ON PERMUTATION CHARACTERS OF WREATH PRODUCTE

Adalbert KEF SER and Juirgen TAPPE
Rheinisch Westfalische Technische Hocinschule, Aachen, Federal Republic of Germany

Received 26 September 1975

Abstract

It is known that the character rings of symmetric groups S_{n} and the character rings of hyperoctahedral 4 roups $S_{2} \vee S_{n}$ are generated by (transitive) permutation characters. These results of Young are generalized to wreath products $G \sim H$ (G a finite group, H a permutation group acting on a finite set). It is thown that the character ring of $G \sim H$ is generated by permutation characters if this hoids for G, H and certain subgroups of H. This result can be sharpened for wreath products $G \backsim S_{n}$; if the character ring of G has a basis of transitive permutation characters, then the same holds for the character ring of $G \backsim S_{n}$.

0. Introduction

It is well known that the character rings of symmetric groups S_{n} and the character rings of hyperoctahedral groups $S_{2} \sim S_{n}$ possess \mathbb{Z}-bases consisting of transitive permutation characters (cf. [4, 6]). In order to generalize these results we prove the following twe theorems:

Theorem 1. Let G denote a finite group and H a subgroup of S_{n}. If the characters of G and the characters of all intersections of H with Youngsubgroups of S_{n} are \mathbb{Z}-linear combinations of permutation characters. then the same holds for the characters of $G \sim H$.

Theorem 2. If the character ring of G has a \mathbb{Z}-basis of transitive permutation characters then the same holds for the character rings of the monomial groups $G \sim S_{n}$.

1. Some remarks on wreath products

Let G denote a finite group and H a subgroup of S_{n}, where S_{n} is the
symmetric group on $\mathrm{N}:=\{1, \ldots, n\}$. The set

$$
G \sim H:=\{(f, \pi) \mid f: N \rightarrow G \text { and } \pi \in H\}
$$

fogether with the composition law

$$
(f . \pi)\left(f^{\prime \prime}, \pi^{\prime}\right):=\left(f f_{\pi}^{\prime}, \pi \pi^{\prime}\right)
$$

(where $\pi \pi^{\prime}(i):=\pi\left(\pi^{\prime}(i)\right), f f_{\pi}^{\prime}(i):=f(i) f_{\pi}^{\prime}(i):=f(i) f^{\prime}\left(\pi^{-1}(i)\right)$, for all $i \in \mathbf{N}$) constitutes a group, the wreath product of G with H. The group $G \sim S_{n}$ is called the monomial group of degree n over G.

Let F be a representation of G over the complex field C vith representation space V If m denotes a positive integer, then we cbtain an ordinary representation of $G \sim S_{m}$ with representation space

$$
{ }_{\xi}^{m} V:=V \otimes_{\mathbf{C}} \cdots{ }_{\mathrm{C}} V \quad \text { (} m \text { factors) }
$$

by putting

$$
(f . \pi)\left(v_{1} \otimes \ldots \otimes v_{m}\right):=f(1) v_{\pi}-1(1)^{\otimes \ldots \otimes f(m) v_{\pi}^{-1}(m)},
$$

for each $v_{\|}, \ldots, v_{m} \in V$.
Following the notation $\mathrm{c}^{*}[2]$ we denote this representation by

$$
\stackrel{\tilde{n}}{\#} \underset{\#}{ } F .
$$

sirce it extends the m-fold outer tensor product $\#^{m} F$ of F with itself which is a representation of the normal subgroup

$$
\left.\sigma^{*}:=(, f, 1) \mid f . N \rightarrow G\right\} \leqslant\left\{G \sim S_{m} .\right.
$$

If furthermore D is a representation of $U \leqslant S_{m}$, then

$$
D^{\prime}(f, \pi):=D(\pi)
$$

yields a representation D^{\prime} of $G \backsim!$
fif follows from [2] that the orcinary irreducible representations of $G \backsim H$ are of the form

$$
\begin{equation*}
(R \otimes S): G \sim 11 \tag{1.1}
\end{equation*}
$$

where Z is the restriction of $:$ n outer tensor product representation $\#\left(\#^{n^{i}} \Gamma_{i}\right)$ of $\left(G \vee S_{n_{1}}\right) \times \ldots \times\left(G \sim S_{n_{r}}\right)=G \sim\left(S_{n_{1}} \times \ldots \times S_{n_{r}}\right) \leqslant G \backsim S_{n}$ to $G \cap\left(H \cap X_{i} S_{n_{i}}\right), F_{i}$ ordinary irreducible representations of G, and S is an ordinary irrecucible representation of the intersection $H \cap X_{i} S_{n_{i}}$ of $I /$ with the Young subgroup $X_{i} S_{n_{i}}=S_{n_{1}} \times \ldots \times S_{n_{r}}$ of S_{n}.

