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We propose a novel approach to determine the leading hadronic corrections to the muon g-2. It consists 
in a measurement of the effective electromagnetic coupling in the space-like region extracted from 
Bhabha scattering data. We argue that this new method may become feasible at flavor factories, resulting 
in an alternative determination potentially competitive with the accuracy of the present results obtained 
with the dispersive approach via time-like data.
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1. Introduction

The long-standing discrepancy between experiment and the 
Standard Model (SM) prediction of aμ , the muon anomalous mag-
netic moment, has kept the hadronic corrections under close 
scrutiny for several years [1–4]. In fact, the hadronic uncertainty 
dominates that of the SM value and is comparable with the exper-
imental one. When the new results from the g-2 experiments at 
Fermilab and J-PARC will reach the unprecedented precision of 0.14 
parts per million (or better) [5–7], the uncertainty of the hadronic 
corrections will become the main limitation of this formidable test 
of the SM.

An intense research program is under way to improve the 
evaluation of the leading order (LO) hadronic contribution to aμ , 
due to the hadronic vacuum polarization correction to the one-
loop diagram [8,9], as well as the next-to-leading order (NLO) 
hadronic one. The latter is further divided into the O (α3) con-
tribution of diagrams containing hadronic vacuum polarization 
insertions [10], and the leading hadronic light-by-light term, also 
of O (α3) [2,11,12]. Very recently, even the next-to–next-to leading 
order (NNLO) hadronic contributions have been studied: inser-
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tions of hadronic vacuum polarizations were computed in [13], 
while hadronic light-by-light corrections have been estimated 
in [14].

The evaluation of the hadronic LO contribution aHLO
μ involves 

long-distance QCD for which perturbation theory cannot be em-
ployed. However, using analyticity and unitarity, it was shown long 
ago that this term can be computed via a dispersion integral using 
the cross section for low-energy hadronic e+e− annihilation [15]. 
At low energy this cross-section is highly fluctuating due to reso-
nances and particle production threshold effects.

As we will show in this paper, an alternative determination 
of aHLO

μ can be obtained measuring the effective electromagnetic 
coupling in the space-like region extracted from Bhabha (e+e− →
e+e−) scattering data. A method to determine the running of 
the electromagnetic coupling in small-angle Bhabha scattering was 
proposed in [16] and applied to LEP data in [17]. As vacuum polar-
ization in the space-like region is a smooth function of the squared 
momentum transfer, the accuracy of its determination is only lim-
ited by the statistics and by the control of the systematics of the 
experiment. Also, as at flavor factories the Bhabha cross section 
is strongly enhanced in the forward region, we will argue that a 
space-like determination of aHLO

μ may not be limited by statistics 
and, although challenging, may become competitive with stan-
dard results obtained with the dispersive approach via time-like 
data.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Theoretical framework

The leading-order hadronic contribution to the muon g-2 is 
given by the well-known formula [4,15]

aHLO
μ = α

π2

∞∫
0

ds

s
K (s) Im�had(s + iε), (1)

where �had(s) is the hadronic part of the photon vacuum polar-
ization, ε > 0,

K (s) =
1∫

0

dx
x2(1 − x)

x2 + (1 − x)(s/m2
μ)

(2)

is a positive kernel function, and mμ is the muon mass. As the 
total cross section for hadron production in low-energy e+e− anni-
hilations is related to the imaginary part of �had(s) via the optical 
theorem, the dispersion integral in Eq. (1) is computed integrat-
ing experimental time-like (s > 0) data up to a certain value of 
s [2,18,19]. The high-energy tail of the integral is calculated using 
perturbative QCD [20].

Alternatively, if we exchange the x and s integrations in Eq. (1)
we obtain [21]

aHLO
μ = α

π

1∫
0

dx (x − 1)�had[t(x)] , (3)

where �had(t) = �had(t) − �had(0) and

t(x) = x2m2
μ

x − 1
< 0 (4)

is a space-like squared four-momentum. If we invert Eq. (4), we 
get x = (1 − β) (t/2m2

μ), with β = (1 − 4m2
μ/t)1/2, and from Eq. (3)

we obtain

aHLO
μ = α

π

0∫
−∞

�had(t)

(
β − 1

β + 1

)2 dt

tβ
. (5)

Eq. (5) has been used for lattice QCD calculations of aHLO
μ [22]; 

while the results are not yet competitive with those obtained with 
the dispersive approach via time-like data, their errors are ex-
pected to decrease significantly in the next few years [23].

