0; TALðp;NÞ; 1ppoN then, choosing o and *o as in

the proof of Theorem 3.1, we have

o� lim
1

l
tðAe�T�2l�2=p

Þ ¼ 1

2
G

p

2

� �
*o� lim

r-N

1

r
zA p þ 1

r

� �
:

Proof. We have, using the Laplace transform,

Ts ¼ 1

Gðs=2Þ

Z
N

0

ts=2�1e�tT�2

dt:

Then

zAðsÞ ¼ tðATsÞ ¼ 1

Gðs=2Þ

Z
N

0

ts=2�1tðAe�tT�2Þ dt:

Make the change of variable t ¼ 1=l2=p so that the preceding formula becomes

p

2
Gðs=2ÞzAðsÞ ¼

Z
N

0

l
�s

p
�1
tðAe�l�2=pT�2Þ dl:

We split this integral into two parts,
R 1
0
and

R
N

1
and call the first integral RðrÞ where

s ¼ p þ 1
r
: Then

RðrÞ ¼
Z 1

0

l
� 1

pr
�2
tðAe�l�2=pT�2Þ dl ¼

Z
N

1

t
p
2
þ 1
2r
�1tðAe�tT�2Þ dt:

The integrand decays exponentially in t as t-N because T�2
XjjT2jj�1

1 so that for
AX0

tðAe�tT�2ÞptðAe�T�2

e
� t�1
jjT2jjÞ:

Then we can conclude that RðrÞ is bounded independently of r and so

limr-N
1
r
RðrÞ ¼ 0: For the other integral the change of variable l ¼ em givesZ

N

1

l
� 1

pr
�2
tðAe�l�2=pT�2Þ dl ¼

Z
N

0

e
�m

pr dbðmÞ;

where bðmÞ ¼
R m
0 e�vtðAe�e

�
2
n p

T�2Þ dv: Hence we can now write

p

2
G p þ 1

r

�� �
2

� �
zA p þ 1

r

� �
¼
Z

N

0

e
� m

pr dbðmÞ þ RðrÞ:
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Now consider

p

2
*o� lim

r-N

1

r
G

p

2
þ p

2r

� �
zA p þ 1

r

� �
¼ p

2
Gðp=2Þ *o� lim

r-N

1

r
zA p þ 1

r

� �
:

Then

p

2
Gðp=2Þ *o� lim

r-N

1

r
zA p þ 1

r

� �
¼ p *o� lim

r-N

1

pr

Z
N

0

e�m=pr dbðmÞ

(remembering that the term 1
r
RðrÞ has limit zero as r-N). By dilation invariance

and Theorem 2.2 we then have

p

2
Gðp=2Þ *o� lim

r-N

1

r
zA p þ 1

r

� �
¼ p *o� lim

m-N

bðmÞ
m

: ð4:0Þ

Making the change of variable l ¼ ev in the expression for bðmÞ we get

bðmÞ
m

¼ 1

m

Z em

1

l�2tðAe�T�2l�2=pÞ dl:

Make the substitution m ¼ log t so the RHS becomes

1

log t

Z t

1

l�2tðAe�T�2l�2=p

Þ dl ¼ g1ðtÞ:

This is the Cesaro mean of

g2ðlÞ ¼
1

l
tðAe�T�2l�2=pÞ:

So as we chose oALNðRn

þÞ
n to be G2 and M invariant we have oðg1Þ ¼ oðg2Þ:

Recalling that we choose *o to be related to o as in Theorem 3.1 and so using (4.0) we
obtain

o� lim
1

l
tðAe�T�2l�2=pÞ ¼ 1

2
G

p

2

� �
*o� lim

r-N

1

r
zA p þ 1

r

� �
: &

To prove the theorem consider first the case where A is bounded, AX0 and use the
Proposition 4.2 and Theorem 3.8 to assert that

Gð3=2ÞtoðATÞ ¼ Gð3=2Þ *o� lim
r-N

1

r
tðAT1þ1

rÞ ¼ o� lim
l-N

l�1tðAe�l�2T�2Þ:
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Then for self-adjoint A write A ¼ aþ � a� where a7 are positive so that

Gð3=2ÞtoðATÞ ¼Gð3=2ÞðtoðaþTÞ � toða�TÞÞ

¼o� lim
l-N

l�1tðaþe�l�2T�2Þ � o� lim
l-N

l�1tða�e�l�2T�2Þ

¼o� lim
l-N

l�1tðAe�l�2T�2Þ:

We can extend to general bounded A by a similar argument.

4.1. The ‘smaller’ ideal

The curious feature of our proof of this heat kernel formula of Connes for the
Dixmier trace is that we need to go via the zeta function and hence need the pair of
functionals *o and o as in Theorem 3.1. There is a special case of the previous result
for which we can avoid the introduction of these functionals and hence avoid using
the full strength of the assumptions in Theorem 1.5.

The operators TALð1;NÞ satisfying msðTÞpC=s for some C40 form an ideal as
well. For this ‘smaller ideal’, which is the one that usually arises in geometric
applications, there is a direct proof of a special case of the heat kernel formula which
does not use the zeta function.

