Discrete Mathematics 15 (1976) 151-161. © North-Holland Publishing Company

ON PERMUTATION CHARACTERS OF WREATH PRODUCTS

Adalbert KEI 'BER and Jürgen TAPPE

Rheinisch Westfälische Technische Hochschule, Aachen, Federal Republic of Germany

Received 26 September 1975

It is known that the character rings of symmetric groups S_n and the character rings of hyperoctahedral groups $S_2 \sim S_n$ are generated by (transitive) permutation characters. These results of Young are generalized to wreath products $G \sim H$ (G a finite group, H a permutation group acting on a finite set). It is shown that the character ring of $G \sim H$ is generated by permutation characters if this holds for G, H and certain subgroups of H. This result can be sharpened for wreath products $G \sim S_n$; if the character ring of G has a basis of transitive permutation characters, then the same holds for the character ring of $G \sim S_n$.

0. Introduction

It is well known that the character rings of symmetric groups S_n and the character rings of hyperoctahedral groups $S_2 \sim S_n$ possess Z-bases consisting of transitive permutation characters (cf. [4, 6]). In order to generalize these results we prove the following two theorems:

Theorem 1. Let G denote a finite group and H a subgroup of S_n . If the characters of G and the characters of all intersections of H with Young-subgroups of S_n are Z-linear combinations of permutation characters, then the same holds for the characters of $G \sim H$.

Theorem 2. If the character ring of G has a Z-basis of transitive permutation characters then the same holds for the character rings of the monomial groups $G \sim S_n$.

1. Some remarks on wreath products

Let G denote a finite group and H a subgroup of S_n , where S_n is the

symmetric group on N := $\{1, ..., n\}$. The set

$$G \sim H := \{(f, \pi) | f : \mathbb{N} \rightarrow G \text{ and } \pi \in H\}$$

together with the composition law

$$(f, \pi)(f', \pi') := (ff'_{\pi}, \pi\pi')$$

(where $\pi\pi'(i) := \pi(\pi'(i))$, $ff'_{\pi}(i) := f(i)f'_{\pi}(i) := f(i)f'(\pi^{-1}(i))$, for all $i \in \mathbb{N}$) constitutes a group, the wreath product of G with H. The group $G \sim S_n$ is called the monomial group of degree n over G.

Let F be a representation of G over the complex field C with representation space V If m denotes a positive integer, then we obtain an ordinary representation of $G \sim S_m$ with representation space

$$\overset{m}{\otimes} V := V \otimes_{\mathbf{C}} \dots \otimes_{\mathbf{C}} V \qquad (m \text{ factors})$$

by putting

$$(f, \pi)(v_1 \otimes ... \otimes v_m) := f(1)v_{\pi^{-1}(1)} \otimes ... \otimes f(m)v_{\pi^{-1}(m)}$$

for each $v_1, \ldots, v_m \in V$.

Following the notation $c^{2}[2]$ we denote this representation by

since it extends the *m*-fold outer tensor product $\#^m F$ of F with itself which is a representation of the normal subgroup

$$G^* := \{(f, 1) \mid f : \mathbb{N} \to G\} \leq G \sim S_m \quad .$$

If furthermore D is a representation of $U \leq S_m$, then

$$D'(f,\pi) := D(\pi)$$

yields a representation D' of $G \sim U$.

It follows from [2] that the ordinary irreducible representations of $G \sim H$ are of the form

$$(1.1) \qquad (R \otimes S) \in G \sim H.$$

where R is the restriction of an outer tensor product representation $#(\tilde{\#}^{n_i}F_i)$ of $(G \sim S_{n_1}) \times ... \times (G \sim S_{n_r}) = G \sim (S_{n_1} \times ... \times S_{n_r}) \leq G \sim S_n$ to $G \sim (H \cap X_i S_{n_i})$, F_i ordinary irreducible representations of G, and S is an ordinary irreducible representation of the intersection $H \cap X_i S_{n_i}$ of *H* with the Young subgroup $X_i S_{n_i} = S_{n_1} \times ... \times S_{n_r}$ of S_n . We are now going to prove two important relations on the character

of $\#^m F$.