We are now going to prove two important relations on the character of $\Psi^{m} F$.

Let χ be a class function on G and $(f, \pi) \in G \sim S_{m}$. Let $g_{1}, \ldots, g_{c(\pi)}$ be the cycleproducts associated with the $c(\pi)$ cyclic factors of π with respect to f (cf. [2]) and put

$$
(\mathrm{x} ; m)(f, \pi):=\prod_{i=1}^{c(\pi)} \mathrm{x}\left(g_{i}\right)
$$

It is easy to see that ($\chi ; m$) is a class function of $G \sim S_{m}$ and that the following holds (cf. [3]):

Len:ma 1.1. If χ is the character of r, then $(\mathrm{x}: m$) is th: character of $\#^{m} F$.

Let now sgn π denote the sign of the permutation π and define

$$
\left(\chi ; 1^{m}\right)(f . \pi):=\operatorname{sgn} \pi \cdot(\chi: m)(f, \pi)
$$

Putting $(\chi ; 0):=\left(\chi ; 1^{0}\right): \equiv 1$, we can prove the following result which generalizes formula IV on page 290 in [5]:

Theorem 1.2.

(i)

$$
\left(\chi_{1}+\chi_{2} ; m\right)=\sum_{\nu=0}^{m}\left[\left(\chi_{1} ; v\right)\left(\chi_{2} ; m-v\right)\right] \mid G \sim S_{m},
$$

$$
\begin{equation*}
\left(x_{1}-x_{3}: m\right)=\sum_{v=0}^{m}(\cdots)^{m \cdot v}\left[\left(x_{1} ; v\right)\left(x_{3}: 1^{m-v}\right)\right] \uparrow G \sim S_{m} . \tag{ii}
\end{equation*}
$$

The proof of Theorem 1.2 is based on Lemma 1.3 for which we firsi introduce the abbreviation

$$
\chi^{\nu}:=\left[\left(x_{1} ; \nu\right)\left(\chi_{2} ; m-\nu\right)\right] \uparrow G \sim S_{m}
$$

For $(f, \pi) \in G \sim S_{m}$ we dencte by $\pi_{1}, \ldots, \pi_{c(\pi)}$ the $c(\pi)$ cyclic factors of π with corresponding cycleproducts $g_{1}, \ldots, g_{c(\pi)}$ with respect to f. Let n_{i} denote the length of π_{i}.

Lemma 1.3. We have

$$
\chi^{\Downarrow}(f, \pi)=\sum_{(l, n} \prod_{i \in I} \chi_{1}\left(g_{i}\right) \prod_{i \in J} \chi_{2}\left(g_{i}\right),
$$

where the sum is taken over ai! pairs (I, J) of subsets of $\{1, \ldots, c(\pi)\}$ such that $I \cup J=\{1, \ldots, c(\pi)\}, I \cap J=\emptyset, \Sigma_{i \in I} n_{i}=\nu, \Sigma_{j \in J} n_{j}=m-\nu$.

Proof. Let (ρ_{k}) be a system of ieft coet representatives of $S_{\nu} \times S_{m-\nu}$ in S_{m}. Hence $\left(\left(e ; \rho_{k}\right)\right.$), where $e(i)=i$ for all $i \in\{1, \ldots, m\}$, is a corresponding system for $G \backsim\left(S_{v} \times S_{m-\nu}\right)$ in $G \sim S_{m}$. The definition of induced characters yields

$$
\chi^{\nu}(f ; \pi)=\sum_{k}\left[\overline{\left(x_{1} ; \nu\right)\left(\chi_{2} ; i n-\nu\right)}\right]\left(\left(e ; \rho_{k}\right)^{-1}(f ; \pi)\left(e, \rho_{k}\right)\right),
$$

where the bar denotes that the value of the function is 0 if the argument is not in $G \sim\left(S_{\nu} \times S_{m-v}\right)$.