For simplicity we restrict to A ¼ 1: This direct proof uses the Laplace transform:

T ¼ 1
Gð1=2Þ

R
N

0 u�1=2e�uT�2

du (with our usual convention that e�T�2

is defined to be

zero on ker T). Thus we have

Gð3=2Þ
logð1þ tÞ

Z t

0

msðTÞ ds ¼ 1

2 logð1þ tÞ

Z t

0

Z
N

0

u�1=2e�u=msðT2Þ du ds: ð4:1Þ

Using the basic fact that if f is increasing msð f ðTÞÞ ¼ f ðmsðTÞÞ [FK] we have

1

logð1þ tÞ

Z t

0

l�2tðe�l�2T�2Þ dl ¼ 1

logð1þ tÞ

Z t

0

Z
N

0

l�2e�l�2=msðT2Þds dl

and we have to show that this has the same o limit as (4.1). Change variable in this

integral by u ¼ l�2 then

1

logð1þ tÞ

Z t

0

l�2tðe�l�2T�2Þ dl

¼ 1

2 logð1þ tÞ

Z
N

1=t2

Z
N

0

u�1=2e�u=msðT2Þ ds du: ð4:2Þ
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Subtract (4.1) from (4.2) and rewrite the difference as

1

2 logð1þ tÞ

Z
N

0

Z
N

0

ð�w½0;t�ðsÞw½0;1=t2�ðuÞ

þ w½1=t2;NÞðuÞw½t;NÞðsÞÞu�1=2e�u=msðT2Þ du ds: ð4:3Þ

To prove equality of the o-limits of (4.1) and (4.2) we have to estimate the two
integrals in (4.3). The first of these is

1

2 logð1þ tÞ

Z 1=t2

0

Z t

0

u�1=2e�u=msðT2Þ ds du:

As we can (and do) assume that msðT2Þp1 for all s; e�u=msðT2Þpe�u: Thus the integral
is bounded by

1

2 logð1þ tÞ

Z t

0

Z 1=t2

0

u�1=2e�u du

 !
ds ¼ 1

2 logð1þ tÞt
Z 1=t2

0

u�1=2e�u du:

Now

g
1

2
;
1

t2

� �
¼
Z 1=t2

0

u�1=2e�u du

is the incomplete G function which has an expansion of the form (see [AS])

g
1

2
;
1

t2

� �
¼ 1

t

XN
0

ð�1Þn

n!

1

t2nð1
2
þ nÞ

:

So we conclude that

t

Z 1=t2

0

u�1=2e�u du ¼
XN
0

ð�1Þn

n!

1

t2nð1
2
þ nÞ

;

which is bounded as t-N: Thus as t-N

1

2 logð1þ tÞ

Z 1=t2

0

Z t

0

u�1=2e�u=msðT2Þ ds du-0:

For the second integral in (4.3) we first make a number of preliminary

observations. We make some changes of variable in letting r ¼ s=t and v ¼ ut2:
Then we find thatZ

N

1=t2

Z
N

t

u�1=2e�u=msðT2Þ ds du ¼
Z

N

1

Z
N

1

v�1=2e�v=t2mrtðT2Þ dr dv:
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Now we exploit the assumption that msðTÞ ¼ Oð1=sÞ and use v�1=2o1: Thus

mrtðT2ÞpC=ðrtÞ2 for some constant C andZ
N

1

Z
N

1

v�1=2e�v=t2mrtðT2Þ dr dvp
Z

N

1

Z
N

1

e�vr2=C dv dr

¼
Z

N

1

C
1

r2
e�r2=C droN:

Dividing by logð1þ tÞ and taking t-N shows that the second integral in (4.3)
gives a function of t which vanishes at infinity.

Now choose oALNðRn

þÞ
n satisfying conditions (1)–(3), (6) of Theorem 1.5.

Taking the o-limit on (4.3) gives zero. Writing toðTÞ ¼ o�
limt-N

1
logð1þtÞ

R t

0 msðTÞ ds we obtain, using the same reasoning as at the end of

Proposition 4.2, the result that

o� lim
l-N

l�1tðe�l�2T�2Þ ¼ Gð3=2ÞtoðTÞ:

5. The Lðp;NÞ-summable case

If TALðp;NÞ for p41; TX0 then msðTÞ ¼ Oð 1
s1=pÞ: Moreover, tðTpþ1

rÞ ¼R 1
0
lpþ1=rdNTðlÞ where NT ðlÞ ¼ tðEðlÞ � 1Þ for l40 where T ¼

R
l dEðlÞ is the

spectral resolution for T :

We now establish some Lðp;NÞ versions of our previous results.

Lemma 5.1. For TALðp;NÞ and o and *o as in the proof of Theorem 3.1 we have

ptoðTpÞ ¼ *o� lim
r-N

1

r
tðTpþ1

rÞ:

Proof. Set l ¼ e�u=p so that

1

r
tðTpþ1

rÞ ¼ p
1

pr

Z
N

0

e�u=rp dbðuÞ;

where bðuÞ ¼
R u

0 e�vdNTðe�v=pÞ: So using dilation invariance:

*o� lim
r-N

1

r
tðTpþ1

rÞ ¼ p *o� lim
r-N

1

pr

Z 1

0

e�u=pr dbðuÞ ¼ p *o� lim
u-N

bðuÞ
u
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by the weakn-Karamata theorem. Reasoning as in the proof of Theorem 3.1 and

substituting l ¼ e�v=p and u ¼ log t we have

*o� lim
u-N

bðuÞ
u

¼o� lim
t-N

1

log t

Z 1

t�1=p

lpdNTðlÞ

¼o� lim
t-N

1

log t
tðwð1

t
;NÞðT

pÞTpÞ ¼ toðTpÞ: &

Corollary 5.2. Let TX0; TALðp;NÞ then

o� lim
1

l
tðe�T�2l�2=pÞ ¼ G 1þ p

2

� �
*o� lim

r-N

1

r
tðTpþ1

rÞ

with the usual convention that e�T�2

is zero on ker T :

Proof. Combine Proposition 4.2 and Lemma 5.1. &

Our aim is now to prove the Lðp;NÞ version of Theorem 3.8 and the following
result of Connes’.