Let χ be a class function on G and $(f, \pi) \in G \sim S_m$. Let $g_1, ..., g_{c(\pi)}$ be the cycleproducts associated with the $c(\pi)$ cyclic factors of π with respect to f(cf, [2]) and put

$$(\chi; m)(f, \pi) := \prod_{i=1}^{c(\pi)} \chi(g_i).$$

It is easy to see that $(\mathbf{x}; m)$ is a class function of $G \sim S_m$ and that the following holds (cf. [3]):

Lemma 1.1. If χ is the character of F, then $(\chi; m)$ is the character of $\widetilde{\#}^m F.$

Let now sgn π denote the sign of the permutation π and define

$$(\chi; 1^m)(f, \pi) := \operatorname{sgn} \pi \cdot (\chi; m)(f, \pi)$$
.

Putting $(\chi; 0) := (\chi; 1^0) := 1$, we can prove the following result which generalizes formula IV on page 290 in [5]:

Theorem 1.2.

(i)
$$(\chi_1 + \chi_2; m) = \sum_{\nu=0}^{m} [(\chi_1; \nu)(\chi_2; m - \nu)] \cap G \sim S_m$$

(ii)
$$(\chi_1 - \chi_3; m) = \sum_{\nu=0}^{m} (-1)^{m-\nu} [(\chi_1; \nu)(\chi_3; 1^{m-\nu})] + G \sim S_m$$

The proof of Theorem 1.2 is based on Lemma 1.3 for which we first introduce the abbreviation

$$\chi^{\nu} := [(\chi_1; \nu)(\chi_2; m - \nu)] \uparrow G \sim S_m$$

For $(f, \pi) \in G \sim S_m$ we denote by $\pi_1, ..., \pi_{c(\pi)}$ the $c(\pi)$ cyclic factors of π with corresponding cycleproducts $g_1, ..., g_{c(\pi)}$ with respect to f. Let n_i denote the length of π_i .

Lemma 1.3. We have

$$\chi^{\nu}(f, \pi) = \sum_{(I,J)} \prod_{i \in I} \chi_1(g_i) \prod_{j \in J} \chi_2(g_i) ,$$

where the sum is taken over all pairs (I, J) of subsets of $\{1, ..., c(\pi)\}$ such that $I \cup J = \{1, ..., c(\pi)\}, I \cap J = \emptyset, \Sigma_{i \in I} n_i = \nu, \Sigma_{j \in J} n_j = m - \nu$.

Proof. Let (ρ_k) be a system of left codet representatives of $S_{\nu} \times S_{m-\nu}$ in S_m . Hence $((e; \rho_k))$, where e(i) = i for all $i \in \{1, ..., m\}$, is a corresponding system for $G \sim (S_{\nu} \times S_{m-\nu})$ in $G \sim S_m$. The definition of induced characters yields

$$\chi^{\nu}(f,\pi) = \sum_{k} \left[\overline{(\chi_{1};\nu)(\chi_{2};m-\nu)} \right] \left((e;\rho_{k})^{-1} (f;\pi)(e,\rho_{k}) \right),$$

where the bar denotes that the value of the function is 0 if the argument is not in $G \sim (S_{\nu} \times S_{m-\nu})$.

Let now N_i be the set of symbols which are contained in the cyclic factor π_i of π . We then have

$$(e, \rho_k)^{-1}(f, \pi)(e, \rho_k) = (f_{\rho_k^{-1}}, \rho_k^{-1}\pi\rho_k) \in G \sim (S_{\nu} \times S_{m-\nu})$$

if and unly if

 $\rho_k(N_i) \subseteq \{1, ..., \nu\} \text{ or } \{\nu + 1, ..., m\}, \text{ for all } i = 1, ..., c(\pi).$

Let us consider two representatives ρ_k and ρ_l and assume that the following holds:

٥r

$$\rho_k^{-1}(N_i) \text{ and } \rho_l^{-1}(N_i) \subseteq \{1, ..., \nu\}$$

 $\rho_k^{-1}(N_i) \text{ and } \rho_l^{-1}(N_i) \subseteq \{\nu \neq 1, ..., m\}$

for all *i*. This together with

$$(\rho_l^{-1}\,\mu_k\,)(\rho_k^{-1}(N_i))=\rho_l^{-1}\,((\rho_k\,\rho_k^{-1}\,)(N_i))=\rho_l^{-1}(N_i)$$

implies

$$\rho_l^{-1} \rho_k \in S_{\nu} \times S_{m-\nu}$$

i.e. k = l. Hence

$$\chi^{\nu}(f;\pi) = \sum_{(I,J)} (\chi_1;\nu)(f_I,\pi_I) \cdot (\chi_2;m-\nu)(f_J,\pi_J),$$

where I and J are as above, (f_I, π_I) and (f_J, π_J) are the parts of the corresponding conjugate of (f, π) in $G \sim S_{\nu}$ and $G \sim S_{m-\nu}$.

