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It is known that the character rings of symmetric groups S, and the character rings
of hyperoctahedral yroups S S, are generated by (transitive) permutation characters.
These results of Young are generalized to wreath products G~ M (G a finite group, H a
permutation group acting on a finite set). It is shown that the character ring of G\ H is
generated by permutation characters if this hoids for G, H and certain subgroups of 4.
This result can be sharpened for wreath products G A+ 8, if the character ring of G has

a basis of transitive permutation characters, then the same holds for the character ring
of G,

0. Introduction

It is well known that the character rings of symmetric groups S,, and
the character rings of hyperoctahedral groups S, ~ S, possess Z-bases
consisting of transitive permutation characters (cf. [4, 6}). In order to
generalize these results we prove the following twe theorems:

Theorem 1. Let G denote a finite group and H a subgroup of S,,. If the
characters of (5 and the characters of all intersections of H with Young-
subgroups of S,, are Z-linear combirations of permutation characters,
then the same holds for the characters of G ~ H.

Theorem 2. If the character ring of G has a Z-basis of transitive permu-
tation characters then the same holds for the character rings of the mo-
nomial groups G~ §,,.

1. Some remarks on wreath products

Let G denote a finite group and / a subgroup of S, , where §,, is the
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svmmetric group on N := {1, ..., n}. The set
GVvH ={(f, mif:N=-Gandre H}

together *vich tne composition law

(.Y, ) = (f mr)

(where a7°(i) := w7 (D), S5 = fAD L4 = D) (w1 (D)), for all i € N)
constitutes a group, the wreath product of G with H. The group G~ S,
is calied the moncomial group of degree s over G.

Let F be a reprasentation of G over the complex field C with repre-
sentation space V1t m denotes a positive integer, then we cbtain an
ordinary representation of G ~v §,, with representation space

m

S Vi=V B - @c V {m factors)

by putting

Uomiw, @60 )=, -1, &8 fm -1,y

forcachwv,....v, €V
Following the notation ¢” [ 2] we denote this representation by

W

#F,
sirce it extends the m-fold outer tensor product #" F of F with itself
which is a sepresentation of the normal subgroup

CT =L 1)if. N~ G} « G~ S
If furthermore D is 4 representation of U < S, then
Dif, my = Dim)
yields a representation D' of G~ V.
It follows from { 2] that the orcinary irreducible representations of

€~ H are of the form

(1.1 (R2S5y G~ M,
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where X is the restriction of «n outer tensor product representation
#(#"11) of (G~ X{GNS )= GV (S, X ... X 8§ )< GNS,
to G~ (HN X, S ) I ordmary irreducible represenmtmns of G, and
Sis an ordumry 1rreduuble representation of the intersection AN X; S
of H with the Young subgroup X; §, =S, X ..X §, ofS§,.

We are now going to prove two :mportdnt relatlona on the character
of #" F.

Let x be a class functionon Gand (f, 1) € G~ S, Let gy, .8
be the cycleproducts associated with the c(m) cyclic factors of 7 with
respect to f(cf. [2]) and put

cln)
oG myf, my = |

It is easy to sce that (x: m) is a class function of G~ S, and that the
foltowing holds (cf. [3]):

Levema 1.1, If x is the character of ¥, then (Xim)}is th.? character ¢f
#MF

Let now sgn 7 denote the sign of the permutation m and detine
(G YW m)y=sgnw - (xam))(f, w) .

Putting (x; 0) := (. 19) := 1, we can prove the following result which
generalizes formula IV on page 290 in [5]:

Theorem 1.2.

L4

(ir  (x, +x2;m)-'=20!(x,:v}(xz;m -GS,
vz

3]

(i) (x, ~f—-x3;m)=2( DL (PPN D I0ERN M | I B CRa

v=0

The proot of Theorem 1.2 is based on Lemma 1.3 for which we first
introduce the abbreviation

X' = L(x nixg m- ) TGS,
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For(f, mye G~ Sm we dencte by Moo P the c(7) cyclic factors
of m with corresponding cyclepreducts g, ..., () with respect o f.
Let n; denote the length of m,.

