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SUMMARY

Innate immunity is the first line of defense
against infection, protecting the host during
the development of adaptive immunity and
critically affecting the nature of the adaptive
response. We show that, in contrast to tu-
mor necrosis factor a (TNF-a), the related
protein TWEAK attenuates the transition
from innate to adaptive mechanisms.
TWEAK�/� mice had overabundant natural
killer (NK) cells and displayed hypersen-
sitivity to bacterial endotoxin, with their
innate immune cells producing excess
interferon (IFN)-g and interleukin (IL)-12.
TWEAK inhibited stimulation of the tran-
scriptional activator STAT-1 and induced
p65 nuclear factor (NF)-kB association
with histone deacetylase 1, repressing cy-
tokine production. TWEAK�/� mice devel-
oped oversized spleens with expanded
memory and T helper 1 (TH1) subtype cells
upon aging and mounted stronger innate
and adaptive TH1-based responses against
tumor challenge. Thus, TWEAK suppresses
production of IFN-g and IL-12, curtailing the
innate response and its transition to adap-
tive TH1 immunity.

INTRODUCTION

Host defense against infection requires integrated function

of the innate and adaptive immune systems. The innate sys-

tem, which is based on NK cells, dendritic cells, macro-

phages, and neutrophils, plays a crucial role not only in the

early response to infection but also in guiding the transition

to a T and B cell-based adaptive immunity (Diefenbach
and Raulet, 2002). Innate immune cells mediate direct killing

and elimination of infected cells; subsequently, they provide

active support for development of adaptive functions

through physical interactions with dendritic cells and conse-

quent secretion of specific cytokines (Diefenbach and Rau-

let, 2001; Fernandez et al., 2002; Ikeda et al., 2002). IFN-g

and IL-12 polarize the development of helper CD4+ T cells

toward the T helper 1 (TH1) subtype, which activates CD8+

effector T cell responses, while IL-4 induces the TH2 class,

which stimulates B cell-mediated antibody responses (Die-

fenbach and Raulet, 2002; Fernandez et al., 2002; Ikeda

et al., 2002). Few other cytokines that mediate the influence

of the innate system on the subsequent adaptive response

are known.

Various members of the tumor necrosis factor (TNF) cy-

tokine superfamily regulate development, homeostasis,

and function of the immune system (Locksley et al.,

2001). TWEAK (TNF-related weak inducer of apoptosis,

also known as Apo3L or TNFSF12) was first described

as an inducer of apoptosis in transformed cell lines (Chi-

cheportiche et al., 1997; Marsters et al., 1998). Several

hematopoietic tissues express the TWEAK mRNA (Chi-

cheportiche et al., 1997; Marsters et al., 1998). Human

peripheral-blood monocytes express TWEAK protein and

upregulate its production following IFN-g stimulation (Na-

kayama et al., 2000). TWEAK binds with high affinity to

a receptor known as fibroblast growth factor-inducible

14 kDa protein (FN14, also called TWEAK-R), which is

distantly related to the TNF receptor (TNFR) superfamily

(Wiley et al., 2001). FN14 contains a single cysteine-rich

domain in its extracellular region and a TNFR-associated

factor binding motif in its intracellular portion. TWEAK pro-

motes the nuclear translocation of both classical and al-

ternative NF-kB pathway subunits (Chicheportiche et al.,

1997; Marsters et al., 1998; Saitoh et al., 2003). TWEAK

also stimulates endothelial cell growth and angiogenesis in

certain model systems (Jakubowski et al., 2002; Lynch

et al., 1999). To investigate TWEAK’s biological role in im-

munity, we generated TWEAK gene knockout mice and

studied their innate and adaptive responses. Our results

suggest that TWEAK controls the innate inflammatory re-

sponse as well as the transition to TH1-based adaptive

immunity.
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Figure 1. Cells of the Innate Immune Sys-

tem Express TWEAK and Its Receptor

FN14

(A) Resting human PBMC or PBMC activated for

12 hr with IFN-g or PMA were surface stained

with antibodies to lymphocyte lineage markers,

permeabilized, stained with TWEAK antibody,

and analyzed by FACS.

(B) Resting or stimulated human PBMC were sur-

face stained for lineage markers as well as with

FN14 antibody and analyzed by FACS. Dendritic

cells were defined as HLA-DR+/CD11c+/LIN-1�

cells.
RESULTS

TWEAK Inhibits the Innate Inflammatory Response

by Supporting NK AICD and Repressing Production

of IFN-g and IL-12

To explore potential immune-cell sources and targets of

TWEAK, we analyzed expression of this ligand and its recep-

tor in lymphoid cells (Figure 1). NK cells, macrophages, and

dendritic cells expressed TWEAK and FN14, both of which
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were upregulated by stimulation with IFN-g or phorbol myr-

istate acetate (PMA). NKT cells expressed TWEAK but not

FN14 and did not upregulate either protein in response to

IFN-g or PMA. Other lymphoid cells, including T and B cells,

did not express significant levels of TWEAK or FN14 (data not

shown).