Let now V_{i} be the set of symbols which are contained in the cyclic fastor π_{i} of π. We then have

$$
\left(e, \rho_{k}\right)^{-1}(f, \pi)\left(e, \rho_{k}\right)=\left(f_{\rho_{k}^{-1}}, \rho_{k}^{-1} \pi \rho_{k}\right) \in G \sim\left(S_{\nu} \times S_{m-v}\right)
$$

if and caly it

$$
\rho_{k}\left(N_{i}\right) \subseteq\{1, \ldots . \nu\} \text { or }\{\nu+1, \ldots, m\}, \quad \text { for an } i=1, \ldots, c(\pi)
$$

Let us consider two representatives ρ_{k} and ρ_{l} and assume that the fo'lowing holds:

$$
\rho_{k}^{-1}\left(N_{i}\right) \text { and } \rho_{l}^{-1}\left(N_{i}\right) \subset\{1, \ldots, \nu\}
$$

or

$$
\rho_{k}^{-1}\left(N_{i}\right) \text { and } \rho_{l}^{-1}\left(N_{i}\right) \subseteq\{\nu+1, \ldots, m\}
$$

for all. This together with

$$
\left(\partial_{l}^{-1} \mu_{k}\right)\left(\rho_{k}^{-1}\left(N_{i}\right)\right)=\rho_{l}^{-1}\left(\left(\rho_{k} \rho_{k}^{-1}\right)\left(N_{i}\right)=\rho_{l}^{-1}\left(N_{i}\right)\right.
$$

implies

$$
\rho_{l}^{-1} \rho_{k} \in S_{\nu} \times S_{m \sim \nu}
$$

i.e. $k=l$. Hence

$$
\chi^{\nu}(f ; \pi)=\sum_{(I, S}\left(\chi_{1} ; \nu\right)\left(f_{l}, \pi_{I}\right) \cdot\left(\chi_{2} ; m-\nu\right)\left(f_{J}, \pi_{J}\right)
$$

where I and J are as above, $\left(f_{I}, \pi_{I}\right)$ and $\left(f_{I}, \pi_{J}\right)$ are the parts of the corresponding conjugate of (f, π) in $G \sim S_{\nu}$ and $G \sim S_{m-\nu}$.

It is easy to see that conjugation with elements of the form ($e ; \rho$) does not change the classes of the cycle products.
Hence we have

$$
\begin{aligned}
& \left(x_{1} ; \nu\right)\left(f_{i}, \pi_{j}\right)=\prod_{i \in I} x_{i}\left(g_{i}\right), \\
& \left(x_{2} ; m-\nu\right)\left(f_{J}, \pi_{J}\right)=\prod_{j \in J} x_{2}\left(g_{j}\right) .
\end{aligned}
$$

This completes the proof of Lemma 1.3.
Proof of Theorem 1.2 (i). We have

$$
\left(x_{1}+\chi_{2} ; m\right)(f ; \pi)=\prod_{i=1}^{c(\pi)}\left(\chi_{1}\left(g_{i}\right)+\chi_{2}\left(g_{i}\right)\right)
$$

The multiplication yields all possible terms

$$
\prod_{i \in I} x_{1}\left(g_{i}\right) \prod_{j \in J} x_{2}\left(g_{j}\right)
$$

where $I \cap J=\emptyset$ and $I \cup J=\{1, \ldots, c(\pi)\}$.
Lemma 1.3 has shown us that each of these terms oicurs once and in exactly one χ^{ν}, namely the v which satisfies $\nu=\Sigma_{i \in 1} n_{i}$. This proves Theorem 1.2(i).

Prooi of Theorem 1.2(ii). Replacing χ_{2} by $-\chi_{3}$ in χ^{ν}. we obtain fom Theorem 1.2(i):

$$
\left(\chi_{1}-\chi_{3} ; m\right)=\sum_{\nu=0}^{m} \chi^{\nu},
$$

wher:

$$
\begin{aligned}
x^{v}(f, \pi) & =\sum_{(I, J)} \prod_{i \in J} x_{1}\left(g_{i}\right) \prod_{j \in J}\left(-x_{3}\right)\left(g_{j}\right) \\
& =\sum_{(I, J} \prod_{i \in J} x_{1}\left(g_{i}\right)\left(\prod_{j \in J} x_{3}\left(g_{j}\right)\right)(-1)^{|J|}
\end{aligned}
$$