Lemma 1.3. We have
vif my= 20 1 x @) Il Yy,
X', @) oy x,(g,)iE_J X,{(8;)

where the sum is taken over a! pairs (I, J) of subsets of {1, ...,c(m)} such
that [VJ={1,...,c(M}LINT=P, Zieyn;=v, Licyn; =m-—v.

Proof. Let {p; ) be a system of :2ft cosiet representatives of S, X S,
in S, . Hence ((e; pg)), where e(i) = i forallie {1, .,m},is acorre-
sponding system for G (S, X §,,_,) in G~ S, . The definition of
induced characters yields

Xy = Z’; [(x; )Xy m=0)] ((e: p ) (fim)e, p,)) s

where the bar denotes that the value of the function is 0 if the argument
is not it G~ (S, X S, 0

Let now .V, be the set of symbols which are contained in the cyclic
factor #; of m. We then have

(e. p, ) ' (f. m)e, p,) = (f;;;_,,p,;‘wpk)e Gh(S, xS, )
if and valyif

P (INDE AL, .. .vlor{v+1,..,m}, foraili=1,..,c(n).

Let us consider two representatives p, and p; and assume that the fo!-
lowing holds:

pp (Nyand o {ND C {1, .., v)
or

p; (N ) and p;! (NS v+, .. m)
for all / This together with

o e YN = o7 o ey DN = pp PN
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implies
-1 .
P pkEvasm--v
i.e. k =/. Hence
Vg - . 3 . 7 o
X" (f;m) u.E.-'> X0 ) s (Xyim-v)(f), m,),

where / and J are as above, (f;, 7,) and (f;, 7,) are the parts of the corre-
sponding conjugate of (f, 7)in G~ S, and G §

. . . g m- v ,
It is easy to see that conjugation with elements of the form (e; p)
does not change the classes of the cycle products.

Hence we have

(Xl s V)(j;h ﬂ;) = n Xp (g,) s
=Y .

cm=v)(J,, w,)= ﬂ ).
(X, )y 7)) ey X,(g;)
This completes the proof of Lemma 1.3.

Proof of Theorem 1.2 (i). We_have

ik

(X, +x,:m)(;m) =11 (x,(g) +x,(8)) -
i=]

The multiplication yieids all possible terms

| 1+
wp X (g,-)jEJ X2(8)

where INnJ=Q0and U J = {1,..,c(n}}.

Lemma 1.3 has shown us that each of these terms oc:curs oace and
in exactly one x¥, namely the v which satisfies v = Z,.; n;. This proves
Theorem 1.2(1).

Prooi of Theorem 1.2 (ii). Replacing x; by X, in x”. we obtain fom
Theorem 1.2(1):

[ 441
2

{Xl "'X3;i?’l) = ZJ(} Xp »
uﬂ
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where

X (f. )= Z} I xl(gi)jg(--‘xs)(gj)

) iedJ

> ”x,(g7(nx3(g))( D,

(L ised
Or. tae other hand the proof of Lemma 1.3 yields
[ )G 171G S ()=
= 2 11y, )(ﬂ x3~(g,-)) sgn

.0 i<l

and sgn 7, = sgn (I, m) =1, sgn m,.
Assgn AN E l)" ' and Z,cyn; = m— v, we obtain

sgn WJ :.-(M])m Al A (“'”l‘”(-—-l)m v

Hence

(X s9) (X3 1P GA S (M) = (=1 "x" (7).

m

This completes the proof of Theorem 1.2.

2. Procf of Theorem 1

Let ; denote an oidinary character of G. Then by the assumption of
Thecrvm | we have

X=X X, -

where x; and x; are permutation characters.
Theorem 1.2 implies that (x: m) is a Z-linear combination of the
characters

[OG:) - O 1M ") 1 G S

Lzt & and F; be permutation representation oi G with characters y;
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and x;. Lemma 1.1 implies that (x;. v) is the character of #¥ F, and that
(x;: 1" ) is the character of #” ™" F, ® [1™ "¥]" (recall that as usual
(cf. [2]) [1™ ¥} denotes the alternating representation of S,, _ ).