To examine TWEAK’s role in vivo, we generated TWEAK

knockout mice (see Figure S1 in the Supplemental Data

available with this article online). Detailed anatomical and



Figure 2. TWEAK�/� Mice Have More NK Cells in Secondary Hematopoietic Tissues

(A and B) The spleen, peripheral blood, Peyer’s patches, and lymph nodes were isolated from 2-month-old TWEAK+/+ (black bars) or TWEAK�/� (white bars)

mice (n = 6 per group). Dissociated NK cells (A) or NKT cells (B) were quantified by FACS (top graphs, males; bottom graphs, females). Error bars represent

SEM.

(C) The bone marrow (0.5 ml) was aspirated from the right femurs of TWEAK+/+ (black bars) or TWEAK�/� (white bars) mice (n = 6 per group) (left graph,

males; right graph, females), and NK cells were quantified.

(D) Human PBMC were subjected to activation-induced cell death by stimulation with TNF-a, LPS, or IFN-g in the presence of various concentrations

(Inhibitor) of FN14 Fc (closed squares), anti-TWEAK mAb (open squares), EDAR Fc (closed circles), or anti-CD4 mAb (open circles). NK cells were then

isolated and stained for their sub-G1 DNA content.
histological analysis did not suggest significant abnormalities

in nonlymphoid tissues (Table S1). However, analysis of

hematopoietic tissues revealed that TWEAK�/�mice had sig-

nificantly more NK cells than did age-matched wild-type (wt)

littermates (Figure 2A). This increase was apparent in sec-

ondary lymphoid organs, including spleen, Peyer’s patches,

lymph nodes, and peripheral blood, and was greater in males

than in females (Figure 2A top and bottom). In contrast, NKT
cell counts did not differ statistically between TWEAK�/� and

wt littermates (Figure 2B), nor did the numbers of CD4+ or

CD8+ T cells, B cells, macrophages, dendritic cells, or gran-

ulocytes (data not shown). NK cell counts in the bone marrow

of TWEAK�/� and wt mice also did not vary significantly (Fig-

ure 2C), suggesting that the elevation in NK numbers was not

the result of differences in NK generation (Kim et al., 2002).

We hypothesized alternatively that impaired elimination by
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activation-induced cell death (AICD) might lead to NK accu-

mulation in TWEAK’s absence. To test this, we examined

the effect of TWEAK neutralization on sensitivity of human

peripheral-blood NK cells to AICD (Figure 2D). TWEAK inhi-

bition by FN14-Fc decoy or a TWEAK-blocking antibody

markedly protected against NK AICD stimulation by TNF-a,

bacterial endotoxin (LPS), or IFN-g, indirectly supporting the

possibility that NK cells accumulate in TWEAK�/� mice be-

cause of insufficient AICD.

To determine the importance of TWEAK for innate immune

responses in vivo, we used an established model of systemic

challenge with lethal doses of LPS (Figure 3A). TWEAK�/�

mice were consistently more susceptible to LPS-induced

death than wt controls, suggesting a stronger innate inflam-

matory response in the absence of TWEAK. TWEAK�/� NK

cells and macrophages from peripheral blood and spleens of

LPS-injected mice produced more IFN-g and IL-12 and less

IL-10 as compared to wt cells (Figure 3B). Similarly, antibody

neutralization of TWEAK augmented LPS-induced IFN-g

and IL-12 production by human peripheral-blood NK cells

and CD14+ monocytes (Figure 3C). Thus, TWEAK�/� mice

are hypersensitive to LPS not only because they have

more NK cells but probably also since their NK cells and

macrophages produce more IFN-g and IL-12 and less IL-

10, further promoting systemic inflammation (D’Andrea

et al., 1993; Emoto et al., 2002; Heremans et al., 1994).

These results suggest that TWEAK functions to attenuate

the innate inflammatory response.

TWEAK Inhibits STAT-1 Activation and Promotes

p65 NF-kB Association with HDAC-1

To investigate how TWEAK deletion might promote the pro-

duction of IFN-g and IL-12, we examined the activity of the

signal transducer and activator of transcription (STAT)-1,

which is key to pathogen-induced expression of IFN-g in

NK cells and of IL-12 in macrophages (Marodi et al., 2001;

Morrison et al., 2004; Nelson et al., 1996; Varma et al.,

2002). TWEAK neutralization increased basal STAT-1 phos-

phorylation in human NK cells and macrophages and further

enhanced STAT-1 stimulation by LPS (Figure 4A). Likewise,

macrophages from TWEAK�/�mice had elevated basal lev-

els of phospho-STAT-1 and showed stronger LPS-induced

STAT-1 phosphorylation as compared to wt controls, while

phospho-STAT-3 and total STAT-1 or STAT-3 levels ap-

peared unaltered (Figure 4B). Suppressor of cytokine signal-

ing (SOCS) proteins act as negative-feedback regulators of

STAT activation (Alexander, 2002). As compared to wt con-

trols, TWEAK�/� macrophages showed weaker mRNA in-

duction of SOCS-1—a protein that directly inhibits Janus ki-

nase (JAK) activity (Alexander, 2002)—in response to LPS

(Figure 4C), while SOCS-3 mRNA elevation was not signifi-

cantly altered (data not shown). Thus, one mechanism con-

tributing to TWEAK’s repression of IFN-g and IL-12 produc-

tion may be attenuation of JAK-dependent STAT-1

activation through SOCS-1 induction.

