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Abstract 

The flow field numerical simulation of underwater vehicle with pump jet thruster was performed using the 
commercially available CFD software FLUENT based on the Reynolds averaged Navier Stokes Equations and k-
epsilon RNG turbulence model. Multiple reference frames (MRF) was used to associate the interior flow field of the 
pump jet thruster and exterior flow field of the underwater vehicle. Validity of the CFD model is verified using data 
from experiment. Characteristic of the overall flow field was obtained and pressure distribution of the propulsion was 
also given. The simulation results could be regarded as an important reference in the optimal design of pump jet 
thruster and the hydrodynamic characteristics of underwater vehicle. 
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1. Introduction 

Pump jet thrusters have been widely used as a propulsion device in underwater vehicle because of their 
excellent low noise characteristics [1]. The structural diagram of the underwater vehicle with pump jet 
thruster was showed in Fig 1. The pump jet thruster components include a rotor which rotates to obtain 
thrust, a stator prevents the rotation movement to offset the imbalance torque and a duct which protects the 
rotor and stator. The complicated structure of propulsion contributes to the complicated flow characteristics. 
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Meanwhile, the wake flow field performance of underwater vehicle is affected by the pump jet thruster 
significantly. It results that hydrodynamic characteristics will be affected inevitably. Thus, research on 
overall flow field of underwater vehicle accelerated by pump jet thruster is of great significance. A few of 
the researchers has conducted the study of the interior flow field of pump jet thruster, as in [2][3]. But they 
focus on only interior flow field, few can provide the characteristics of the overall flow field includes both 
interior flow field and exterior flow field of the underwater vehicle, which is usually the most important to 
analyze the propulsion performance and its influence on the hydrodynamic characteristics of the underwater 
vehicle. 

 

Fig. 1. Underwater vehicle accelerated by the pump jet thruster 

In this paper, the multiple reference frames (MRF) is applied to associate the exterior flow field of 
underwater vehicle with the interior flow field of propulsion. Hybrid grid is used because of the structural 
complexity. The Fluent software is used to solve the RNAS equations with RNG k-  turbulence model. The 
overall flow field of under vehicle with pump jet thruster is simulated .Comparison of the simulation results 
with a previously conducted full scale model experiment is performed, and the flow characteristic and the 
pressure distribution on the overall flow field with propulsion are given at last.  

2. Flow Simulation Model of the Overall Flow  

2.1. Physical Model and Mesh Generation 

In a flow field simulation, computational domain selection is a key factor which determines the 
complexity and successfulness of the problem [4]. In our work, we are mainly concern how the flow in the 
interior of propulsion interacts with the exterior flow field of the underwater vehicle and its influence on 
hydrodynamic characteristics, so water in the interior of propulsion as well as outside of the underwater 
vehicle are both included in the computational domain. Due to the dissymmetry of the propulsion, 3D 
model must be used in the computation. 

Schematic and boundary conditions of the longitudinal profile of the physical model is shown in Fig 2. 
Diameter of the underwater vehicle (referenced by d) was taken as a reference of the range of the flow field 
domain. Coordinate origin takes places at the vertex of the underwater vehicle head. The inlet, outlet, and 
wall boundary have an offset of 15d, 35d and 15d respectively from the origin. 

For the underwater vehicle, the fins and rudders were not modeled for the simplicity of the problem. To 
compare the hydrodynamic characteristics of with and without propulsion, the computational model with 
propulsion (referenced by B+P) and without propulsion (referenced by B) were respectively established. 

The mesh generator used in this work is ICEM CFD. The computational domain was split into interior 
flow field and exterior flow field witch were showed in different color in Fig.2. For the structure 
complexity of the interior flow field, unstructured mesh was used. For the number of grids reduction and 
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accuracy of the calculation, high quality structured mesh was used on the exterior flow field. The 
unstructured mesh and structured mesh have the same nodes at the interface so as to exchange the 
calculation information. 

 

Fig. 2. Schematic and boundary conditions of the longitudinal profile of the physical model 

2.2. Mathematical model 

Reynolds averaged Navier Stokes Equations was used to govern the transport of the averaged flow 
quantities in consideration of the reduction of computational resources. The equations which been written 
in Cartesian tensor form is: 
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Where  is the density and P is the Reynolds-averaged pressure, Ui,j and ui,j is the fluid mean and 
fluctuating velocity components,  is the dynamic viscosity. As it is well known the Reynolds stress tensor 
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k is the turbulent kinetic energy and  is the turbulent kinetic energy dissipation rate. In the present 
investigation the standard k-  model was used and two additional equations were introduced: 
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Where the turbulent kinetic energy production term Pk can be written as follows, 
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In the equations above C , 1C , 2C , k ,  are model constants and the values: 
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0.09C
, 1 1.45C , 2 1.90C , 1k , 1.3  

2.3. Numerical Solver and Boundary conditions 

The commercially available CFD solver FLUENT was used in this simulation. In the computation the 
pressure based implicit steady solver is used and the pressure-velocity coupling algorithm is SIMPLEC. For 
accuracy second order method was used for pressure, momentum and the turbulence viscosity discretization. 

The MRF is a steady-state approximation in which individual cell zones can be assigned different 
rotational or translational speeds. The flow in each moving cell zone is solved using the moving reference 
frame equations. If the zone is stationary ( =0), the equations reduce to their stationary forms. In our work, 
the interior flow field sub zone needs a rotational speed to realize the rotor rotation and exterior flow field 
just be assigned a zero rotational speed because it is stationary. 

For the boundary conditions, the underwater vehicle, duct and stator are stationary wall boundary 
relative to the exterior flow field. The rotor is moving wall relative to exterior flow field and its rotational 
speed is the same as the interior flow field. The inlet and outlet of the overflow field are given velocity inlet 
and pressure outlet respectively to realize a uniform flow field with a constant speed. 

3. Results 

Comparison of the simulation results with a previously conducted full scale model experiment is showed 
in Fig 3. As can be seen in Fig 3, the thrust results of the propulsion show good agreement between 
simulation and experiment corresponding to different rotational speed of the rotor. The CFD model of the 
flow field for underwater vehicle with pump jet thruster has been verified. 
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Fig. 3. The comparison of pump jet thruster thrust between experimental and simulation 
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Fig. 4. Pressure distribution of pump jet thruster interior field 

Fig 4 shows the contour plot of pressure field of the interior flow field of the propulsion. From Fig 4, we 
can see that thrust side of the rotor has a high pressure and suction side of the rotor has a low pressure. This 
is why the propulsion can provide the thrust. 

As is known that the poor propulsion performance could course a bad effect on the hydrodynamic 
characteristics of the underwater vehicle [5]. Fig 5 shows the pitching moment coefficient comparison of 
within (referenced by B+P) and without (referenced by B) propulsion. The pitching moment coefficient at 
different angle of attack reduces 3% generally after the propulsion was concerned. From the figure we can 
found that the propulsion has little effect on the stability of the underwater vehicle. That is, the propulsion 
in this paper has a good design. 
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Fig. 5. Comparison of pitching moment coefficient between model B and model B+P 
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4. Conclusion 

From this study of CFD application, we can conclude that the overall flow field of underwater vehicle 
with pump jet thruster can be well simulated by multiple reference frames (MRF) of FLUENT. Through 
analyzing the flow field, it has been found that Lift coefficient and pitch moment coefficient changed less 
than 3%. The simulation results could be regarded as an important reference in the optimal design of pump 
jet thruster and the hydrodynamic characteristics of underwater vehicle.  
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