Theorem 5.3. If A is bounded, TX0; TALðp;NÞ for pX1

o� lim
l-N

l�1tðAe�l�2=pT�2Þ ¼ Gð1þ p=2ÞtoðATpÞ;

where e�T�2

is defined to be zero on ker T :

To this end let us consider the steps in the proof of Theorem 3.8. The key results
are Proposition 3.6 and Corollary 3.7. Proposition 3.6 rests on the preceding

lemmas. These lemmas have analogues in the case of Lðp;NÞ: The first nonobvious
extension is Lemma 3.3 which we replace by

Lemma 5.4. Let 0pTALð1;NÞ and let 0pbAN; jjbjjpM:

(i) For any sX1

mtðb1=2Tb1=2ÞspMs�1mtðb1=2Tsb1=2Þ; t40:

(ii) If bXm1; then sX1

mtðb1=2Tb1=2Þs
Xms�1mtðb1=2Tsb1=2Þ; t40:

Proof. The first result is a special case of [FK] Lemma 4.5. To obtain the second

result, we shall (without loss of generality) assume that jjT jjp1: Let T ¼
R 1
0
ldET ðlÞ
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be the spectral decomposition of T : Note that it follows from the assumption

TALð1;NÞ that tðETð1=n; 1�ÞoN for all nAN: We set for brevity

pn :¼ ET ð1=n; 1�; qn :¼ lðb�1=2pnÞ ¼ rðpnb�1=2Þ; Nn :¼ qnNqn; nAN;

where lð
Þ and rð
Þ are left and right support projections, respectively.
Note that Nn ¼ is a finite von Neumann algebra and that restriction
of the trace t on Nn is semifinite for every nAN: From assertion (i)
we have

mtðb�1=2ðpnTpnÞ�1
b�1=2Þspm�ðs�1Þmtðb�1=2ðpnTpnÞ�s

b�1=2Þ; nAN: ð5:1Þ

Note that b�1=2
X

1
M

and therefore b�1=2ðpnTpnÞ�1
b�1=2; b�1=2ðpnTpnÞ�s

b�1=2 are

invertible elements in Nn for all nX1:
Now we need a following simple observation: if ðM; tÞ is a finite von Neumann

algebra and 0px is an invertible t-measurable operator affiliated with M; then the

elements x�1 and mð
ÞðxÞ�1 are equimeasurable, or equivalently, mð
Þðx�1Þ is the

decreasing rearrangement of the function mð
ÞðxÞ�1: To see the validity of this

observation, set for brevity f ðlÞ :¼ 1
l; x ¼

R
N

0
l dExðlÞ; y ¼ f ðxÞ ¼R

N

0 f ðlÞdExðlÞ ¼
R
N

0 l dEyðlÞ and note that EyðDÞ ¼ Exð f �1ðDÞÞ for every Borel

subset DD½0;NÞ: In particular,

Eyðs;NÞ ¼ Exð f �1ðs;NÞÞ ¼ Ex 0;
1

s

� �
¼ 1� Ex 1

s
;N

� �
; s40;

whence

lsðyÞ ¼ tð1Þ � l1
s
�0
ðxÞ; s40:

If instead of the algebra ðM; tÞ and the element x we consider the von
Neumann algebra LNð0; tð1ÞÞ and the element mð
ÞðxÞ; then the preceding equality

becomes

lsððmð
ÞðxÞÞ�1Þ ¼ tð1Þ � l1
s
�0
ðmð
ÞðxÞÞ; s40

(where we use the notation lð
Þ for the classical distribution function of

the elements ðmð
ÞðxÞÞ�1 and mð
ÞðxÞ). Our observation now follows from

comparison of the two preceding equalities, taking into account a
crucial fact, namely that l1

s
�0
ðxÞ ¼ l1

s
�0
ðmð
ÞðxÞÞ for all s40: This latter

fact easily follows from the equality lsðxÞ ¼ lsðmð
ÞðxÞÞ and the assumption that M

is finite.
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Now we can continue the proof of the lemma. From inequality (5.1) taking the
inverses we get

m�1
t ðb�1=2ðpnTpnÞ�1

b�1=2Þs
Xmðs�1Þm�1

t ðb�1=2ðpnTpnÞ�s
b�1=2Þ;

t40; nAN; sX1:

Since 0pxpy implies mð
ÞðxÞpmð
ÞðyÞ we immediately infer from the preceding

inequality

mð
Þðm�1
t ðb�1=2ðpnTpnÞ�1

b�1=2ÞsÞXmðs�1Þmð
Þðm�1
t ðb�1=2ðpnTpnÞ�s

b�1=2ÞÞ; nAN:

The elements ðb�1=2ðpnTpnÞ�1
b�1=2Þs and b�1=2ðpnTpnÞ�s

b�1=2 are invertible
positive elements from Nn; and by the preceding observation we know that

the elements m�1
ð
Þ ðb�1=2ðpnTpnÞ�1

b�1=2Þs and ðb1=2ðpnTpnÞb1=2Þs (respectively,

m�1
ð
Þ ðb�1=2ðpnTpnÞ�s

b�1=2Þ and b1=2ðpnTpnÞs
b1=2Þ are equimeasurable, thus the

preceding inequality may be equivalently rewritten as

mð
Þððb1=2ðpnTpnÞb1=2ÞsÞXmðs�1Þmð
Þðb1=2ðpnTpnÞs
b1=2Þ; nAN:

To complete the proof of the lemma it is sufficient to show that

mð
Þððb1=2ðpnTpnÞb1=2ÞsÞ-mð
Þððb1=2Tb1=2ÞsÞ ð5:2Þ

and

mð
Þðb1=2ðpnTpnÞs
b1=2Þ-mð
Þðb1=2Tsb1=2Þ ð5:3Þ

in measure. Since mð
ÞðxsÞ ¼ ms
ð
ÞðxÞ for all xAN and all s40; to establish the first

convergence, it is sufficient to show that

mð
Þðb1=2ðpnTpnÞb1=2Þ-mð
Þðb1=2Tb1=2Þ:

To this end we shall need the following result [CS, Corollary 2.3].
If EðNÞ is a symmetric operator space associated with a separable symmetric

operator space Eð0;NÞ; then jjxenjjEðNÞ-0 and jjenxjjEðNÞ-0 for every xAEðNÞ
and every sequence feng of orthogonal projections in N decreasing to 0.