TNF-a, a crucial stimulator of the innate inflammatory re-

sponse, induces expression of IFN-g and IL-12 (as well as

other immunomodulatory genes) through activation of the
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classical NF-kB pathway (Bonizzi and Karin, 2004; Chen and

Greene, 2004; Chen et al., 2001; D’Andrea et al., 1993;

Zhong et al., 2002). TNF-a induces transient phosphoryla-

tion of the p65/RelA NF-kB subunit, leading to its association

with the p50 subunit and to nuclear translocation of the re-

sulting heteromeric complex. In the nucleus, the p65/

p50 heterodimer transactivates downstream target genes

through association with the p300/CBP transcriptional co-

activator (Chen and Greene, 2004; Chen et al., 2001, 2002;

Greene and Chen, 2004; Kiernan et al., 2003; Zhong et al.,

2002). Alternatively, p65 may interact with histone deacety-

lases (HDACs), which cause transcriptional repression (Ash-

burner et al., 2001; Kiernan et al., 2003; Quivy and Van Lint,

2004; Rahman et al., 2004; Zhong et al., 2002). To assess

whether TWEAK might further affect gene expression by

modulating transcriptional interactions of NF-kB, we exam-

ined the phosphorylation of p65 in human splenic NK cells

and macrophages. We focused on serine 536 of p65, which

has been linked to transcriptional repression of IL-12 (Law-

rence et al., 2005). Whereas TNF-a caused transient p65

phosphorylation peaking at 0.5 hr, TWEAK induced pro-

longed p65 phosphorylation, starting at 0.25 hr and lasting

for 3–8 hr (Figure 4D). Next, we immunoprecipitated p65

from stimulated cells and probed by immunoblot for p65 as-

sociation with p300 or HDAC-1 (Figure 4E). TNF-a induced

strong interaction of p65 with p300 but not with HDAC-1,

while TWEAK induced robust association of p65 with

HDAC-1 but not with p300. The HDAC inhibitor trichostatin

A (TSA) reversed the inhibitory effect of TWEAK on production

of IFN-g and IL-12 by NK cells and macrophages but did not

alter induction of these cytokines by TNF-a (Figure 4F). We

further tested the effect of TWEAK on DNA binding of nuclear

NF-kB complexes in murine macrophages by electropho-

retic mobility supershift assays (Figure S2). Whereas TNF-a

promoted DNA binding by p65 and p50 that was detected

at 0.25–1 hr, TWEAK stimulated more prolonged binding,

lasting up to 3 hr, as well as detectable, although weak,

DNA binding of p52. Thus, TWEAK may block the production

of IFN-g and IL-12 not only by inhibiting STAT-1 but also

through HDAC-1-mediated transcriptional repression.

TWEAK Suppresses Development of a TH1

Immune Profile

To investigate whether TWEAK deficiency affects immune-

system development, we compared the lymphoid tissues

of TWEAK�/�mice and wt littermates at 3, 6, and 12 months

of age (Figure 5). By 6 months, TWEAK�/�mice showed no-

table spleen and lymph-node enlargement as compared to

controls (Figures 5A and 5B), while their thymus and liver

did not differ (Table S1). Histological evaluation indicated

that TWEAK�/� spleens or lymph nodes formed normal ger-

minal centers and were free of malignancy (Figure 5C and

data not shown). However, anti-CD3 antibody staining was

stronger in spleens from 12-month-old TWEAK�/�mice ver-

sus wt littermates (Figure 5C), suggesting expansion of the T

cell compartment. FACS analysis confirmed that both CD4+

and CD8+ T cells were significantly more abundant in aged

TWEAK�/� mice (Figure 5D). Splenic NK cell numbers also



Figure 3. TWEAK Ablation or Inhibition Augments the Innate Inflammatory Response to Endotoxin

(A) TWEAK+/+ and TWEAK�/� mice (n = 10 per group) were injected i.p. with the indicated doses of LPS, and survival was monitored over 5 days.

(B) NK cells and macrophages were isolated from the peripheral blood and spleen of TWEAK+/+ and TWEAK�/�mice 24 hr after in vivo challenge with LPS

(30 mg/kg) and stained for intracellular levels of IFN-g, IL-12, and IL-10. Error bars represent SEM of 500,000 events/mouse based upon a 99% confidence

interval for % responses (see http://www.maeckerlab.org/CFCTools.html).

(C) PBMC from four human donors were stimulated for 24 hr with LPS. Subsequently, marker-identified NK cells or CD14+ monocytes were stained and

analyzed by FACS for intracellular levels of IFN-g and IL-12, respectively.
Cell 123, 931–944, December 2, 2005 ª2005 Elsevier Inc. 935
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Figure 4. Involvement of TWEAK in Modulation of STAT-1 and NF-kB

(A) Human NK cells and macrophages were stimulated for 12 hr in vitro with LPS (1 mg/ml), surface stained for lineage markers, permeabilized, and stained

for intracellular levels of phosphorylated STAT-1. 500,000 events/mouse were collected; error bars represent SEM.

