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Abstract We study a one-dimensional system composed of N charged bosons confined in an external harmonic
potential. In the limit of a strong interaction between the particles, we apply the harmonic approximation and
derive an integral representation for the purity of the one-particle reduced density matrix, enabling an easy
determination of the asymptotic entanglement. Results for the dependence of the asymptotic linear entropy on
N are provided and discussed in detail for the first time.

1 Introduction

In the past few years there has been considerable interest in exploring the properties of quantum systems of
interacting particles in a confining potential. In particular, systems of repelling particles Coulombically held
together in a harmonic trap have attracted much attention because of their usefulness in modeling various
experimentally fabricated systems. In this respect, the best known are the quantum dots [1] or ions in electro-
magnetic traps [2], enabling, among other things, the formation of strongly correlated few-body Wigner crystal
states [3]. Recently, a number of papers have also dealt with the entanglement properties of such systems [4–9],
but, mainly, in the two-particle case.

Here we consider systems consisting of N charged particles in a trap modeled by a one-dimensional
harmonic potential

H = −1

2

N∑

i=1

∂2

∂x2
i

+ U, (1)

where

U = 1

2

N∑

i=1

x2
i +

N∑

i> j=1

g

|xi − x j | . (2)

In a recent study [8], performed by one of us, the entanglement in the ground state of the three-particle system
(1) (N = 3) was investigated in the g → ∞ limit by applying the harmonic approximation [10,11]. In the
present paper, we go one step further and, based on a method of [8], gain some insight into the effect of N on
the ground-state entanglement of (1) as g → ∞.

This paper is organized as follows. In Sect. 2 we derive, within the framework of the harmonic approxi-
mation, an explicit integral representation for the purity of the asymptotic one-particle reduced density matrix
(g → ∞). Section 3 is devoted to results regarding the dependence of the entanglement on N , and a brief
summary of our conclusions is given in Sect. 4.

P. Kościk (B) · R. Maj
Institute of Physics, Jan Kochanowski University, ul. Świȩtokrzyska 15, 25-406 Kielce, Poland
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2 Method

2.1 The Harmonic Approximation

Due to the long-range nature of the Coulomb interaction, the distances between the particles increase
with increasing g. At large enough g, the particles localize themselves at equilibrium positions rc

min =
{xc

1, xc
2, . . . , xc

N }, forming a string, and the potential (2) can be well approximated harmonically around this
point [10], which gives the Hessian matrix

H =
[
∂2U

∂xm∂xk
|{r=rc

min}
]

N×N
, (3)

with

∂2U
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= δmk + 2g

N∑

i> j=1

(δim − δ jm)(δik − δ jk)

|xi − x j |3 , (4)

where rc
min are the solutions of the set of equations

∂U

∂xk
= xk − g

N∑

i> j=1

xi − x j

|xi − x j |3 (δik − δ jk) = 0, (5)

k = 1, . . . , N . The classical equilibrium positions of the particles are proportional to g1/3, that is, xc
i = αi g1/3,

so that the Hessian (3) does not depend on g but only on the set of parameters αi [10]. From here on
we refer to the point rc

min with xc
1 < xc

2 < . . . < xc
N , which in the cases of even and odd val-

ues of N has the form rc
min = g1/3{−α1,−α2, . . . ,−α(N/2)−1, αN/2, α(N/2)−1, . . . , α2, α1} and rc

min =
g1/3{−α1,−α2, . . . .,−α(N−1)/2, 0, α(N−1)/2 . . . , α2, α1}(α(N+1)/2 = 0), respectively [10] (xc

i = xc
N−i+1).

Within the standard normal mode theory [10,11], the problem simplifies to a set of N uncoupled oscillators
in terms of the normal-mode coordinates νi , ω2

i ν
2
i /2, which are related to Z = {z1, z2, . . . , zN } = r − rc

min

by {ν1, ν2, . . . , νN } = UZ, where U is a unitary matrix that diagonalizes the Hessian H, H
′ = UHUT and the

normal mode frequencies ωi are given by ωi =
√

H
′
i i .

An harmonic approximation to the bosonic ground state of (1) can be constructed as follows [8]:

Ψ (x1, x2, . . . , xN ) = C
∑

s

ψ(xs(1) − xc
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N ), (6)

with
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2 , (7)

〈ψ |ψ〉 = 1, where {s(1), s(2), . . . , s(N )} are the integers {1, 2, 3, . . . , N } permuted into a different order and
C is the normalization constant. It can be readily inferred at this point that in the asymptotic regime as g → ∞,
where γi j = |xc

i − xc
j | → ∞ (i �= j), the value of C tends to N !−1/2, Cg→∞ = N !−1/2.

2.2 The Purity of the One-Particle Reduced Density Matrix

Now we come to the point where we explore the effect of N on the entanglement at the g → ∞ limit. Most of
the popular entanglement measures are functions of the purity (P) of the one-particle reduced density matrix
(1-RDM) ρ̂ = Tr2,3,..,N |Ψ 〉 〈Ψ |,

P = Trρ̂2. (8)
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Among them, the best known are the linear entropy L = 1 − P[12] and the participation ratio R = P−1[13].
We recall here that the 1-RDM is used to characterize the bipartite entanglement between the subsets of one
particle and the remaining N − 1 particles [14]. The 1-RDM expressed in coordinates takes the form

ρ(x, y) =
∫ ∞

−∞
. . .