It is easy to see that conjugation with elements of the form $(e; \rho)$ does not change the classes of the cycle products. Hence we have

$$(\chi_{1}; \nu)(f_{i}, \pi_{I}) = \prod_{i \in I} \chi_{1}(g_{i}) ,$$

$$(\chi_{2}; m - \nu)(f_{J}, \pi_{J}) = \prod_{j \in J} \chi_{2}(g_{j})$$

This completes the proof of Lemma 1.3.

Proof of Theorem 1.2 (i). We have

$$(\chi_1 + \chi_2; m)(f; \pi) = \prod_{i=1}^{c(\pi)} (\chi_1(g_i) + \chi_2(g_i))$$
.

The multiplication yields all possible terms

$$\prod_{i\in I} \mathbf{x}_1(g_i) \prod_{j\in J} \mathbf{x}_2(g_j)$$

where $I \cap J = \emptyset$ and $I \cup J = \{1, \dots, c(\pi)\}$.

Lemma 1.3 has shown us that each of these terms occurs once and in exactly one χ^{ν} , namely the ν which satisfies $\nu = \sum_{i \in I} n_i$. This proves Theorem 1.2(i).

Proof of Theorem 1.2 (ii). Replacing χ_2 by $-\chi_3$ in χ^{ν} , we obtain from Theorem 1.2(i):

$$(\chi_1 - \chi_3; m) = \sum_{\nu=0}^{m} \chi^{\nu}$$

where

$$\chi^{\nu}(f, \pi) = \sum_{(I,J)} \prod_{i \in J} \chi_1(g_i) \prod_{j \in J} (-\chi_3)(g_j)$$
$$= \sum_{(I,J)} \prod_{i \in J} \chi_1(g_i) \left(\prod_{j \in J} \chi_3(g_j) \right) (-1)^{|J|}$$

Or, the other hand the proof of Lemma 1.3 yields

$$\begin{split} [(\chi_1;\nu)(\chi_3;1^{m-\nu})] \uparrow G \sim S_m(f,\pi) = \\ &= \sum_{(I,J)} \prod_{i \in I} \chi_1(g_i) \Big(\prod_{j \in J} \chi_3(g_j) \Big) \operatorname{sgn} \pi_J \,, \end{split}$$

and sgn $\pi_j = \text{sgn} (\prod_{j \in J} \pi_j) = \prod_{j \in J} \text{sgn} \pi_j$. As sgn $\pi_j = (-1)^{n_j+1}$ and $\sum_{j \in J} n_j = m - \nu$, we obtain

sgn
$$\pi_J = (-1)^{m-\nu+|J|} = (-1)^{|J|} (-1)^{m-\nu}$$

Hence

$$[(\chi_1; \nu) \cdot (\chi_3; 1^{m-\nu})] \uparrow G \sim S_m(f, \pi) = (-1)^{m-\nu} \chi^{\nu}(f, \pi) .$$

This completes the proof of Theorem 1.2.

2. Proof of Theorem 1

Let ζ denote an ordinary character of G. Then by the assumption of Theorem 1 we have

$$\mathbf{X} = \mathbf{X}_i - \mathbf{X}_j \, .$$

where χ_i and χ_j are permutation characters. Theorem 1.2 implies that $(\chi; m)$ is a Z-linear combination of the characters

$$[(\chi_i;\nu)\cdot(\chi_j;1^{m-\nu})] \dagger G \sim S_m .$$

Let F_i and F_j be permutation representation of G with characters χ_i

and χ_j . Lemma 1.1 implies that $(\chi_i; \nu)$ is the character of $\widetilde{\#}^{\nu} F_i$ and that $(\chi_i; 1^{m-\nu})$ is the character of $\widetilde{\#}^{m-\nu} F_j \otimes [1^{m-\nu}]'$ (recall that as usual (cf. [2]) $[1^{m-\nu}]$ denotes the alternating representation of $S_{m-\nu}$). It follows from the definition that $\tilde{\#}^{\nu}F_i$ and $\tilde{\#}^{m-\nu}F_j$ are permuta-

tion representations.