The effective fine-structure constant at squared momentum 
transfer q2 can be defined by

α(q2) = α

1 − �α(q2)
, (6)

where �α(q2) = −Re�(q2). The purely leptonic part, �αlep(q2), 
can be calculated order-by-order in perturbation theory – it is 
known up to three loops in QED [24] (and up to four loops in 
specific q2 limits [25]). As Im�(q2) = 0 for negative q2, Eq. (3) can 
be rewritten in the form [26]

aHLO
μ = α

π

1∫
0

dx (1 − x)�αhad[t(x)] . (7)

Eq. (7), involving the hadronic contribution to the running of the 
effective fine-structure constant at space-like momenta, can be fur-
ther formulated in terms of the Adler function [27], defined as 
the logarithmic derivative of the vacuum polarization, which, in 
turn, can be calculated via a dispersion relation with time-like 
hadroproduction data and perturbative QCD [26,28]. We will pro-
ceed differently, proposing to calculate Eq. (7) by measurements of 
the effective electromagnetic coupling in the space-like region (see 
also [9]).

3. �αhad(t) from Bhabha scattering data

The hadronic contribution to the running of α in the space-like 
region, �αhad(t), can be extracted comparing Bhabha scattering 
data to Monte Carlo (MC) predictions. The LO Bhabha cross section 
receives contributions from t- and s-channel photon exchange am-
plitudes. At NLO in QED, it is customary to distinguish corrections 
with an additional virtual photon or the emission of a real photon 
(photonic NLO) from those originated by the insertion of the vac-
uum polarization corrections into the LO photon propagator (VP). 
The latter goes formally beyond NLO when the Dyson resummed 
photon propagator is employed, which simply amounts to rescal-
ing the α coupling in the LO s- and t-diagrams by the factor 
1/(1 − �α(q2)) (see Eq. (6)). In MC codes, e.g. in BabaYaga [29], 
VP corrections are also applied to photonic NLO diagrams, in or-
der to account for a large part of the effect due to VP insertions 
in the NLO contributions. Beyond NLO accuracy, MC generators 
consistently include also the exponentiation of (leading-log) QED 
corrections to provide a more realistic simulation of the process 
and to improve the theoretical accuracy. We refer the reader to 
Ref. [30] for an overview of the status of the most recent MC 
generators employed at flavor factories. We stress that, given the 
inclusive nature of the measurements, any contribution to vacuum 
polarization which is not explicitly subtracted by the MC genera-
tor will be part of the extracted �α(q2). This could be the case, 
for example, of the contribution of hadronic states including pho-
tons (which, although of higher order, are conventionally included 
in aHLO

μ ), and that of W bosons or top quark pairs.
Before entering the details of the extraction of �αhad(t) from 

Bhabha scattering data, let us consider a few simple points. In 
Fig. 1 (left) we plot the integrand (1 − x)�αhad[t(x)] of Eq. (7)
using the output of the routine hadr5n12 [31] (which uses 
time-like hadroproduction data and perturbative QCD). The range 
x ∈ (0,1) corresponds to t ∈ (−∞, 0), with x = 0 for t = 0. The 
peak of the integrand occurs at xpeak � 0.914 where tpeak �
−0.108 GeV2 and �αhad(tpeak) � 7.86 × 10−4 (see Fig. 1 (right)). 
Such relatively low t values can be explored at e+e− colliders with 
center-of-mass energy 

√
s around or below 10 GeV (the so called 

“flavor factories”) where

t = − s

2
(1 − cos θ)

(
1 − 4m2

e

s

)
, (8)

θ is the electron scattering angle and me is the electron mass. De-
pending on s and θ , the integrand of Eq. (7) can be measured 
in the range x ∈ [xmin, xmax], as shown in Fig. 2 (left). Note that 
to span low x intervals, larger θ ranges are needed as the col-
lider energy decreases. In this respect, 

√
s ∼ 3 GeV appears to 

be very convenient, as an x interval [0.30, 0.98] can be measured 
varying θ between ∼ 2◦ and 28◦ . It is also worth remarking that 
data collected at flavor factories, such as DA	NE (Frascati), VEPP-
2000 (Novosibirsk), BEPC-II (Beijing), PEP-II (SLAC) and SuperKEKB 
(Tsukuba), and possibly at a future high-energy e+e− collider, like 
FCC-ee (TLEP) [32] or ILC [33], can help to cover different and com-
plementary x regions.