Or. the other hand the proof of Lemma 1.3 yields

$$
\begin{aligned}
& {\left[\left(x_{1} ; \nu\right)\left(\chi_{3} ; 1^{m-\nu}\right)\right] \uparrow G \sim S_{m}\left(f_{. \pi}\right)=} \\
& \quad=\sum_{(l, J)} \prod_{i \in 1} x_{1}\left(g_{i}\right)\left(\prod_{j \in J} x_{3}\left(g_{j}\right)\right) \operatorname{sgn} \pi_{J},
\end{aligned}
$$

and $\operatorname{sgn} \pi_{j}=\operatorname{sgn}\left(\Pi_{j \in J} \pi_{j}\right)=\Pi_{j \in J} \operatorname{sgn} \pi_{j}$.
As $\operatorname{sgn} \pi_{j}=(-1)^{n_{j}^{+1}}$ and $\Sigma_{j \in J} n_{j}=m-\nu$, we obtain

$$
\operatorname{sgn} \pi_{J}=(-1)^{m-\nu+|J|}=(-1)^{\left|J^{\prime}\right|}(-1)^{m-\nu} .
$$

Hence

$$
\left[\left(\chi_{1} ; \nu\right) \cdot\left(\chi_{3} ; 1^{m-\nu}\right)\right] \uparrow G \wedge S_{m}(f, \pi)=(-1)^{m-v} \chi^{\nu}(f, \pi)
$$

This completes the proof of Theorem 1.2.

2. Procif of Theorem 1

Let: denote an ordinary character of G. Then by the assumption of Theorm 1 we have

$$
x=x_{i}-x_{j} .
$$

where x_{i} and x_{j} are permutation characters.
Theorem 1.2 implies that ($x ; m$) is a \mathbb{Z}-linear combination of the characters

$$
\left[\left(x_{i} ; \nu\right) \cdot\left(x_{j} ; 1^{m-\nu}\right)\right] \uparrow G \sim S_{m}
$$

Let F_{i} and F_{j} be permutation representation of G with characters γ_{i}
and χ_{j}. Lemma 1.1 implies that $\left(\chi_{i} ; \nu\right)$ is the character of $\tilde{\#}^{\nu} F_{i}$ and that $\left(\chi_{i} ; 1^{m-\nu}\right)$ is the character of $\#^{m-\nu} F_{j} \otimes\left[1^{m-\nu}\right]^{\prime}$ (recall that as usual (cf. [2]) [1m 1^{m} denotes the alternating representation of $S_{n-\nu}$).

It follows from the definition that $\tilde{\#}^{\nu} F_{i}$ and $\widetilde{\#}^{m-\nu} F_{j}$ are permutation representations.

Furthermore we know that the character of $\left[1^{m-\nu}\right]$ is the difference of the characier of the representation of S_{m-p}, which is induced by the identity representation of the alternating subgroup $A_{m-\nu} \leqslant S_{m-\nu}$ and the identity character:

As inner and outer tensor vroducts of permutation representations and representations induced by permutation representations are again permutation representations, we obtain that $\left[\left(x_{i} ; \nu\right) \cdot\left(x_{j} ; 1^{m-\nu}\right)\right] \uparrow G \sim S_{m}$ is a difference of two permutation characters.

As the representation R in (1.1) is a restriction of : η outer tensor product of representations with characters of the for.n ($\chi ; m$), we obtain that the character of R is a \mathbb{Z}-linear combination of permutation characters.
S is a representation of the intersection of H and Young-subgroup of S_{n}. Hence, the character of $\left(R \otimes S^{\prime}\right) \uparrow G \sim H$ is a Z-linear combination of permutation characters.

3. Proof of Theorem 2

According to the assumption of the theorem let $\left\{\psi_{1}, \ldots, \psi_{h}\right\}$ denote a \mathbf{Z}-basis of the character ring of G which consists of transitive permutation characters (so that h is the number of conjugacy classes of G). Let G_{i} be a subgroup of G, the identity representation $I G_{i}$ of which induces a representation $/ G_{i} \uparrow G$ with character $\psi_{i}, 1 \leqslant i \leqslant h_{\text {l }}$.

The groups G_{i} are obviously pairwise non-conjugate. It follows from $[2,3.7]$ that the number of the subgroups

$$
\begin{equation*}
{\underset{i=1}{h}}_{\substack{x}}\left(G_{i} \cdot S_{\alpha(i)}\right), \quad \alpha(i) \text { partition of } n_{i}, \quad \sum_{i=1}^{h} n_{i}=n \tag{3.1}
\end{equation*}
$$

where $S_{a(i)}$ is a Young-subgroup of $S_{n_{i}}$, is equal to the number of conjugacy classes of $G \sim S_{n}$.

