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of GYfS,. 

It is well knom 
the character rings 

ft is known that the chmcttr rings of symmetric groups Stl and the eharactcr rings 
of hyperoct&&ad groups S+ $rr are generated by (transitive) permutatio;z characters. 
These rcwlts of Yorrng axe ~neralized to wreath products G %M (G a finite group, H a 
permlutation group :~czting on a finite set). it is &own that the character ring of G 21 H is 
wnerated by rmutation characters if this hoids for G, H and certain subgroups of N. 
This result can ‘W slqxned for wreath products Ck %Sn; if the character ring of G has 
n bgtis of transitive permutation ehamctws, then the same holds for the character ring 

t&at the charaoter rings of symmetric groups A’,* and 
roctalredraf groups s, % sn 

cosl3isting of transitive pu-mutatio characters (cf. f 

generalize these results we prove following t 
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:= ‘,I , . . . . rt ). The set 

t- 

c btain an 

uter tensw product #*’ Fof 
he ncxrna~l wbgroup 



Let nuw sgr~ 7.r denote the sign sf the permutation :II and dkfitx 

Petting (x; 0) := (x; f O) :- 1, we cm prove the fatlovving result which 
gfztxralizes t”ormwla IV on page 290 in [ 51 : 



1 be a system of kf! r,o=,et representatives of SP X St8 _. 1v 

i for aP1 iE {I, . . ..m). is a C=orre- 
) in C fb Stiq. The definition of 

enotes that the ~fllre of the* function is 0 if the argument 

f symbols wlaich are rzontained in the cyck 

1s t3, . ..4 or Cy+ 1, .-.JFZ), foralfi= 1, . . . . c(a). 

o representatives pk aind pl alnd assume that the fc& 



I55 

where I and1 J are as ab e, (f, q) and (ji, vj) are t c’ parts of the C(-JqJ-& 
cmjugate of n) in G s A;,, and G or Sm _ y. 

it is easy to see that conjug+m with elements of the form (e; p) 
does not chmnge the classes of the cycle products. 
HtXICe W(;f kiVt 

This completes the proof of Lemma I .3. 

e multiplication yields roll possible terms 

andl~JJ= (~,...,~(a)). 
n us that eaelh of t ese terms 0:curs mce aild 

kh s~~is~~s Y = 



other hmd the rm3>f of Lemma z .3 yields 

= (_-) = (__1)‘Ji(; _,p -v . 
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tion representations. 
Furthermore WC know that the character of f 1” - ’ f is the difference 

of the charaeker of the reprex ltatisn of ,.& __ v which is induced try the 
identity representation of the ~lt~rn~~ti~~ subgroup A,,, y G Sfn _” v and 

the identity character: 

AS inner and outer tensor oraducts of permutation representations 
representations induced by permut&ion representations u-e again 

permutation representations, WC obtain that 
[(Xi34 * (xj-; 1 m .- “)f t G rtr SW3 is ;4 difference of two permutation &ar- 
actWS. 

As tfre representation R in (I. I) is ii restriction of; rl strter tensor 
product of representations with harxters of the for&n (x; PPC), WC” ob- 
tain that the character sf K is ;.I 1 -iinear combination of pcrmutstion 
charau t ers. 

S is a representation uf the i :rtsrscctic~n af H ;I YoLlng-sltbgroup of 
Sn. Hence, the character of’ (K @ S’) 1 G s II is 3 inear c0m hina tion ot 
permutatibn uharxters. 



“,., is equal to the number of con- 

e have shown t?laf eve 
~~b~nat~~~ 0B“ chxacters in- 

which are of the form 

) is a partition of M and [@I the correspsnding 
representation of Sn (cf. I2,4.6] ), 

] satisfies (cf. [ 2,4.41] : 

eftl over all 9 E Sk SW+ that ;rfl the /C + p(j )-- 1 are 
; p) denotes the iden ity character cbT the Young- 

~~~ l.I,md [ I,3 ..‘,)(j)I] yield that the char- 

t pi + pv)-r’) 



(where {Q := 1,, g2, ..a ) is a system of left costft representatives of Gi 
in G) which is a basis of the corresponding reprjzsentation module. Ob- 
V~OUS~Y the stabilzer of 60’ (P c QD~ Gi 1, ) is Ci % S,. is proves (i %. 

(ii) follows from (3.2) and (i). 

~ Thus, (3.3) --(X4) and 3.1 imply th;lt the character of 
#” F@ [PI ’ is a linear combm on of charxters, induced by the idcn- 
tity characters of subgroups of $7 ZI Sfl which are conjugate to subgroups 
@Ven in (3*, B ). 

As every ordinary itrcducibfe representation of G 4 St1 is of th: Corm 
(cf. E 21) 

ith irreducible representations Fi of G, the assertion follows from 
the considerations above. 



aiize this .resuit to wrest h products of’ the 
~8 be tk partitions of m and assume 

compkte system of ordinary irreducible rtpre- 
f SF* T.4 SU is given by : 

s a part.ition of 12~. ‘The cmresponding charaC:‘ter 
9 . . ..pk). Let us defiee two other representations 

are associated wit (/3’ ,_.e) flk ):f(@’ , v.., /ilk) demrtes 
CL Sn which is i uced by the khxacter of 



if and only if ci #?x j and ni = !i for a.lI i < j, or 
t?i z l/i for all i a xjand@= dyl for all i < i (cf. [ 41 

It follows from e considerations in Section 3 that {I($’ , .1., /ilk ) :/ 

). 

basis of the character ring of S* 2~ Stz, and ;tnalsgous callcuta- 
at the same holds for {A@’ ,, . . . . flk ) ). These considera- 

corem 4. I also imply: 
l 

corem 2. Let 

xcp’ t ‘**g p”) = 22 ?2(y1, -.., 9 ) l I(y’. . . . . y”) 

= c bdy’ , . . . . ̂ r‘ ) * my’, C.., -$’ ) , 

‘men we have 
(0 ~3’ f . . ..ps’. = b(P’, . . ..j3”) = c@’ , ..*$“) = d(P’ , . . . . B”, = % ) 

(ii) (3,L, l -5 + ) c (PI, ...9 ok ) impPies a($, . . . . + ) r c(yl , . ..? 9 ) = 0 4 

(iii! ip’ 3 l **, P 1 c hi , . . . . $ ) inlplie.; b(+ , . . . . yk ) = d($ R . . . . ,f ) = 

Theorem 4.2 implies that r,(@ , +.., flk ) is the tinly commc~n constit- 
rient of rfpl 9 . . . . flk ) and A’((31 , *..* flk )z and it occurs with multiplicity 

0. 
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