Furthermore, given the smoothness of the integrand, values 
outside the measured x interval may be interpolated with some 
theoretical input. In particular, the region below xmin will provide 
a relatively small contribution to aHLO

μ , while the region above xmax
may be obtained by extrapolating the curve from xmax to x = 1, 
where the integrand is null, or using perturbative QCD.



C.M. Carloni Calame et al. / Physics Letters B 746 (2015) 325–329 327
Fig. 1. Left: The integrand (1 − x)�αhad[t(x)] × 105 as a function of x and t . Right: �αhad[t(x)] × 104.

Fig. 2. Left: Ranges of x values as a function of the electron scattering angle θ for three different center-of-mass energies. The horizontal line corresponds to x = xpeak � 0.914. 
Right: Bhabha differential cross section obtained with BabaYaga [29] as a function of θ for the same three values of √s in the angular range 2◦ < θ < 90◦ . (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.)
The analytic dependence of the MC Bhabha predictions on α(t)
(and, in turn, on �αhad(t)) is not trivial, and a numerical procedure 
has to be devised to extract it from the data.1 In formulae, we have 
to find a function α(t) such that

dσ

dt

∣∣∣
data

= dσ

dt

(
α(t),α(s)

)∣∣∣
MC

, (9)

where we explicitly kept apart the dependence on the time-like 
VP α(s) because we are only interested in α(t). We emphasize 
that, in our analysis, α(s) is an input parameter. Being the Bhabha 

1 This was not the case for example in [16,17]: there α(t) was extracted from 
Bhabha data in the very forward region at LEP, where the t channel diagrams are 
by far dominant and α(t) factorizes.
cross section in the forward region dominated by the t-channel 
exchange diagram, we checked that the present α(s) uncertainty 
induces in this region a relative error on the θ distribution of less 
than ∼ 10−4 (which is part of the systematic error).

We propose to perform the numerical extraction of �αhad(t)
from the Bhabha distribution of the t Mandelstam variable. The 
idea is to let α(t) vary in the MC sample around a reference value 
and choose, bin by bin in the t distribution, the value that mini-
mizes the difference with data. The procedure can be sketched as 
follows:

1. choose a reference function returning the value of �αhad(t)
(and hence α(t)) to be used in the MC sample, we call it ᾱ(t);
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2. for each generated event, calculate N MC weights by rescaling 
ᾱ(t) → ᾱ(t) + i

N δ(t), where i ∈ [−N, N] and δ(t) is for exam-
ple the error induced on ᾱ(t) by the error on �αhad(t). Being 
done on an event by event basis, the full dependence on α(t)
of the MC differential cross section can be kept;

3. for each bin j of the t distribution, compare the experimental 
differential cross section with the MC predictions and choose 
the i j which minimizes the difference;

4. ᾱ(t j) + i j
N δ(t j) will be the extracted value of α(t j) from data 

in the jth bin. �αhad(t j) can then be obtained through the 
relation between α(t) and �αhad(t).

We finally find, for each bin j of the t distribution,

dσ

dt

∣∣∣
j,data

= dσ

dt

(
ᾱ(t) + i j

N
δ(t),α(s)

)∣∣∣
j,MC

. (10)

We remark that the algorithm does not assume any simple depen-
dence of the cross section on α(t), which can in fact be general, 
mixing s, t channels and higher order radiative corrections, rele-
vant (or not) in different t domains.