Furthermore we know that the character of $\lfloor 1^{m-\nu} \rfloor$ is the difference of the character of the representation of $S_{m-\nu}$ which is induced by the identity representation of the alternating subgroup $A_{m-y} \leq S_{m-y}$ and the identity character:

$$\chi^{(1^{m-\nu})} = \chi^{IA_m - \nu} \uparrow S_{m-\nu} - \chi^{IS_{m-\nu}}$$

As inner and outer tensor products of permutation representations and representations induced by permutation representations are again permutation representations, we obtain that

 $[(\chi_i; \nu) \cdot (\chi_i; 1^{m-\nu})] \uparrow G \sim S_m$ is a difference of two permutation characters.

As the representation R in (1,1) is a restriction of z n outer tensor product of representations with characters of the form $(\chi; m)$, we obtain that the character of R is a Z-linear combination of permutation characters.

S is a representation of the intersection of H and Young-subgroup of S_n . Hence, the character of $(R \otimes S') \uparrow G \sim H$ is a Z-linear combination of permutation characters.

3. Proof of Theorem 2

According to the assumption of the theorem let $\{\psi_1, ..., \psi_h\}$ denote a **Z**-basis of the character ring of G which consists of transitive permutation characters (so that h is the number of conjugacy classes of G). Let G_i be a subgroup of G, the identity representation IG_i of which induces a representation $IG_i \uparrow G$ with character ψ_i , $1 \le i \le n$.

The groups G_i are obviously pairwise non-conjugate. It follows from [2,3.7] that the number of the subgroups

(3.1)
$$\begin{array}{l} & h \\ X \\ i=1 \end{array} (G_i \cap S_{\alpha(i)}), \qquad \alpha(i) \text{ partition of } n_i \ , \qquad \sum_{i=1}^h n_i = n \ , \end{array}$$

where $S_{\alpha(i)}$ is a Young-subgroup of S_{n_i} , is equal to the number of conjugacy classes of $G \sim S_n$.

Hence Theorem 2 will be proved once we have shown that every irreducible character of $G \sim S_a$ is a Z-linear combination of characters induced by identity characters of the groups (3.1).

Let us first consider representations of $G \sim S_n$ which are of the form

where $\beta = (\beta_1, ..., \beta_k)$ is a partition of *n* and $[\beta]$ the corresponding ordinar; irreducible representation of S_n (cf. [2,4.6]).

The character χ^{β} of $[\beta]$ satisfies (cf. [2,4.41]:

(3.2)
$$\chi^{\beta} = \det(\chi^{(\beta_i + j - i)}) = \sum_{\rho} \operatorname{sgn} \rho(I(\beta; \rho) \uparrow S_n),$$

where the sum is taken over all $\rho \in S_k$ such that all the $\beta_i + \rho(j) - 1$ are non-negative and $I(\beta; \rho)$ denotes the identity character of the Young-subgroup

$$\sum_{i=1}^{k} S_{\beta_i + p(i) - i}$$

This formula (3.2), Lemma 1.1, and [1, 38.5)(i) yield that the character of $\tilde{\#}^n F \otimes [\beta]'$ is equal to

(3.3)
$$\sum_{\rho} \operatorname{sgn} \rho \left(\prod_{i=1}^{k} (\chi; \beta_i + \rho(j) - i) \right) \uparrow G \sim S_n ,$$

where χ denotes the character of F.

 χ is a Z-linear combination of the characters ψ_i . Hence Theorem 1.2 implies that the characters $(\chi; m)$ are Z-linear combinations of the characters which are induced by products of characters of the following form:

(3.4) $(\psi_i; r)$ and $(\psi_i; 1^r)$.

Lemma 3.1. We have that

(i) $(\psi_i; r)$ is induced by the identity character of $G_i \sim S_r$,

(ii) $(\psi_i; 1^i)$ is a Z-linear combination of characters which are induced by identity characters of groups $G_i \sim S_{\alpha}$ with Young-subgroups S_{α} of S_r .