Consider the symmetric function space L1 þ LNð0;NÞ and let E be its closed
separable symmetric subspace obtained by taking the norm closure of
L1-LNð0;NÞ: It is easy to see that E is a separable symmetric function space
(in a sense it is an analogue of the space c0 of all bounded sequences converging to 0).
It is clear from the cited result from [CS] and the definition of pn that
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jjT � TpnjjEðNÞ-0 and jjT � pnT jjEðNÞ-0; whence jjT � pnTpnjjEðNÞ-0 and also

jjb1=2ðpnTpnÞb1=2 � b1=2Tb1=2jjEðNÞ-0:

Using the continuity of embedding of any EðNÞ into the space *N of all t-
measurable operators affiliated with N we get from the preceding convergence that

b1=2ðpnTpnÞb1=2 � b1=2Tb1=2-0

in measure. Now using [FK], Lemma 3.4 (ii) and the fact

lim
t-N

mtðb1=2ðpnTpnÞb1=2Þ ¼ lim
t-N

mtðb1=2Tb1=2Þ ¼ 0

we get

mð
Þðb1=2ðpnTpnÞb1=2Þ � mð
Þðb1=2Tb1=2Þ-0

in measure, i.e. (5.2) is established. The proof of (5.3) is very similar, after we note

that ðpnTpnÞs ¼ ðpnTspnÞ and therefore we omit the details. &

Next, some remarks are needed for Lemma 3.5. For the Lðp;NÞ case the statement

reads if bX0; TX0; TALðp;NÞ with b bounded then there is a constant C40
depending on b;T such that for all 0oeo1:

lim sup
s-pþ

fðs � pÞtðb1=2Tb1=2Þs � ðs � pÞt½ððb þ eÞ1=2Tðb þ eÞ1=2Þs�gpCe
1
4:

For the proof we use the same argument for all 1opo2 but for pX2 we use Cauchy–
Schwartz in place of the BKS inequality so that in fact the proof is more elementary.
The proofs of Proposition 3.6 and Corollary 3.7 also generalise to give us the
following:

Proposition 5.5. If bX0; TX0; TALðp;NÞ with b bounded then lims-pþ ðs � pÞtðbTsÞ
exists if and only if lims-pþ ðs � pÞtððb1=2Tb1=2ÞsÞ exists and in this case they are equal.

Moreover, in any case for any oALNðRþÞn chosen to satisfy the conditions of

Theorem 1.5

o� lim
r-N

1

r
tðbTpþ1

rÞ ¼ o� lim
r-N

1

r
tððb1=2Tb1=2Þpþ1

rÞ:

Now the proof of Theorem 3.8(i) generalises to give the
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Theorem 5.6. If A is bounded, TX0; TALðp;NÞ and

lim
s-pþ

ðs � pÞtðATsÞ

exists then it is equal to ptoðATpÞ:

Finally, it is now straightforward to extend the arguments we used in the proof of
Theorem 4.1 to prove Theorem 5.3.

6. Application to spectral flow and index formulae

We fix an unbounded self-adjoint operator D0 on H affiliated with N: Recalling
the discussion in the introduction we have:

Definition. We say that ðN;D0Þ is an odd bounded Lð1;NÞ-summable Breuer–

Fredholm module for a Banach *-algebra A if A is represented in N and if

ð1þ D2
0Þ

�1=2ALð1;NÞ and ½D0; a� is bounded for all a in a dense *-subalgebra of A:

Recall that these assumptions imply that a leaves the domain of D0 invariant. In

this section, we apply our results to Lð1;NÞ summable Breuer–Fredholm modules in
order to establish a relationship between the formula for spectral flow in [CP2] and
the formula in [CM]. In [CM] assumptions are made about the discreteness of the
spectrum of D0 which are clearly unrealistic when N is not type I.

We now summarise some well-known notions (cf. [PR]). Let KN be the t-
compact operators in N (that is the norm closed ideal generated by the projections
EAN with tðEÞoN) and p :N-N=KN the canonical mapping. A Breuer–
Fredholm operator is one that maps to an invertible operator under p: For a unitary
uAA the path

Du
t :¼ ð1� tÞD0 þ tuD0u

n

of unbounded self-adjoint Breuer–Fredholm operators is continuous in the sense
that

F u
t :¼ Du

t ð1þ ðDu
t Þ

2Þ�
1
2

is a continuous path of self-adjoint Breuer–Fredholm operators in N: Recall that
the Breuer–Fredholm index of a Breuer–Fredholm operator F is defined by

indðFÞ ¼ tðQker F Þ � tðQcoker F Þ;

where Qker F and Qcoker F are the projections onto the kernel and cokernel of F :
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Definition. If fFtg is a continuous path of self-adjoint Breuer–Fredholm operators in
N; then the definition of spectral flow of the path, sf ðfFtgÞ is based on the following
sequence of observations in [P1]:

1. The map t/signðFtÞ is usually discontinuous as is the projection-valued mapping

t/Pt ¼ 1
2
ðsignðFtÞ þ 1Þ:

2. However, t/pðPtÞ is continuous.
3. If P and Q are projections in N and jjpðPÞ � pðQÞjjo1 then

PQ : rngðQÞ-rngðPÞ

is a Breuer–Fredholm operator and so indðPQÞAR is well defined.
4. If we partition the parameter interval of fFtg so that the pðPtÞ do not vary much

in norm on each subinterval of the partition then

sf ðfFtgÞ :¼
Xn

i¼1

indðPti�1
Pti

Þ

is a well defined and (path-) homotopy-invariant number which agrees with the
usual notion of spectral flow in the type IN case.

We denote by sf ðD0; uD0unÞ ¼ sf ðfFtgÞ the spectral flow of this path [P1,P2] which
is an integer in the N ¼ BðHÞ case and a real number in the general semifinite case.