In order to test our procedure, we perform a pseudo-
experiment: we generate pseudo-data using the parameterization 
�α I

had(t) of Refs. [19,34] and check if we can recover it by in-
serting in the MC the (independent) parameterization �αII

had(t)
(corresponding to ᾱ(t) of Eq. (10)) of Ref. [31] by means of the 
method described above. For this exercise, we use the genera-
tor BabaYaga in its most complete setup, generating events at √

s = 1.02 GeV, requiring 10◦ < θ± < 170◦ , E± > 0.4 GeV and an 
acollinearity cut of 15◦ . We choose δ(t) to be the error induced 
on α(t) by the 1-σ error on �αhad(t), which is returned by the 
routine of Ref. [31], we set N = 150, and we produce distributions 
with 200 bins. We note that in the present exercise α(s) and all 
the radiative corrections both in the pseudo-data and in the MC 
samples are exactly the same, because we are interested in test-
ing the algorithm rather than assessing the achievable accuracy, at 
least at this stage.

In Fig. 3, �αextr
had is the result extracted with our algorithm, cor-

responding to the minimizing set of i j : the figure shows that our 
method is capable of recovering the underlying function �αhad(t)
inserted into the “data”. As the difference between �α I

had and 
�αextr

had is hardly visible on an absolute scale, in Fig. 3 all the func-
tions have been divided by �αII

had to display better the comparison 
between �α I

had and �αextr
had .

In order to assess the achievable accuracy on �αhad(t) with the 
proposed method, we remark that the LO contribution to the cross 
section is quadratic in α(t), thus we have (see Eq. (6))

1

2

δσ

σ
� δα

α
� δ�αhad. (11)

Eq. (11) relates the absolute error on �αhad with the relative error 
on the Bhabha cross section. From the theoretical point of view, 
the present accuracy of the MC predictions [30] is at the level of 
about 0.5�, which implies that the precision that our method can, 
at best, set on �αhad(t) is δ�αhad(t) � 2 · 10−4. Any further im-
provement requires the inclusion of the NNLO QED corrections into 
the MC codes, which are at present not available (although not out 
of reach) [30].

From the experimental point of view, we remark that a mea-
surement of aHLO

μ from space-like data competitive with the current 
time-like evaluations would require an O(1%) accuracy. Statistical 
considerations show that a 3% fractional accuracy on the aHLO

μ inte-
gral can be obtained by sampling the integrand (1 − x)�αhad[t(x)]
in ∼ 10 points around the x peak with a fractional accuracy of 
Fig. 3. The extracted function �αextr
had (t) compared to the function �α I

had(t) used in 
the pseudo-data (see text). The functions �αII

had(t) ± δ(t) are shown to display the 
range spanned by the MC samples. All functions have been divided by �αII

had(t). 
The tiny difference between �α I

had and �αextr
had is due to the binning discretization. 

(For interpretation of the references to color in this figure, the reader is referred to 
the web version of this article.)

10%. Given the value of O(10−3) for �αhad at x = xpeak, this im-
plies that the cross section must be known with relative accuracy 
of ∼ 2 × 10−4. Such a statistical accuracy, although challenging, 
can be obtained at flavor factories, as shown in Fig. 2 (right). With 
an integrated luminosity of O(1), O(10), O(100) fb−1 at 

√
s = 1, 

3 and 10 GeV, respectively, the angular region of interest can be 
covered with a 0.01% accuracy per degree. The experimental sys-
tematic error must match the same level of accuracy.

A fraction of the experimental systematic error comes from the 
knowledge of the machine luminosity, which is normalized by cal-
culating a theoretical cross section in principle not depending on 
�αhad. We devise two possible options for the normalization pro-
cess:

1. using the e+e− → γ γ process, which has no dependence on 
�αhad, at least up to NNLO order;

2. using the Bhabha process at t ∼ 10−3 GeV2 (x ∼ 0.3), where 
the dependence on �αhad is of O(10−5) and can be safely 
neglected.

Both processes have advantages and disadvantages; a dedicated 
study of the optimal choice goes beyond the scope of this paper 
and will be considered in a future detailed analysis.

4. Conclusions

We presented a novel approach to determine the leading 
hadronic correction to the muon g-2 using measurements of the 
running of α(t) in the space-like region from Bhabha scattering 
data. Although challenging, we argued that this alternative de-
termination may become feasible using data collected at present 
flavor factories and possibly also at a future high-energy e+e− col-
lider. The proposed determination can become competitive with 
the accuracy of the present results obtained with the dispersive 
approach via time-like data.
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