Hence Theorem 2 will be proved once we have shown that every irreducible character of $G \wedge S_{n}$ is a \mathbb{Z}-linear combination of characters induced by identity characters of the groups (3.1).

Let us first consider s ipresentations of $G \sim S_{n}$ which are of the form

$$
\stackrel{\tilde{n}}{\#} F \otimes[\beta]^{\prime},
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ is a partition of n and $[\beta]$ the corresponding ordinar"; irreducible representation of S_{n} (cf. [2,4.6]).

The character χ^{β} of $[\beta]$ satisfies (cf. [2,4.41]:

$$
\begin{equation*}
\chi^{\beta}=\operatorname{det}\left(\chi^{\left(\beta_{i}+j-i\right)}\right)=\sum_{\rho} \operatorname{sgn} \rho\left(I(\beta ; \rho) \uparrow S_{n}\right), \tag{3.2}
\end{equation*}
$$

where the sum is taken over all $\rho \in S_{k}$ suck that all the $\beta_{i}+\rho(j)-1$ are ron-negative and $/(\beta ; \rho)$ denotes the identity character o the Youngabgroup

$$
{ }_{i=1}^{k} S_{B_{i}+p(i)-i}
$$

This formula (3.2), Lemma 1.1, and [1,38.5)(i)] yield that the character of $\#^{n} F \otimes[\beta]^{\prime}$ is equal to

$$
\begin{equation*}
\sum_{0} \operatorname{sgn} \rho\left(\prod_{i=1}^{k}\left(\chi ; \beta_{i}+\rho(j)-i\right)\right) \uparrow G \sim S_{n} \tag{3.3}
\end{equation*}
$$

where χ denotes the character of F.
x is a 2 -linear combination of the characters ψ_{i}. Hence Theorem 1.2 implies that the characters ($\chi ; m$) are \mathbb{Z}-linear combinatic as of the chararters which are induced by products of characters of the following form:
(3.4) $\left(\psi_{i} ; r\right)$ and $\left(\psi_{i}: 1^{*}\right)$.

Lemma 3.1. We have that
(i) $\left(\psi_{i} \div r\right)$ is induced by the identity character of $G_{i} \sim S_{r}$,
(ii) $\left(\psi_{i} ; 1^{\prime}\right)$ is a Z-linear combination u_{i}^{f} rharacters which are induced by identity chara:ters of groups $C_{i} \sim S_{\alpha}$ with Young-sutgroups S_{α} of S_{r}.

Proof. The permutation representation which corresponds to $\left(\psi_{i} ; r\right)$ acts transitively on
(where $\left\{g_{1}=1_{G}, g_{2}, \ldots\right\}$ is a system of left coset representatives of G_{i} in G) which is a basis of the corresponding representation module. Ob viously the stabilizer of $\otimes^{r}\left(\mathcal{I}_{G}{ }^{\otimes} \mathrm{C} G_{i} \mathrm{I}_{\mathrm{C}}\right)$ is $G_{i} \sim S_{r}$. This proves (i).
(ii) follows from (3.2) and (i).

Thus, (3.3)--(3.4) and Lemma 3.1 imply that the character of $\#^{n} F \otimes[\beta]^{\prime}$ is a linear combination of characters, induced by the identity characters of subgroups of $G \sim S_{n}$ which are conjugate to subgroups given in (3.1).

As every ordinary irreducibie representation of $G^{\wedge} S_{n}$ is of the form (cf. [2])

$$
\left(\left(\begin{array}{l}
\tilde{m}_{1} \\
\left.\left.\# F_{1} \otimes\left[\beta^{1}\right]^{\prime}\right) \# \ldots \#\left(\tilde{m}^{k} F_{k} \otimes\left[\beta^{k}\right]^{\prime}\right)\right) \uparrow G \sim S_{n} .
\end{array}\right.\right.
$$

with irreducible representations F_{i} of G, the assertion follows from the considerations above.

4. The characters of $S_{m} \sim S_{n}$

Let α be a partition of n and χ^{α} the corresponding irreducible character of S_{n}. Let $I(\alpha)$ and $A(\alpha)$ denote the characters of S_{n} which are induced by the 1 -character and the alternating cr racter of $S_{\alpha}=$ $S_{\alpha_{1}} \times S_{\alpha_{2}} \times \ldots \times S_{\alpha_{1}}$.