(B) Murine macrophages from TWEAK+/+ and TWEAK�/� mice were stimulated for 24 hr in vitro with LPS (1 mg/ml), and cellular lysates were analyzed for

phosphorylated STAT-1 and STAT-3 as well as total STAT-1 and STAT-3 by immunoblot.

(C) Macrophages from TWEAK�/� or wt mice were stimulated with LPS, and the induction of SOCS-1 mRNA was analyzed by quantitative PCR. The data is

normalized to RPL19 control levels and depicted as fold induction over values at t = 0.

(D) Splenic human NK cells and macrophages were stimulated with TWEAK or TNF-a (100 ng/ml) over 24 hr, and cell lysates were analyzed for phosphor-

ylated serine 536 on p65 by immunoblot.

(E) p65 was immunoprecipitated from cell lysates after stimulation by TWEAK or TNF-a, and association with p300 and HDAC-1 was analyzed by immunoblot.

(F) Human macrophages or NK cells were stimulated with TNF-a or TWEAK for 12 hr in the presence or absence of TSA. Innate immune cells were surface

stained for lineage markers and then stained for intracellular levels of IFN-g and IL-12.
were increased, while abundance of B cells, macrophages,

granulocytes, or platelets was similar (data not shown).

Given that NK cells comprise a small percentage of spleno-

cytes, it is likely that T cell expansion contributes to the larger

spleen size in TWEAK�/� mice, although other compart-
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ments we did not test, such as erythrocytes or stromal cells,

also may contribute. Further analysis of TWEAK�/� mice

demonstrated a marked increase in memory T cells and in

T cells positive for expression of the TH1-specific transcrip-

tion factor T-bet (Hwang et al., 2005; Szabo et al., 2002)



Figure 5. Aged TWEAK�/� Mice Have Larger Spleens with Expanded Memory and TH1 T Cell Compartments

TWEAK+/+ and TWEAK�/� male mouse littermates were grown to 3, 6, or 12 months of age, and their spleens and lymph nodes were examined.

(A) Representative images of spleens from 12-month-old TWEAK+/+ or TWEAK�/� mice.

(B) Mean ± SEM spleen weights as a function of age (n = 6 per group).

(C) Representative images of spleen sections from 12-month-old TWEAK+/+ or TWEAK�/� mice stained with CD3 antibody.

(D and E) Splenocytes of 12-month-old TWEAK+/+ mice and TWEAK�/� littermates were analyzed by FACS to determine numbers of CD3+, CD4+, and

CD8+ T cells (D) and memory (CD3+, CD44high, CD62Llow, CD45+) and TH1 (CD3+, CD4+, CD45+, T-bet+) T cells (E). 500,000 events/mouse were collected;

error bars represent SEM.
(Figure 5E). These results suggest that TWEAK function in-

hibits the development of an adaptive TH1 immune profile.

TWEAK Attenuates Adaptive TH1 Antitumor Immunity

To study the involvement of TWEAK in modulating the tran-

sition to an adaptive response, we turned to an established
model of antitumor immunity, based on syngeneic mouse

C57 black 6 B16 melanoma cells; in this model, both NK

cells and effector T cells are important for immune-based tu-

mor rejection (Prevost-Blondel et al., 2000; Turk et al., 2004;

Yang et al., 1997, 2003; Yei et al., 2002). First, we chal-

lenged mice with the moderately aggressive B16.F10
Cell 123, 931–944, December 2, 2005 ª2005 Elsevier Inc. 937



Figure 6. TWEAK Deletion Inhibits Es-

tablishment and Growth of B16.F10 Mela-

nomas and Promotes Expansion of NK

Cells and Adaptive CD8+ T Cells

TWEAK+/+ and TWEAK�/� mice were injected

s.c. with B16.F10 cells (105/mouse), and tumor

growth (A) and incidence (B) were monitored;

n = 10; error bars represent SEM. At study termi-

nation, spleens were harvested and analyzed for

the indicated lymphocyte subsets (C). 500,000

events/mouse were collected; error bars repre-

sent SEM.
subclone of the B16 cell line (Figure 6). TWEAK�/� mice

completely resisted the establishment and growth of

B16.F10 tumors, whereas wt controls succumbed to tumor

growth as previously reported (Figures 6A and 6B) (Yei et al.,

2002). To define which immunological differences might

have caused this marked disparity in tumor rejection, we an-

alyzed the splenic lymphocyte populations of the B16.F10-

injected mice (Figure 6C). Consistent with our other findings,

TWEAK�/�mice had more splenic NK cells than the wt con-

trols. Surprisingly, despite their lack of detectable tumors

and hence absence of abundant tumor-associated anti-

gens, B16.F10-injected TWEAK�/�mice displayed a signifi-

cant expansion of CD8+ T cells relative to controls. Taking

this finding together with the increase in memory T cells in

aged TWEAK�/� mice, we postulated that the absence of

TWEAK might facilitate an enhanced tumor-induced mem-

ory response, perhaps through stronger T cell priming in

the presence of higher IFN-g and IL-12 levels.
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To test this latter hypothesis, we injected mice with a more

aggressive B16 melanoma subclone, B16.BL6; this ensured

tumor implantation, while tumor growth was significantly at-

tenuated in TWEAK�/�mice compared to wt controls (Figure

7A). Tumors from TWEAK�/� mice exhibited greatly in-

creased lymphocytic infiltration, with 2- to 8-fold more T

and NK cells (Figure S3). Tumor-bearing TWEAK�/� mice

also had larger spleens than controls (Figure 7B), with ex-

panded NK and T cell populations (Figure 7C). To verify

whether these bigger lymphocytic populations harbored

specific antitumor activity, we isolated splenocytes from

tumor-bearing mice and measured their responsiveness

to ex vivo rechallenge with B16.BL6 cells (Figure 7D).