∫ ∞

−∞
Ψ (x, x2, . . . , xN )Ψ (y, x2, . . . , xN )dx2dx3, . . . , dxN , (9)

and its purity can be calculated as [13]

P =
∫ ∞

−∞

∫ ∞

−∞
[ρ(x, y)]2dxdy. (10)

In the already cited [8], the asymptotic behavior of the 1-RDM was discussed in the case of N = 3. It is
a quite straightforward task to derive an asymptotic form of the 1-RDM in the general case of N particles.
Indeed, after substituting (6) into (9), one easily infers that in the limit as g → ∞ (γi j → ∞), the 1-RDM
reduces to

ρg→∞ = ρ1 + ρ2 + . . .+ ρN , (11)

with

ρ1 = D
∫ ∞

−∞
. . .

∫ ∞

−∞
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...

ρN = D
∫ ∞

−∞
. . .
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−∞
ψ(z1, z2, . . . , x − xc

N )ψ(z1, z2, . . . , y − xc
N )dz1dz2, . . . , dzN−1.

where D = (N − 1)![Cg→∞]2 = N−1. Furthermore, an easy inspection of the normal-mode coordinates
νi (z1, . . . , zN ) reveals that Trρ2

i = Trρ2
N−i+1 (for details concerning the properties of νi (z1, . . . , zN ), see, for

example, [10]). Hence, bearing in mind this finding and the fact that the integral overlap between ρi and ρ j
vanishes for any i �= j as g → ∞, we conclude that the asymptotic purity Pg→∞ can be decomposed as

Pg→∞ = 2

N
2∑

i=1

Trρ2
i , (N − even) (12)

and

Pg→∞ = 2

N−1
2∑

i=1

Trρ2
i + Trρ2

N+1
2
, (N − odd) (13)

with

Trρ2
i =

∫ ∞

−∞

∫ ∞

−∞
ρ̃2

i d x̃d ỹ, (14)

where we have eliminated the equilibrium positions in ρi by translating the coordinates by x 	→ x̃ + xc
i ,

y 	→ ỹ + xc
i , (ρi 	→ ρ̃i ).
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3 Results

The classical equilibrium positions of the particles are known analytically only for N = 2, 3 [10]. For larger
N , we numerically solve the set of (5) for the values of xc

i . The integrals in (11) and in (14) can be performed in
an algebraic way, but for the reasons mentioned above, the values of Pg→∞ can be obtained in closed analytic
form solely for N = 2, 3, that is,

Pg→∞
N=2 =

√
−3

2
+ √

3 ≈ 0.481,

and

Pg→∞
N=3 = 1

3
√

5 + 68√
145

+ 2

3

√
7
2 + 2

√
3 +

√
2

145

(
326 + 187

√
3
)

≈ 0.313.

For illustrative purposes, we present in Table 1 some values of Lg→∞ = 1−Pg→∞ and of Rg→∞ = (Pg→∞)−1

obtained by us with the use of (12)–(13). In [9], the values of Lg→∞ were found numerically to be about
0.52, 0.68, and 0.77 for N = 2, 3 and N = 4, respectively, where they were determined by the configuration
interaction method. We find that the results obtained from (12)–(13) compare well with the above values,
which confirms the correctness of our theoretical derivations.

We close with a brief discussion of the effect of N on the entanglement. Figure 1 displays the dependence of
Lg→∞ for N up to N = 10, where in order to gain some insight into the effect of g, the variations of L for some
exemplary values of g are also depicted (these results are taken from Fig. 6 of [9]). The further extension of
the results for Lg→∞ for larger N is a straightforward task but the computational time increases considerably.
As may be seen from Fig. 1, the linear entropy L generally has a monotonically increasing behaviour as the
number of particles in the system increases. In other words, as N increases, the entanglement between the
subsets of one particle and the remaining N − 1 particles increases as well. As can be further inferred from
Fig. 1, the larger is N , the smaller is the change in the entanglement (in a relative sense) produced by the
addition of one particle to the system.

Finally, there may be a general interest in noting that the entanglement in the system (1) exhibits the
opposite behaviour to that in a system of harmonically trapped bosons interacting via V = gm(xi − x j )

2 (the

Table 1 Lg→∞ and Rg→∞ determined as discussed in the text are compared with the numerical results of [9]

N = 2 N = 3 N = 4 N = 5 N = 6

Lg→∞ 0.518283 0.686583 0.769126 0.817901 0.85001

[9] 0.52 0.68 0.77

Rg→∞ 2.07591 3.19064 4.33137 5.49152 6.66711
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Fig. 1 The linear entropy L as a function of N for g = 2, 7,∞
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so-called Moshinsky atom), where the ground-state linear entropy L decreases with N for large enough N
[15]. The only exceptions here are the cases gm = 0 and gm → ∞ where L = 0 and L = 1, respectively,
regardless of N .

4 Summary

We studied the entanglement properties of a system of N charged bosons confined in a one-dimensional
harmonic potential. We derived, within the framework of the harmonic approximation, an asymptotic integral
expression for the purity of the one-particle reduced density matrix, allowing for its easy determination over a
wide range of values of N . Based on this finding we revealed for the first time the effect of N on the amount
of entanglement in the asymptotic ground state of the system. Among other things, our results showed that
the entanglement increases monotonically with N , making its most rapid variations in the regime of small
values of N . It turned out that the main entanglement features exhibited by the present system are substantially
different from those exhibited by the Moshinsky model system. It would be desirable to extend the current
calculations to systems of higher spatial-dimensionality, and this is an open topic for future investigations.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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