It follows from the definition that #F; and #™ ~"F; are permuta-
tion representations.

Furthermore we know that the character of [ 1™ ~¥] is the difference
of the characier of the representation of S, _, which is induced by the
identity representation of the alternating subgroup A <SS and

. . m - v m-vy
the identity character:

(am-vy _ Ja, S..
X x4 n V?Sm»v«--xlmp_

As inner and outer tensor oroducts of permutation representations
and representations induced by permutation representations are again
permutation representations, we obtain that
[(x;:0) - (: 1779 1 G~ S, is a difference of two permutation char-
acters.

As the representation R in (1.1) is a restriction of { 1 outer tensor
product of representations with characters of the for.n (x; m), we ob-
tain that the character of R is u Z-linear combination of permutation
characters.

S is a representation of the intersection of H and Young-subgroup of
S, . Hence, the character of (R @ §') 1 G~ H is a Z-linear combination of
permutation characters.

3. Proof of Theorem 2

According to the assumption of the theorem let {{...., ¥, | denote
a Z-basis of the character ring of G which consists of transitive permu-
taticn characters (so that A is the number of conjugacy classes of G).
Let G; be a subgroup of G. the identity representation /G; of which
induces a representation /G; 1 G with character i, 1 i< n.

The groups G; are obviously pairwise non-conjugate. It follows from
{2,3.7] that the number of the subgroups

h h
3.1 X (G,7 Sy a(i) partition of n, , Z}lng =n,
i=1 iz
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where S,; is a Young-subgroup of 5, , is equal to the number of con-
jugacy classesof GV §,,.

Hence Theorem 2 will be proved once we have shown that every ir-
reducible character of G~ S, is a Z-linear combination ot characters in-
duced by identity characters of the groups (3.1).

Let us first consider 1 :presentations of G~ S, which are of the form

p
# Foigl",

where § = (8, ...,8; ) is & partition of n and [8] the corresponding
ordinary irreducible representation of S, (cf. [2,4.6]).
The character x# of [R] satisfies {(cf. [2,4.41}:

(3.2) ¥ =det(x®* Y= 35 sgn p(IBip31 S,),
p

where the sum is taker over all o € 5 suct that all the §. + p(j)—1 are
1on-negative and /(3; p) denotes the identity character ot the Young-
stthgroup

k
XS

i1 Bitpiiy-i °

This formula (3.2), Lemma 1.1, and [ 1, 38.5)(i)} yield that the char-
acter of #"F @[]’ is equal to

} k
63 Dosmp(Hoes+otid-n)16ns,

o

where x denotes the character of F.

x is a Z-linear combination of the characters J;. Hence Theorem
1.2 implies that the characters (x; m) are Z-linear combinaticas of the
characters which are inducad by products of characters of the following
form:

{3.4) (Gory and  (y:17).
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Lemma 3.1. We have that

(1) {y;: rYis induced by the identity character of G; ~ S

(i) (;: V' Yis a Z-linear combination v rharacters which are induced
by identity characters of groups G; ~ S, with Young-subgroups S, of S,.

Proof. The permutation rzpresentation which corresponds to (y;; r) acts
transitively on

,
;?, (gh, Bl 1<k < QG:G"II

(where {g, = 1., g,,...} is a system of left coset representatives of G;
in &) which is a basis of the corresponding representation module. Ob-
viously the stabilizer of & (1; 8¢ . 1¢) is G; v S,. This proves (i).

(ii) follows from (3.2) and (i).

_ Thus, (3.3)—(5.4)and Lemma 3.1 imply that the character of
#" F® B8]’ is a linear combination of characters, induced by the iden-
tity characters of subgroups of G ~ §,, which are conjugate to subgroups
given in (3.1).

As every ordinary irreducibie representation of G~ S, is of the form
(cf. [2])

(37,0 1) #... #(f‘ékzrk o [¢1')) 16~ s,

with irreducible representations F; of G, the assertion follows from
the considerations above.