This real number sf ðD0; uD0u
nÞ recovers the pairing of the K-homology class ½D0� of

A with the K1ðAÞ class ½u�:
Let P denote the projection onto the nonnegative spectral subspace of D0: It is also

well known that spectral flow along fDu
t g is equal to the Breuer–Fredholm index of

the operator PuP acting on PH: When N ¼ BðHÞ and the spectrum of D0 is
discrete [CM] show that

indðPuPÞ ¼ 1
2
toðun½D0; u�jD0j�1Þ:

We aim to generalise this formula to the situation where N is a general semifinite
von Neumann algebra and link this formula with the expression for spectral flow.

Lemma 6.1. Let D0 be an unbounded self-adjoint operator affiliated with N so that

ð1þ D2
0Þ

�1=2
is in Lð1;NÞ: Let At and B be in N for tA½0; 1� with At self-adjoint and

t/At continuous. Let Dt ¼ D0 þ At and let p be a real number with 1opo4=3: Then,
the quantity

tðBð1þ D2
0Þ

�p=2 � Bð1þ D2
t Þ

�p=2Þ

is uniformly bounded independent of tA½0; 1� and pAð1; 4
3
Þ:
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Proof. We estimate

jtðBð1þ D2
0Þ

�p=2 � Bð1þ D2
t Þ

�p=2Þjp jjBð1þ D2
0Þ

�p=2 � Bð1þ D2
t Þ

�p=2jj1

p jjBjj 
 jjð1þ D2
0Þ

�p=2 � ð1þ D2
t Þ

�p=2jj1

p jjBjj 
 jj jð1þ D2
0Þ

�1 � ð1þ D2
t Þ

�1jp=2jj1

¼ jjBjj 
 jjð1þ D2
0Þ

�1 � ð1þ D2
t Þ

�1jjp=2
p=2:

Where the last inequality follows from the BKS inequality, see [BKS], or the
discussion and references in [CPS].

Now, by Lemma 2.9 of [CP1] we have

ð1þ D2
0Þ

�1 � ð1þ D2
t Þ

�1 ¼ Wt þ Zt;

where

Wt ¼ D0ð1þ D2
0Þ

�1
Atð1þ D2

t Þ
�1

and

Zt ¼ ð1þ D2
0Þ

�1
AtDtð1þ D2

t Þ
�1:

Now, since p=2 is less than 1, jj 
 jjp=2 is not a norm: however, by either 4.9 (iii) or 4.7

(i) of [FK] we have

jjWt þ Ztjjp=2p=2pjjWtjjp=2p=2 þ jjZtjjp=2p=2:

Thus, it suffices to see that jjWtjjp=2p=2 and jjZtjjp=2p=2 are bounded independent of p and t:

Now, ð1þ D2
0Þ

�1=2 and ð1þ D2
t Þ

�1=2 are both in Lð1;NÞ by Lemma 6 of [CP1] and

therefore in Lq for any q41: In particular, ð1þ D2
0Þ

�1 and ð1þ D2
t Þ

�1 are both in

L2=3 and L3=4:

Also, po4=3 implies 4� 3p40 and since we also have p41; we get rp :¼ 2p
4�3p

43=2

and we easily calculate:

1

2=3
þ 1

rp

¼ 1

p=2
:
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So, by Hölder’s inequality [FK, Theorem 4.2] , we get

jjWtjjp=2p=2 ¼ jjD0ð1þ D2
0Þ

�1
Atð1þ D2

t Þ
�1jjp=2

p=2

p fjjD0ð1þ D2
0Þ

�1jjrp
jjAtjj 
 jjð1þ D2

t Þ
�1jj2=3g

p=2

¼f½tðjD0ð1þ D2
0Þj

�rpÞ�1=rp jjAtjj ½tð1þ D2
t Þ

�2=3�3=2gp=2

p f½tð1þ D2
0Þ

�rp=2Þ�1=rp jjAtjj f ðjjAtjjÞ½tðð1þ D2
0Þ

�2=3�3=2gp=2;

where f ðtÞ ¼ 1þ 1
2
ðt2 þ t

ffiffiffiffiffiffiffiffiffiffiffiffi
4þ t2

p
Þ by Lemma 6 of [CP1]. Since rp43=2 we have

½ð1þ D2
0Þ

�1=2�3=2X½ð1þ D2
0Þ

�1=2�rp :

Thus, we obtain our final inequality for jjWtjjp=2p=2:

jjWtjjp=2p=2pf½tðð1þ D2
0Þ

�3=4Þ�1=rp jjAtjj f ðjjAtjjÞ 
 jjð1þ D2
0Þ

�1jj2=3g
p=2:

This last quantity is clearly a continuous function of t and p for tA½0; 1� and pAð1; 4
3
Þ:

As p-1 (and so rp-2) we see that the estimate for jjWtjjp=2p=2 converges to a

continuous function of tA½0; 1� and so remains bounded at this end of ð1; 4
3
Þ: On the

other hand, as p-4
3
(and so rp-N) we again see that the estimate for jjWtjjp=2p=2

converges to a continuous function of tA½0; 1� and so remains bounded at the right-

hand side of ð1; 4
3
Þ: That is, the estimate for jjWtjjp=2p=2 is bounded independent of

tA½0; 1� and pAð1; 4
3
Þ:

A slightly different calculation for jjZtjjp=2p=2; yields the inequality

jjZtjjp=2p=2pfjjð1þ D2
0Þ

�1jj2=3jjAtjj 
 jj f ðAtÞjj1=2½jjð1þ D2
0Þ

�1jj3=43=4�
1=rpgp=2:

Similar considerations to those above show that jjZtjjp=2p=2 is also bounded

independent of tA½0; 1� and pAð1; 4
3
Þ: This completes the proof. &

In [CP2, Corollary 9.4] we proved the following. Let N be a factor and ðN;D0Þ
be a Lð1;NÞ-summable Breuer–Fredholm module for the unital Banach *-algebra,
A; and let uAA be a unitary such that ½D0; u� is bounded. Let P be the projection on
the nonnegative spectral subspace of D0: Then for each p41

indðPuPÞ ¼ sf ðD0; uD0unÞ ¼ 1

C̃p=2

Z 1

0

tðu½D0; un�ð1þ ðDu
t Þ

2Þ�p=2Þ dt;
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where

Du
t ¼ D0 þ tu½D0; un� ¼ D0 þ At for At ¼ tu½D0; un� tA½0; 1�

and C̃p
2
¼
R
N

�N
ð1þ x2Þ�

p
2 dx: (Note that a similar formula appears in Theorem 2.17

of [CP1] except that there the exponent p43
2
: The improvement in the lower bound

on the exponent uses the theory of theta summable Fredholm modules in [CP2].) The
removal of the assumption that N be a factor is not hard (see for example the
discussion in the appendix to [PR]). The main point to note is that when N is a
general semi-finite von Neumann algebra then the map u-indðPuPÞ is clearly
dependent on the choice of trace t; there being no canonical choice. However, this is
not important for our discussion in this paper.

Theorem 6.2. Let ðN;D0Þ be a Lð1;NÞ-summable Breuer–Fredholm module for the

unital Banach *-algebra,A; and let uAA be a unitary such that ½D0; u� is bounded. Let

P be the projection on the nonnegative spectral subspace of D0: Then with o chosen as

in Theorem 1.5,

indðPuPÞ ¼ sf ðD0; uD0u
nÞ ¼ lim

p-1þ
1
2
ðp � 1Þtðu½D0; un�ð1þ D2

0Þ
�p=2Þ

¼ 1
2toðu½D0; un�ð1þ D2

0Þ
�1=2Þ

¼ 1
2
toðu½D0; un�jD0j�1Þ;

where the last equality only holds if D0 has a bounded inverse.

Remark. (1) The equality

indðPuPÞ ¼ 1
2
toðu½D0; un�jD0j�1Þ ð6:1Þ

proved above should be compared with Theorem IV.2.8 of [Co4]. In the case
where N ¼ BðHÞ the RHS of (6.1) is a Hochschild 1-cocycle on A which is

known to equal the Chern character of the Lð1;NÞ-summable Fredholm module
ðA;D0;HÞ:

(2) Since any 1-summable module is clearly a Lð1;NÞ-summable module,
the theorem implies that any unbounded 1-summable module must have a trivial
pairing with K1ðAÞ and is therefore uninteresting from the homological point of
view.

Proof. By the extension of Corollary 9.4 of [CP2] to the case where N is a general
semifinite von Neumann algebra, we have for each p41; that

indðPuPÞ ¼ 1

C̃p=2

Z 1

0

tðu½D0; un�ð1þ ðDu
t Þ

2Þ�p=2Þ dt;
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where the notation is described in the paragraph preceding the theorem. Now, by
Lemma 6.1, we have that

jtðu½D0; un�½ð1þ ðDu
t Þ

2Þ�p=2 � ð1þ D2
0Þ

�p=2�Þj

is uniformly bounded independent of t and p for 1opo4
3
: Since, C̃p=2-N as p-1þ;

we see that:

indðPuPÞ � 1

C̃p=2

tðu½D0; un�ð1þ D2
0Þ

�p=2Þ
�����

�����
¼ 1

C̃p=2

Z 1

0

tðu½D0; un�ð1þ ðDu
t Þ

2Þ�p=2Þ dt � 1

C̃p=2

Z 1

0

tðu½D0; un�ð1þ D2
0Þ

�p=2Þ dt

�����
�����

p
1

C̃p=2

Z 1

0

jtðu½D0; un�½ð1þ ðDu
t Þ

2Þ�p=2 � ð1þ D2
0Þ

�p=2�Þj dt

p
Constant

C̃p=2

-0:

Now, it is elementary that as p-1þ

2

p � 1
¼
Z
jxjX1

1

jxj

� �p

dxB
Z

N

�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
� �p

dx ¼ C̃p=2:

This ends the proof of the first equality.
The second equality follows from Theorem 3.8(i).

The third equality follows from the fact that ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

0

q
Þ�1 � jD0j�1 is very trace-

class:

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

0

q
Þ�1 � jD0j�1 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

0

q
Þ�1jD0j�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

0

q
þ jD0jÞ�1: &

7. Non-smooth foliations and pseudo-differential operators

The main aim of Prinzis’ thesis [P] is to establish a Wodzicki residue formula for
the Dixmier trace of certain pseudo-differential operators associated to non-smooth
actions of Rn on a compact space X : We will not reproduce the full details of [P],
indeed the subject deserves a far more complete analysis than we have space for here.

The set-up is the group-measure space construction of Murray–von Neumann.
Thus X is a compact space equipped with a probability measure n and a continuous
free minimal ergodic action a of Rn on X leaving n invariant. We write the action as
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x-t:x for xAX and tARn: Then the crossed product LNðX ; nÞ �a R
n is a type II

factor contained in the bounded operators on L2ðRn;L2ðX ; nÞÞ: We describe

the construction. For a function fAL1ðRn;LNðX ; nÞÞCLNðX ; nÞ �a R
n the

action of f on a vector x in L2ðRn;L2ðX ; nÞÞ is defined by twisted left convolution
as follows:

ð *pð f ÞxÞðsÞ ¼
Z
Rn

a�1
s ð f ðtÞÞxðs � tÞdt:

Here, f ðtÞ is a function on X acting as a multiplication operator on L2ðX ; nÞ: The
twisted convolution algebra

L1ðRn;LNðX ; nÞÞ-L2ðRn;L2ðX ; nÞÞ

is a dense subspace of L2ðRn;L2ðX ; nÞÞ and there is a canonical faithful, normal,
semifinite trace, Tr; on the von Neumann algebra that it generates. This von
Neumann algebra is