TWEAK�/� CD8+ T cells and NK cells produced significantly

more IFN-g, while macrophages generated more IL-12 upon

tumor rechallenge than did corresponding wt controls. To-

gether, these studies demonstrate that TWEAK’s absence

augments innate as well as adaptive antitumor immunity,



suggesting that TWEAK acts physiologically to repress both

functions.

To investigate whether TWEAK affects the adaptive re-

sponse through direct action on T cells or indirectly through

modulation of the innate-to-adaptive interface, we gener-

ated T cell-chimeric mice by adoptive transfer of TWEAK+/+

or TWEAK�/� T cells into TWEAK+/+ or TWEAK�/� congenic

recipients (Figure S4A). B16.BL6 tumors grew equally well in

TWEAK+/+ recipients with transferred TWEAK+/+ or

TWEAK�/� T cells; however, tumor growth in TWEAK�/�

mice with transferred TWEAK+/+ T cells was greatly attenu-

ated, suggesting indirect T cell modulation by TWEAK (Fig-

ure S4B). Moreover, upon ex vivo rechallenge, both wt

(Thy1.1) and knockout (Thy1.2) T cells showed much stron-

ger IFN-g production after conditioning in TWEAK�/� com-

pared to TWEAK+/+ recipients (Figure 7E). These results indi-

cate that TWEAK attenuates the priming of T cells by the

innate system, suppressing development of adaptive antitu-

mor immunity.

DISCUSSION

Innate immunity is important not only as the first line of de-

fense against infection but also for protecting the host during

the time required for development of adaptive immunity. Fur-

thermore, the innate response critically influences the nature

of adaptive mechanisms that develop in response to a given

infectious challenge (Castriconi et al., 2004; Lo et al., 1999;

Palucka and Banchereau, 1999a, 1999b). Interactions of NK

cells with macrophages and dendritic cells stimulate the se-

cretion of specific cytokines that support the development of

particular T and/or B cell responses (Palucka and Bancher-

eau, 1999a, 1999b; Trinchieri, 1995). IFN-g secretion by NK

cells and IL-12 production by macrophages and dendritic

cells promotes the development of an adaptive TH1 re-

sponse, leading to cytotoxic T cell effector function (Coudert

et al., 2002; Fujii et al., 2003; Gerosa et al., 2002; Pan et al.,

2004; Varma et al., 2002). In contrast, IL-4 production by

NKT cells promotes adaptive TH2 differentiation and conse-

quent B cell activation (Araujo et al., 2000; Kaneko et al.,

2000; Leite-de-Moraes et al., 2001).

The studies we report here implicate TWEAK as an impor-

tant regulator of the innate system and its interface with

adaptive immunity. Innate immune cells—namely, NK cells,

macrophages, and dendritic cells—expressed TWEAK and

its receptor FN14 and upregulated both molecules upon

stimulation. In contrast, cells of the adaptive system, includ-

ing T and B cells, did not express significant levels of TWEAK

or FN14. This expression pattern is consistent with our sub-

sequent conclusion that TWEAK directly modulates innate

immune function, thereby indirectly influencing the ensuing

adaptive response.

TWEAK knockout mice were viable and healthy, demon-

strating that TWEAK is not crucial for normal development.

However, TWEAK�/� mice showed a significant accumula-

tion of NK cells as compared to age-matched, wt littermates.

TWEAK gene ablation did not significantly alter the amount of

NK cells in the bone marrow, suggesting unabated NK devel-
opment. Conversely, neutralization of TWEAK protected hu-

man NK cells from apoptosis induction by TNF-a, LPS, or

IFN-g. These findings suggest that impaired AICD rather

than increased generation causes NK cell accumulation in

TWEAK�/� mice. Thus, one immunomodulatory role of

TWEAK may be to help prevent the potentially harmful devel-

opment of an excessive innate response by supporting the

deletion of activated NK cells upon immunological resolution.

TWEAK�/� mice were hypersensitive to systemic LPS in-

jection, further implicating TWEAK in curbing the innate re-

sponse. Given that NK cell activity is an important compo-

nent of the systemic inflammatory reaction to LPS (Emoto

et al., 2002; Heremans et al., 1994), one reason for the hy-

persensitivity of TWEAK�/� mice could be their elevated

NK cell numbers. However, we found in addition that, after

in vivo exposure to LPS, TWEAK�/� NK cells produced

more IFN-g, while macrophages generated more IL-12

and less IL-10. Furthermore, TWEAK neutralization en-

hanced the production of IFN-g and IL-12 by LPS-stimulated

NK cells and macrophages. Thus, TWEAK may curtail the in-

nate response also by repressing secretion of key proinflam-

matory cytokines such as IFN-g and IL-12 and/or promoting

production of anti-inflammatory cytokines such as IL-10.