The associated partition of α is $\boldsymbol{\gamma}^{3}$ noted by α^{\prime} (cf. [2,1.34]), the lexicographic order of partitions by \subseteq. It is well-known that $\left\{\chi^{\alpha}\right\}$, $\{I(\alpha)\}$ and $\{A(\alpha)\}$, where α runs through all partitions of n, are \mathbb{Z} onses of the character ring of S_{n} and that the following holds:

Theorem 4.1. Let

$$
\chi^{a^{a}}=\sum a_{\beta} I\left(\beta^{\prime}\right)=\sum b_{\beta} A\left(\beta^{\prime}\right), \quad I(\alpha)=\sum c_{\beta} \chi^{\beta}, \quad A\left(\alpha^{\prime}\right)=\sum d_{\beta} x^{\beta} .
$$

Then, we have
(i) $a_{\alpha}=b_{\alpha}=c_{\alpha}=d_{\alpha}=1$,
(ii) $\beta \subset \alpha$ implies $a_{\beta}=c_{\beta}=0$,
(iii) $\alpha \subset \beta$ implies $b_{\beta}=d_{\beta}=0$.

Now, we are going to generalize this result to wreath products of the form $S_{m}{ }^{n} S_{n}$. Let $\alpha^{1}, \alpha^{2}, \ldots, \alpha^{k}$ be the partitions of m and assume $\alpha^{i} \subseteq \boldsymbol{x}^{j}$ for all $i \geqslant j$. A complete system of ordinary irreducible representations of $S_{m} \sim S_{n}$ is given by:

$$
\begin{aligned}
& {\left[\left(\begin{array}{l}
r_{3} \\
\left.\left.\left.\#\left[\alpha^{1}\right] \otimes\left[\beta^{1}\right]^{\prime}\right) \#\left(\begin{array}{l}
\tilde{n}_{2} \\
\left.\#\left[\alpha^{2}\right] \otimes\left[\beta^{2}\right]^{\prime}\right) \# \\
\ldots \#\left(\tilde{n}_{k}\right. \\
\#
\end{array} \alpha^{k}\right] \otimes\left[\beta^{k}\right]^{\prime}\right)\right] \uparrow S_{m} \sim S_{n},
\end{array}, ~\right.\right.}
\end{aligned}
$$

where $\sum n_{i}=n$ and β^{i} is a partition of n_{i}. The corresponding character is denoted by $\chi\left(\beta^{1}, \beta^{3}, \ldots, \beta^{k}\right)$. Let us define two other representations of $S_{n} \sim S_{n}$ which are associated with ($\beta^{1}, \ldots, \beta^{k}$):I($\beta^{1}, \ldots, \beta^{k}$) denotes the character of $S_{m} \sim S_{n}$ which is induced by the 1 -character of $X_{i=1}^{k} S_{\alpha^{i}} \sim S_{\beta^{i}}$; hence,

$$
I\left(\beta^{1}, \ldots, \beta^{k}\right)=\left(\begin{array}{l}
k \\
\# \\
\#=1
\end{array}\left(\begin{array}{l}
\tilde{n}_{i} \\
\#
\end{array} I\left(\alpha^{i}\right) \otimes I\left(\beta^{i}\right)^{\prime}\right)\right) \uparrow S_{m} \sim S_{n},
$$

and let

$$
\begin{aligned}
& A\left(\beta^{\dagger}, \ldots, \beta^{k}\right)=\left(\begin{array}{l}
k \\
\#=1
\end{array}\left(\begin{array}{l}
\tilde{n}_{i} \\
\# \\
\#
\end{array} A\left(\alpha^{i}\right) \otimes A\left(\beta^{i}\right)^{\prime}\right)\right) \uparrow S_{m} \sim S_{n}, \\
& A^{\prime}\left(\beta^{1}, \ldots, \beta^{k}\right)=\left(\begin{array}{l}
k \\
\left.\# \begin{array}{l}
\#=1
\end{array}\left(\begin{array}{l}
\tilde{n}_{i} \\
\#
\end{array} A\left(\sigma^{i}\right) \otimes A\left(\tau^{i}\right)^{\prime}\right)\right) \uparrow S_{m} \sim S_{n}, ~
\end{array}\right.
\end{aligned}
$$

where $\sigma^{i}=\alpha^{i}$ and $\tau^{i}=\beta^{i \prime}$ for all i. Obviously, the mapping $A\left(\beta^{1}, \ldots, \beta^{k}\right) \mapsto A^{\prime}\left(\beta^{1}, \ldots, \beta^{k}\right)$ is a permutation of $\left\{A\left(\beta^{1}, \ldots, \beta^{k}\right)\right\}$.