N ¼ ð *pðLNðX ; nÞ �a R
nÞÞ00:

For functions f ; g : Rn-LNðX Þ which are in L2ðRn;L2ðX ; nÞÞ and whose twisted left

convolutions *pð f Þ; *pðgÞ define bounded operators on L2ðRn;L2ðX ; nÞÞ; this trace is
given by

Trð *pð f Þn *pðgÞÞ ¼
Z
Rn

Z
X

f ðt; xÞgðt; xÞn dnðxÞdt;

where we think of f ; g as functions on Rn � X :

Identify L2ðRnÞ with L2ðRnÞ#1CL2ðRn;L2ðX ; nÞÞ then any scalar-valued func-

tion f on Rn which is the Fourier transform f ¼ #g of a bounded L2 function, g will

satisfy fAL2ðRn;L2ðX ; nÞÞ and *pð f Þ will be a bounded operator.
Pseudo-differential operators are defined in terms of their symbols. A smooth

symbol of order m is a function a : X � Rn-C such that for each xAX ax; defined
by axðt; xÞ ¼ aðt:x; xÞ; satisfies:

(1) supfj@b
x@

g
t axðt; xÞð1þ jxjÞ�mþjbjjðt; xÞARn � Rn; b; gANn; jbj þ jgjpMgoN for

all MAN;

(2) x-axð0; xÞ is a smooth function on Rn into the space CNðX Þ; the set of
continuous functions f on X such that t-ðx-f ðt:xÞÞ is smooth on Rn:

Each symbol a defines a pseudo-differential operator OpðaÞ on CðXÞ#CN

c ðRnÞ by

OpðaÞ f ðx; tÞ ¼ 1

ð2pÞn

Z
Rn

eitxaðt:x; xÞ f̂ ðx; xÞ dx; fACðXÞ#CN

c ðRnÞ:
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The principal symbol of a pseudo-differential operator A on X is the limit

smðAÞðx; xÞ ¼ lim
l-N

aðx; lxÞ
lm ðx; xÞAðX � Rn

\f0gÞ

if it exists. We say A is elliptic if its symbol a is such that ax is elliptic for all xAX :
Prinzis studies invertible positive elliptic pseudo-differential operators A with a
principal symbol. Henceforth, we will only consider such operators. The zeta
function of such an operator is zðzÞ ¼ tðAzÞ and this exists because Az is in the trace
class in N; ½P� for Rzo� n=m: Prinzis shows that

lim
x-�n�

m

x þ n

m

� �
zðxÞ ¼ � 1

ð2pÞn
m

Z
X�Sn�1

smðAÞðx; xÞ�
n
m dnðxÞ dx ð7:1Þ

and that A�n
mALð1;NÞ:

Our contribution to this situation is to note that (7.1) combined with Theorem 5.6
implies that we have the relation

toðA�n
mÞ ¼ 1

ð2pÞn
n

Z
X�Sn�1

smðAÞðx; xÞ�
n
m dnðxÞ dx:

In other words, we have a type II Wodzicki residue for evaluating the Dixmier trace
of these pseudo-differential operators.

8. Lesch’s index theorem

Here, we consider a unital Cn-algebra A with a faithful finite trace, t satisfying
tð1Þ ¼ 1 and a continuous action a of R on A leaving t invariant. In this section, we
deduce the index theorem of M. Lesch as a corollary of our zeta function approach
to the Dixmier Trace formula for the index of generalised Toeplitz operators in this
situation. See [L,PR].

We let Ht denote the Hilbert space completion of A in the inner product ðajbÞ ¼
tðbnaÞ: Then A is a Hilbert Algebra and the left regular representation ofA on itself
extends by continuity to a representation, a/ptðaÞ of A on Ht [Dix]. In what
follows, we will drop the notation pt and just denote the action of A on Ht by
juxtaposition.

We now look at the induced representation, *p; of the crossed product Cn-algebra

A�a R on L2ðR;HtÞ: That is, *p is the representation p� l obtained from the
covariant pair, ðp; lÞ of representations of the system ðA;R; aÞ defined for aAA;

t; sAR and xAL2ðR;HtÞ by

ðpðaÞxÞðsÞ ¼ a�1
s ðaÞxðsÞ
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and

ltðxÞðsÞ ¼ xðs � tÞ:

Then, for a function xAL1ðR;AÞCA�a R the action of *pðxÞ on a vector x in

L2ðR;HtÞ is defined as follows:

ð *pðxÞxÞðsÞ ¼
Z

N

�N

a�1
s ðxðtÞÞxðs � tÞ dt:

Now the twisted convolution algebra L1ðR;AÞ-L2ðR;HtÞ is a dense subspace of

L2ðR;HtÞ and also a Hilbert Algebra in the given inner product. As such, there is a
canonical faithful, normal, semifinite trace, Tr; on the von Neumann algebra that it
generates. Of course, this von Neumann algebra is identical with

N ¼ ð *pðA�a RÞÞ00:

For functions x; y : R-ACHt which are in L2ðR;HtÞ and whose twisted left

convolutions *pðxÞ; *pðyÞ define bounded operators on L2ðR;HtÞ; this trace is given by

Trð *pðyÞn *pðxÞÞ ¼ /xjyS ¼
Z

N

�N

tðxðtÞyðtÞnÞdt:

In particular, if we identify L2ðRÞ ¼ L2ðRÞ#1ACL2ðR;HtÞ then any scalar-

valued function x on R which is the Fourier transform x ¼ f̂ of a bounded L2

function, f will have the properties that xAL2ðR;HtÞ and *pðxÞ is a bounded
operator. For such scalar functions x; the operator *pðxÞ is just the usual convolution
by the function x and is usually denoted by lðxÞ since it is just the integrated form of
l: The next lemma follows easily from these considerations.