TWEAK therefore differs strikingly from its relative TNF-a,

which stimulates the secretion of IFN-g and IL-12, augment-

ing the innate inflammatory response (D’Andrea et al., 1993;

Oswald et al., 1999; Wilhelm et al., 2001; Zhan and Cheers,

1998). Indeed, contrary to the LPS hypersensitivity of the

TWEAK knockouts, TNF-a or TNFR1 knockout mice are re-

sistant to LPS-induced lethality (Pasparakis et al., 1996;

Rothe et al., 1994).

STAT-1 is a key signal transducer involved in the produc-

tion of IFN-g and IL-12 in response to infection (Dupuis et al.,

2000; Feinberg et al., 2004). TWEAK deletion augmented

basal as well as LPS-induced STAT-1 phosphorylation and

attenuated mRNA induction of SOCS-1, which can directly

inhibit JAK catalytic activity and consequent STAT phos-

phorylation (Alexander, 2002). Thus, TWEAK may suppress

the production of IFN-g and IL-12 as well as the engagement

of proinflammatory cytokine signaling cascades by inhibiting

JAK-mediated STAT-1 activation through upregulating

SOCS-1. This TWEAK activity contrasts with the docu-

mented enhancement of STAT-1 stimulation by TNF-a

(Chen et al., 2002). Like STAT-1, NF-kB also plays an impor-

tant role in controlling cytokine gene transcription (Feinberg

et al., 2004; Zhan and Cheers, 1998). In human NK cells

and macrophages, TWEAK stimulated prolonged phosphor-

ylation of p65, which was associated with strong binding of

p65 to HDAC-1. In contrast, TNF-a induced transient p65

phosphorylation and binding to the transcriptional coactiva-

tor p300. Moreover, the HDAC inhibitor TSA reversed

TWEAK’s attenuation of the production of IFN-g and IL-12

but did not alter the effect of TNF-a. Thus, a second mech-

anism contributing to TWEAK’s repression of the synthesis

of IFN-g and IL-12 may involve induced association of p65

and HDAC-1. Recent work shows that LPS-stimulated

phosphorylation of p65 on serine 536 by IKKa promotes pro-

teasomal degradation of p65 (Lawrence et al., 2005),
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Figure 7. TWEAK Deletion Inhibits B16.BL6 Tumor Growth and Promotes Innate-to-Adaptive Antitumor Immune Priming

(A and B) TWEAK+/+ and TWEAK�/� mice were injected s.c. with B16.BL6 cells (5 � 105/mouse), and tumor weights (A) and spleen weights (B) were de-

termined at 1 month.

(C) Splenocytes from tumor-bearing mice were stained for cell lineage and analyzed by FACS.
940 Cell 123, 931–944, December 2, 2005 ª2005 Elsevier Inc.



suggesting an additional possible mechanism for suppres-

sion of cytokine transcription through NF-kB. TWEAK also

promoted more prolonged DNA binding by p65 and p50

than did TNF-a and induced DNA binding by p52, whereas

TNF-a did not. The difference between TWEAK and TNF-a

in modulation of NF-kB raises the possibility that the kinetics

of p65 phosphorylation may influence the interaction of p65

with other transcriptional regulators. Indeed, there appears

to be some parallel between the induction of sustained

p65 phosphorylation by TWEAK and the control of the c-Jun

N-terminal kinase (JNK) pathway by TNF-a, where tran-

sient versus sustained JNK phosphorylation correlates with

promotion of cell survival versus cell death (Varfolomeev

and Ashkenazi, 2004).

The above findings suggest that the expression of TWEAK

by NK cells and macrophages in response to infection helps

to curtail the innate inflammatory response; the underlying

mechanisms may involve promotion of NK AICD as well as

repression of IFN-g and IL-12 production by NK cells and

macrophages. Because these cytokines also influence the

transition to adaptive immunity in favor of a TH1-based cellu-

lar response, we reasoned as a corollary that TWEAK might

conversely modulate the innate-to-adaptive immune inter-

face. One piece of evidence that supports this hypothesis

was the observation that in the absence of TWEAK aged

mice developed enlarged spleens with increased numbers

of NK cells as well as T cells of the TH1 phenotype. A second

line of supportive evidence came from experiments with the

mouse B16 melanoma model. First, TWEAK�/� mice re-

jected growth of the moderately aggressive B16.F10 sub-

clone, whereas wt littermates failed to combat tumor growth.