Let $\gamma^{\frac{1}{2}}, \ldots, \gamma^{k}$ be partitions of l_{1}, \ldots, l_{k} and $\Sigma l_{i}=n$. We define:

$$
\left(\beta^{1}, \ldots, \beta^{k}\right) \subset\left(\gamma^{1}, \ldots, \gamma^{k}\right)
$$

it and only if either $n_{j}<l_{j}$ for an index j and $n_{i}=l_{i}$ for all $i<j$, or $n_{i}=l_{i}$ for all i and $\beta^{j} \subset \gamma^{i}$ for an index j and $\beta^{i}=\gamma^{i}$ for all $i<j$ (cf. [4]).

It follows from the considerations in Section 3 that $\left\{I\left(\beta^{1}, \ldots, \beta^{k}\right)\right\}$ is a Z -basis of the character ring of $S_{m} \sim S_{n}$, and analogous callculations show that the same holds for $\left\{A\left(\beta^{1}, \ldots, \beta^{k}\right)\right\}$. These considerations and Theorem 4.1 also imply:

Theorem 4.2. Let

$$
\begin{aligned}
\chi\left(\beta^{1}, \ldots, \beta^{k}\right) & =\sum a\left(\gamma^{1}, \ldots, \gamma^{k}\right) \cdot I\left(\gamma^{1}, \ldots, \gamma^{k}\right) \\
& =\sum b\left(\gamma^{1}, \ldots, \gamma^{k}\right) \cdot A^{\prime}\left(\gamma^{1}, \ldots, \gamma^{k}\right), \\
I\left(\beta^{1} \ldots, \beta^{k}\right) & =\sum c\left(\gamma^{1}, \ldots, \gamma^{k}\right) \cdot \chi\left(\gamma^{1}, \ldots, \gamma^{k}\right), \\
A^{\prime}\left(\beta^{1}, \ldots, \beta^{k}\right) & =\sum d\left(\gamma^{1}, \ldots, \gamma^{k}\right) \cdot \chi\left(\gamma^{1}, \ldots, \gamma^{k}\right)
\end{aligned}
$$

Then we have
(i) $\left.c \beta^{1}, \ldots, \beta^{k}\right)=b\left(\beta^{1}, \ldots, \beta^{k}\right)=c\left(\beta^{1}, \ldots, \beta^{k}\right)=d\left(\beta^{1}, \ldots, \beta^{k}\right)=1$,
(ii) $\left(\gamma^{1}, \ldots, \gamma^{k}\right) \subset\left(\beta^{1}, \ldots, \beta^{k}\right)$ implies $a\left(\gamma^{1}, \ldots, \gamma^{k}\right)=c\left(\gamma^{1}, \ldots, \gamma^{k}\right)=0$,
(iii) $\left(\beta^{1}, \ldots, \beta^{k}\right) \subset\left(\gamma^{1}, \ldots, \gamma^{k}\right)$ implie: $b\left(\gamma^{1}, \ldots, \gamma^{k}\right)=d\left(\gamma^{1}, \ldots, \gamma^{k}\right)=0$.

Theorem 4.2 implies that $\chi\left(\beta^{1}, \ldots, \beta^{k}\right)$ is the only common constituent of $I\left(\beta^{\prime}, \ldots, \beta^{k}\right)$ and $A^{\prime}\left(\beta^{\prime}, \ldots, \beta^{k}\right)$, and it occurs with multiplicity 1 .

References

[1] C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Interscience, New York, 1962).
2] A. Kerber, Representations of Permutation Groups I, Lecture Notes in Mathematics 240 (Springer, Berlin, 1971).
3) A. Kerber, Repreantations of Permutation Groups II. Lecture Notes in Mathematics 495 (Springer, Berlin, 1975).
(4) D. ©inch and L. Geissinger, Represeatations of the Hyperoctahedral Groups (in preparation).
(5) D.E. Littlewood, The Theory of Group Characters, 2nd ed. (Clarendon, Oxford, 1958).
(6) S.J. Mayer, On the characters of Weyl groups of type C. J. Algebra 33 (1975) 59-67.