4. The characters of S, ~ S,

Let a be a partition of n and x* the corresponding irreducible char-
acter of S,,. Let I(a) and A(a) denote the characters of S, which are
induced by the 1-character and the alternating chracter of S, =
S X S . X S

Thc dSSOlettd pdrtltxon of a is ¢2noted by o' (cf. [2,1.34]), the
lexicographic order of partitions by C. It is well-known that {x“ },
{I{a)} and {4{a)}, where « runs through al} partitions of », are Z-
pases of the character ring of S,, and that the following holds:
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Theorem 4.1. Let
= L a )= I bAE), @)= L e, A= Zi dgy.

Then, we have
G(ya,=b,=c,=d, =1,
(i) 3 C a impliesag = ¢, = 0,
(iii) « C implies by = dg = 0.

Now, we are going to generalize this result to wreath products of the
form §,, ~ S,. Let ¢!, a2, ..., a* be the partitions of m and assume
o' C # for all i = j. A complete system of ordinary irreducible repre-
sentations of S, ~ 5, is given by:

[(f?iasi @ {p! 1') #(?(«21 ® lﬁll')#
#(?‘ [of] @ w"l')] tS, VS,

where i, = n and §' is a partition of n;. The corresponding character
is denoted by x(8!, 82, ..., %). Let us defire two other representations
of S, v §, which are associated with (8!, ..., gEy: 1@, ..., B5) denotes
the character of S, ~ §,, which is induced by the l-character of

xfxi S S, hence,

LT .

1(52 ’ ...,Bk}= (ﬁ(# {CY ®I(ﬁt‘)’)) t Sm v Sn ,

and let
. ke :

A@',..8= (#(# a0 a)) 15, v, |

=1
WL ,
A@, LBy = (fi(# A(a")@A(r‘)'» 1S, ~S,,

whe;‘e ot :'a"' and 7' = " for all i. Obviously, the mapping
AR, ""if?k )= A'(BY, ..., %) is a permutation of {A@, ....65)).
Let v, ...+ be partitions of I, , ..., ], and £/, = n. We define:

@B L e!, LY
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it and only if either n; </; for an index jand n; =, for all i < j, or
n;=l foralliand f C v fnr anindex jand g/ = 'v’ forall i <j(cf. [4])

2872 2l 23382 — LR A A Y LAV T}

It follows from the considerations in Section 3 that {[(,6' .,B" )}
is a Z-basis of the character ring cf S, ~ S,,, and analogous calcula-
SRR T ‘ (11‘

tions show that the same holds for {4{3", ...,§" k ) }. These consicdera-
tions and Theorem 4.1 also imply:

Theorem 4.2. Let

X' 8= 22 a(yt, ¥ YY)
= 25 b(y ) A, A,

IG....8%5 = Zety!, ., ¥ x(vt, . Y)
A= 2 dy L) X ).

Then we have
MeB....050=b0,....85=c@,...05)=d@, ... 5 =1,
Gi) (YL, ..., Y @Y, ..., B%) implies a(y!, ... ¥): c(y!, ... ¥)=0,
G @', ... B¢ (v, ... ¥ implies by, .. ) = d(yt. .., ¥)=0

Theorem 4.2 implies that (B!, .... %) is the only common constit-
uent of (8", ...,8%Yand 4'(8", ..., %), and it occurs with multiplicity 1.

References

{1] C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras
(Interscience, New York, 1962).

{21 A. Kerber, Representations of Permutation Groups I, Lecture Notes in Mathematics 240
{Springer, Berlin, 1971).

13} A. Kerber, Reprexntations of Permutation Groups I1. Lecture Notes in Mathematics 495
{Springer, Berlin, 1975).

‘4] D. v inch and L. Geissinger, Representations of the Hy peroctahedral Groups (in prepara-
tion).

;5] D.E. Littiewood, The Theory of Group Characters, 2nd ed. (Clarenden, Oxford, 1958).

16} S.J. Mayer, On the characters of Weyl groups of type C, J. Algebra 33 (1973) 59-67.