Proof. The permutation representation which corresponds to $(\psi_i; r)$ acts transitively on

$$\begin{pmatrix} \mathsf{r} \\ \bigotimes_{j=1}^{\mathsf{r}} (g_{h_j} \otimes_{\mathbf{C}} G_i | \mathbf{1}_{\mathbf{C}}) + 1 \leq h_j \leq |G:G_i| \end{pmatrix}$$

(where $\{g_1 = l_G, g_2, ...\}$ is a system of left coset representatives of G_i in G) which is a basis of the corresponding representation module. Obviously the stabilizer of $\otimes^r (l_G \otimes_{\mathbf{C}} G_i l_{\mathbf{C}})$ is $G_i \sim S_r$. This proves (i).

(ii) follows from (3.2) and (i).

Thus, (3.3)-(3.4) and Lemma 3.1 imply that the character of $\#^n F \otimes [\beta]'$ is a linear combination of characters, induced by the identity characters of subgroups of $G \sim S_n$ which are conjugate to subgroups given in (3.1).

As every ordinary irreducible representation of $G \cap S_n$ is of the form (cf. [2])

$$\left(\left(\overset{\widetilde{m}_1}{\#}F_1\otimes [\beta^1]'\right)\#\ldots\#\left(\overset{\widetilde{m}_k}{\#}F_k\otimes [\beta^k]'\right)\right) \uparrow G\sim S_n$$

with irreducible representations F_i of G, the assertion follows from the considerations above.

4. The characters of $S_m \sim S_n$

Let α be a partition of n and χ^{α} the corresponding irreducible character of S_n . Let $I(\alpha)$ and $A(\alpha)$ denote the characters of S_n which are induced by the 1-character and the alternating character of $S_{\alpha} = S_{\alpha_1} \times S_{\alpha_2} \times ... \times S_{\alpha_n}$.

The associated partition of α is denoted by α' (cf. [2,1.34]), the lexicographic order of partitions by \subseteq . It is well-known that $\{\chi^{\alpha}\}$, $\{I(\alpha)\}$ and $\{A(\alpha)\}$, where α runs through all partitions of n, are Z-bases of the character ring of S_n and that the following holds:

Theorem 4.1. Let

$$\chi^{\alpha} = \sum a_{\beta} I(\beta) = \sum b_{\beta} A(\beta'), \quad I(\alpha) = \sum c_{\beta} \chi^{\beta}, \quad A(\alpha') = \sum d_{\beta} \chi^{\beta}$$

Then, we have

(i) $a_{\alpha} = b_{\alpha} = c_{\alpha} = d_{\alpha} = 1$, (ii) $\beta \subset \alpha$ implies $a_{\beta} = c_{\beta} = 0$, (iii) $\alpha \subset \beta$ implies $b_{\beta} = d_{\beta} = 0$.

Now, we are going to generalize this result to wreath products of the form $S_m \sim S_n$. Let $\alpha^1, \alpha^2, ..., \alpha^k$ be the partitions of *m* and assume $\alpha^i \subseteq \alpha^j$ for all $i \ge j$. A complete system of ordinary irreducible representations of $S_m \sim S_n$ is given by:

$$\begin{bmatrix} \binom{n_{4}}{4} \left[\alpha^{1} \right] \otimes \left[\beta^{1} \right]' \end{pmatrix} \# \binom{n_{2}}{4} \left[\alpha^{2} \right] \otimes \left[\beta^{2} \right]' \end{pmatrix} \# \\ \dots \# \binom{\tilde{n}_{k}}{4} \left[\alpha^{k} \right] \otimes \left[\beta^{k} \right]' \end{pmatrix} \right] \uparrow S_{m} \sim S_{n} ,$$

where $\sum n_i = n$ and β^i is a partition of n_i . The corresponding character is denoted by $\chi(\beta^1, \beta^2, ..., \beta^k)$. Let us define two other representations of $S_m \sim S_n$ which are associated with $(\beta^1, ..., \beta^k)$: $I(\beta^1, ..., \beta^k)$ denotes the character of $S_m \sim S_n$ which is induced by the 1-character of $X_{i=1}^k S_{\alpha^i} \sim S_{\beta^i}$; hence,

$$I(\beta^1,...,\beta^k) = \left(\begin{array}{c} k \\ \# \\ i=1 \end{array} \right) \left(\begin{array}{c} \tilde{n}_i \\ \# \\ I(\alpha^i) \otimes I(\beta^i)' \end{array} \right) + S_m \sim S_n ,$$