While the elevated numbers of NK cells in TWEAK�/� mice

could explain the ability to reject tumors, the antitumor re-

sponse in these mice was associated also with an expansion

of CD8+ T cells, consistent with an augmented TH1 re-

sponse. Second, TWEAK�/� mice resisted growth of the

more aggressive B16.BL6 subclone better than did wt con-

trols, and, upon rechallenge with tumor cells ex vivo, their

CD8+ T cells, NK cells, and macrophages produced sig-

nificantly more IFN-g and IL-12. Third, experiments with T

cell-chimeric mice showed that the strength of the adaptive

antitumor response was governed by TWEAK modulation of

the T cell-priming innate environment rather than by direct

TWEAK action on T cells. Together, these studies suggest

that TWEAK curtails the innate-to-adaptive immune inter-

face, keeping in check the development of TH1-mediated

cellular responses.

In conclusion, our studies uncover an important role for

TWEAK in immune modulation, which markedly differs

from the function of its structural relative, TNF-a. TNF-a plays
a key role in supporting the innate inflammatory response by

promoting innate cell stimulation and proinflammatory cyto-

kine secretion. In contrast, TWEAK is crucial for curtailing the

innate response, supporting NK AICD as well as repressing

the production of IFN-g and IL-12 by NK cells and macro-

phages. Whereas TNF-a activates transcription of immuno-

stimulatory genes by promoting STAT-1 activation and p65

association with p300, TWEAK represses STAT-1 activity

and induces binding of p65 to HDAC-1, inhibiting proinflam-

matory cytokine gene transcription. Furthermore, TWEAK

plays a critical role in attenuating the transition from innate

to adaptive TH1 immunity. TWEAK’s function may have

evolved to guard against development of potentially harmful

excessive inflammatory and autoimmune responses. There-

fore, TWEAK inhibition might be useful clinically for augment-

ing anti-infection and anticancer immunity, while TWEAK re-

ceptor activation might be useful for controlling autoimmune

disease.

EXPERIMENTAL PROCEDURES

TWEAK and FN14 Expression in Human PBMC

Human peripheral-blood mononuclear cells (PBMC) were isolated from

50 ml donated whole blood with lymphocyte separation medium (ICN) ac-

cording to the manufacturer’s instructions. Cells were resuspended in

complete Isocoves’ medium in the presence of brefeldin A (5 mg/ml) for

24 hr in the absence or presence of inflammatory stimuli. Following stim-

ulation, Fc receptors were blocked with 2 mg/ml Fc Block (Miltenyi Biotec,

Auburn, CA) for 20 min at room temperature (RT). Cells were then surface

stained with fluorescent-conjugated monoclonal antibodies to CD3, CD4,

CD8, CD11b, CD11c, CD14, CD20, CD45, CD56, HLA-DR, Lin1 (BD

Biosciences, San Jose, CA), or FN14 (e-Biosciences, San Diego, CA) for

30 min at RT and then treated with BD FACS Lyse solution and stored at

�70ºC overnight. Cells were permeabilized and then stained with TWEAK

monoclonal antibody (e-Biosciences) for 30 min at RT, washed, and

analyzed on a FACSCalibur (BD Biosciences).

Generation of TWEAK-Deficient Mice

A TWEAK targeting vector was constructed based on the TNLOX1-3 vec-

tor by replacing 2.5 kb of the TWEAK gene, encompassing the first exon

and all five downstream exons, with a PGK-neo cassette. The construct

contained two DNA stretches derived from the mouse genome: a 3.1 kb

fragment encompassing the sixth and the seventh exons of TWEAK and

part of exon 1 of TWEAK, placed 50 of the neo cassette and a 4.1 kb frag-

ment encompassing the first and second SMT3IP1 exons placed 30 of the

PGK-neo cassette. R1 embryonic stem cells were transfected with the

linearized vector by electroporation, and G418-resistant clones were

screened for the presence of the expected recombination event by

Southern blot analysis with 50- and 30-specific DNA probes (as shown

in Figure S1). Two independent TWEAK�/� cell lines were microinjected

into C57BL/6 blastocytes. Germline transmission in mice generated by

crossing chimeric males with C57BL/6 females was detected by coat

color and confirmed by two-step genomic PCR (Figure S1) with the fol-

lowing external (E) and internal (I) primer sets: E forward, TGCCCTAAGC
(D) Splenocytes isolated from tumor-bearing mice were rechallenged ex vivo with B16.BL6 cells, and the indicated cell types were analyzed for cytokine

production. * denotes a significant difference in basal cytokine levels (p < 0.01); ** denotes a significant difference in tumor-induced cytokine responses

(p < 0.01). For (D) and (E), 500,000 events/mouse were collected; error bars (SEM) were calculated based upon a 99% confidence interval for % responses

(see http://www.maeckerlab.org/CFCTools.html).

(E) Antitumor cytokine responses in T cells from chimeric mice. T cells from TWEAK+/+ (Thy1.1 or Thy1.2) or TWEAK�/� (Thy1.2) mice were injected i.v. into

TWEAK+/+ (Thy1.1 or Thy1.2) and TWEAK�/� (Thy1.2) mice (as illustrated in Figure S4), and the mice were challenged with B16.BL6 melanoma cells. Four

weeks later, splenocytes were isolated from tumor-bearing mice and rechallenged ex vivo with tumor cells, and T cells were analyzed for IFN-g production.