Lemma 8.1. With the hypotheses and notation discussed above:

(i) if hAL2ðRÞ with lðhÞ bounded and aAA; then defining f : R-Ht via f ðtÞ ¼
ahðtÞ we see that fAL2ðR;HtÞ and *pð f Þ ¼ pðaÞlðhÞ is bounded,

(ii) if gAL1ðRÞ-LNðRÞ and aAA then pðaÞlð #gÞ is trace-class in N and

TrðpðaÞlð #gÞÞ ¼ tðaÞ
Z

N

�N

gðtÞ dt:

Proof. To see part (i), let xACcðR;HtÞDL2ðR;HtÞ: Then

ð *pð f ÞxÞðsÞ ¼
Z

N

�N

a�1
s ð f ðtÞÞxðs � tÞ dt

¼
Z

N

�N

a�1
s ðaÞhðtÞxðs � tÞ dt
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¼ a�1
s ðaÞ

Z
N

�N

hðtÞxðs � tÞ dt

¼ a�1
s ðaÞðlðhÞxÞðsÞ

¼ ðpðaÞlðhÞxÞðsÞ:

To see part (ii) we can (and do) assume that g is nonnegative and a is self-adjoint.

Then let g ¼ g1=2g1=2 so that g1=2AL2-LN and so lðdg1=2g1=2Þ is bounded. Now,

pðaÞlð #gÞ ¼ pðaÞlðdg1=2g1=2Þpð1AÞlðdg1=2g1=2Þ:

Then, pðaÞlðdg1=2g1=2Þ ¼ *pðxÞ where xðtÞ ¼ adg1=2g1=2ðtÞ and pð1AÞlðdg1=2g1=2Þ ¼ *pðyÞ where

yðtÞ ¼ 1A
dg1=2g1=2ðtÞ: So, *pðxÞ and *pðyÞ are in Nsa and pðaÞlð #gÞ ¼ *pðxÞ *pðyÞ:

Hence,

TrðpðaÞlð #gÞÞ ¼Trð *pðxÞ *pðyÞÞ

¼
Z

N

�N

tðxðtÞyðtÞÞ dt

¼ tðaÞ
Z

N

�N

dg1=2g1=2ðtÞ
��� ���2 dt

¼ tðaÞ
Z

N

�N

gðsÞ ds: &

Now, N is a semifinite von Neumann algebra with faithful, normal, semifinite
trace, Tr; and a faithful representation p :A-N ½Dix�: For each tAR; lt is a
unitary in UðNÞ: In fact the one-parameter unitary group flt j tARg can be written

lt ¼ eitD where D is the unbounded self-adjoint operator

D ¼ 1

2pi

d

ds

which is affiliated withN: In the Fourier Transform picture (i.e., the spectral picture
for D) of the previous proposition, D becomes multiplication by the independent
variable and so f ðDÞ becomes pointwise multiplication by the function f : That is,

*pð f̂ Þ ¼ lð f̂ Þ ¼ f ðDÞ:

And, hence, if f is a bounded L1 function, then:

Trð f ðDÞÞ ¼
Z

N

�N

f ðtÞ dt:

By this discussion and the previous lemma, we have the following result.
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Lemma 8.2. If fAL�1ðRÞ-LNðRÞ and aAA then pðaÞ f ðDÞ is trace-class in N and

TrðpðaÞ f ðDÞÞ ¼ tðaÞ
Z

N

�N

f ðtÞ dt:

We let d be the densely defined (unbounded) *-derivation on A which is the

infinitesimal generator of the representation a : R-AutðAÞ and let #d be the
unbounded *-derivation on N which is the infinitesimal generator of the
representation Ad 3 l : R-AutðNÞ (here AdðltÞ denotes conjugation by lt). Now

if aAdomðdÞ then clearly pðaÞAdomð#dÞ and pðdðaÞÞ ¼ #dðpðaÞÞ: By Bratteli and
Robinson [BR, Proposition 3.2.55] (and its proof) we have that pðdðaÞÞ leaves the
domain of D invariant and

pðdðaÞÞ ¼ 2pi½D; pðaÞ�:

We are now in a position to state and prove Lesch’s index theorem.

Theorem 8.3. Let t be a faithful finite trace on the unital Cn-algebra, A; which is

invariant for an action a of R: Let N be the semifinite von Neumann algebra

ð *pðA�a RÞÞ00; and let D be the infinitesimal generator of the canonical representation l
of R in UðNÞ: Then, the representation p :A-N defines a Lð1;NÞ summable

Breuer–Fredholm module ðN;DÞ for A: Moreover, if P is the nonnegative spectral

projection for D and uAUðAÞ is also in the domain of d; then Tu :¼ PpðuÞP is Breuer–

Fredholm in PNP and

indðTuÞ ¼
1

2pi
tðudðunÞÞ:

Proof. It is easy to see that D satisfies ð1þ D2Þ�1=2ALð1;NÞ: By the previous
discussion, for any aAdomðdÞ we have pðdðaÞÞ ¼ 2pi½D; pðaÞ�: Since the domain of d is
dense inA we see that p defines a Lð1;NÞ summable Breuer–Fredholm module for A:

Now, by Theorem 6.2 and Lemma 8.2

indðTuÞ ¼ lim
p-1þ

1

2
ðp � 1Þ TrðpðuÞ½D; pðunÞ�ð1þ D2Þ�p=2Þ

¼ lim
p-1þ

1

2
ðp � 1Þ 1

2pi
TrðpðudðunÞÞð1þ D2Þ�p=2Þ

¼ lim
p-1þ

1

2
ðp � 1Þ 1

2pi
tðudðunÞÞ

Z
N

�N

ð1þ t2Þ�p=2
dt

¼ lim
p-1þ

1

2pi
tðudðunÞÞ1

2
ðp � 1ÞC̃p=2

¼ 1

2pi
tðudðunÞÞ: &
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