and let

$$\begin{split} A(\beta^1,...,\beta^k) &= \left(\begin{array}{c} {}^k_{\#} \left(\begin{array}{c} \widetilde{n}_i \\ \# \\ \end{array} A(\alpha^i) \otimes A(\beta^i)' \right) \right) \ \uparrow S_m \sim S_n \ , \\ A'(\beta^1,...,\beta^k) &= \left(\begin{array}{c} {}^k_{\#} \left(\begin{array}{c} \widetilde{n}_i \\ \# \\ i=1 \end{array} \left(\begin{array}{c} \widetilde{n}_i \\ \# \\ \end{array} A(\sigma^i) \otimes A(\tau^i)' \right) \right) \ \uparrow S_m \sim S_n \ , \end{split} \end{split}$$

where $\alpha^{i} = \alpha^{i'}$ and $\tau^{i} = \beta^{i'}$ for all *i*. Obviously, the mapping $A(\beta^{1}, ..., \beta^{k}) \mapsto A'(\beta^{1}, ..., \beta^{k})$ is a permutation of $\{A(\beta^{1}, ..., \beta^{k})\}$. Let $\gamma^{1}, ..., \gamma^{k}$ be partitions of $l_{1}, ..., l_{k}$ and $\Sigma l_{i} = n$. We define:

 $(\beta^1,...,\beta^k) \subset (\gamma^1,...,\gamma^k)$

if and only if either $n_j < l_j$ for an index j and $n_i = l_i$ for all i < j, or $n_i = l_i$ for all i and $\beta^j \subset \gamma^j$ for an index j and $\beta^i = \gamma^i$ for all i < j (cf. [4]).

It follows from the considerations in Section 3 that $\{I(\beta^1, ..., \beta^k)\}$ is a Z-basis of the character ring of $S_m \sim S_n$, and analogous calculations show that the same holds for $\{A(\beta^1, ..., \beta^k)\}$. These considerations and Theorem 4.1 also imply:

Theorem 4.2. Let

$$\chi(\beta^{1},...,\beta^{k}) = \sum a(\gamma^{1},...,\gamma^{k}) \cdot I(\gamma^{1},...,\gamma^{k})$$
$$= \sum b(\gamma^{1},...,\gamma^{k}) \cdot A'(\gamma^{1},...,\gamma^{k}),$$
$$I(\beta^{1},...,\beta^{k}) = \sum c(\gamma^{1},...,\gamma^{k}) \cdot \chi(\gamma^{1},...,\gamma^{k}),$$
$$A'(\beta^{1},...,\beta^{k}) = \sum d(\gamma^{1},...,\gamma^{k}) \cdot \chi(\gamma^{1},...,\gamma^{k}).$$

Then we have

(i)
$$a,\beta^1, ..., \beta^k$$
) = $b(\beta^1, ..., \beta^k) = c(\beta^1, ..., \beta^k) = d(\beta^1, ..., \beta^k) = 1$,
(ii) $(\gamma^1, ..., \gamma^k) \subseteq (\beta^1, ..., \beta^k)$ implies $a(\gamma^1, ..., \gamma^k) = c(\gamma^1, ..., \gamma^k) = 0$,
(iii) $(\beta^1, ..., \beta^k) \subseteq (\gamma^1, ..., \gamma^k)$ implies $b(\gamma^1, ..., \gamma^k) = d(\gamma^1, ..., \gamma^k) = 0$.

Theorem 4.2 implies that $\chi(\beta^1, ..., \beta^k)$ is the only common constituent of $I(\beta^1, ..., \beta^k)$ and $A'(\beta^2, ..., \beta^k)$, and it occurs with multiplicity 1.

References

- [1] C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Interscience, New York, 1962).
- [2] A. Kerber, Representations of Permutation Groups I, Lecture Notes in Mathematics 240 (Springer, Berlin, 1971).
- [3] A. Kerber, Representations of Permutation Groups II. Lecture Notes in Mathematics 495 (Springer, Berlin, 1975).
- [4] D. winch and L. Geissinger, Representations of the Hyperoctahedral Groups (in preparation).
- [5] D.E. Littlewood, The Theory of Group Characters, 2nd ed. (Clarendon, Oxford, 1958).
- [6] S.J. Mayer, On the characters of Weyl groups of type C, J. Algebra 33 (1975) 59-67.

.