* denotes a significant difference in IFN-g levels depicted in the white versus black bars (p < 0.01). T cell Thy1 genotypes are indicated at the bottom.
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CAGTCTACACCCAGTATTCCTTC; E reverse, TGGCCTGAAAGAAAT

GCTCACACTATCACCAAC; I forward, CTTAGAACCAGCCGTAGGAAG

GATT; and I reverse, GTGCCAGGGCGTCCAGTACATACAA. TWEAK

knockout animals were backcrossed a minimum of six times onto the

C57BL/6 background. Two independent lines were generated and

showed comparable results in the assays reported in Figures 2A–2C.

TWEAK, APRIL, and SMT3IP1 mRNA Expression

Analysis of several tissues by quantitative RT-PCR demonstrated that

TWEAK�/� mice did not express TWEAK transcripts, while mRNA ex-

pression of two nearby genes, APRIL and SMT3IP1, was unaltered in

the knockouts (Varfolomeev et al., 2004; Figure S1).

Flow Cytometry

Single-cell suspensions from hematopoietic organs were obtained from

8-week-old mice by dissociation of the isolated tissues with wire mesh

screens and rubber stoppers from syringes. The suspensions were incu-

bated with Fc-blocking antibody (2 mg/ml, BD Biosciences) and stained

with lineage-specific conjugated monoclonal antibodies to B220, CD3,

CD4, CD8, CD11b, CD11c, CD19, CD45, DX5 (BD Biosciences), F4/

80, and Gr-1 (e-Biosciences) for 30 min at RT. Following surface staining,

red blood cells (RBCs) were lysed with ACK lysis buffer (Biosource Inter-

national), and the remaining cells were fixed. TruCount beads (BD Bio-

sciences) were added to the tubes for quantitation. Cell-associated fluo-

rescence was analyzed with a FACSCalibur instrument and associated

Cell Quest software (BD Biosciences).

NK Cell AICD

Human PBMC were isolated from 100 ml whole blood and stimulated for

24 hr with TNF-a (500 ng/ml), LPS (5 mg/l), or IFN-g (500 ng/ml) in the

absence or presence of anti-TWEAK mAb (CARL-1, e-Biosciences) or

FN14 Fc (Genentech). Following stimulation, NK cells were isolated using

Miltenyi CD56+ beads and stained for sub-G1 DNA content (Maecker

et al., 2002b).

LPS Challenge

TWEAK�/� and TWEAK+/+ mice were injected intraperitoneally (i.p.) with

10–30 mg/kg LPS (Escherichia coli 055:B5, Sigma) in sterile saline and

monitored over 5 days. Cytokine analysis was conducted by injecting

ten mice i.p. with 30 mg/kg LPS and isolating blood and spleens 24 hr

later. Single-cell suspensions were incubated for 6 hr in the presence of

brefeldin A (5 mg/ml). Cells were Fc blocked (2 mg/ml, BD Biosciences)

for the last 20 min and stained with lineage-specific conjugated monoclo-

nal antibodies, DX5 (to identify NK cells), CD11b, and F4/80 (to identify

macrophages) as well as CD45 (common leukocyte antigen) for 30 min

at RT. Following surface staining, RBCs were lysed and cells were per-

meabilized; stained with antibody to IFN-g, IL-12, or IL-10; and analyzed

by FACS (Maecker et al., 2002a) (BD Biosciences). Cytokine analysis was

conducted by isolating PBMC from four human donors. PBMC were in-

cubated in presence or absence of 1 mg/ml LPS for 16 hr. During the last

6 hr, brefeldin A was added at 5 mg/ml. PBMC were Fc blocked (Miltenyi)

for 20 min at RT and surface stained (CD3, CD56, CD14, CD45; BD Bio-

sciences) for 30 min at RT. RBCs were lysed and cells were fixed and per-

meabilized, stained with IFN-g or IL-12 antibody, and analyzed on by

FACS.

STAT-1 Activity

Human NK cells and macrophages were isolated from a donor’s spleen

using Miltenyi CD56+ and CD11b+ beads, respectively. 1.0 � 106 NK

cells/0.5 ml were coincubated with 1.0 � 106 macrophages/0.5 ml

macrophage-SFM medium (Invitrogen). Cells were rested in serum-free

medium for 12 hr and then stimulated with 1 mg/ml LPS, TNF-a

(100 ng/ml), or TWEAK (100 ng/ml) in the presence or absence of the

HDAC inhibitor trichostatin A (TSA, 50 ng/ml). Six hours later, cells were

surface stained for CD56 and CD11b followed by intracellular stain-

ing for phospho-STAT-1 (Perez et al., 2004) and IFN-g and IL-12 as out-

lined above. Alternatively, macrophages were isolated from spleens of
942 Cell 123, 931–944, December 2, 2005 ª2005 Elsevier Inc.
TWEAK�/� and TWEAK+/+ mice using Miltenyi CD11b+ magnetic beads,

rested for 12 hr in macrophage-SFM medium, and then stimulated over

24 hr with 1 mg/ml LPS. Cellular lysates were made and analyzed by

Western blot for STAT-1 or STAT-3 (Cell Signaling).

SOCS-1 mRNA Analysis

Total RNA from LPS-stimulated mouse macrophages was analyzed by

quantitative real-time PCR (TaqMan). Reactions contained 50 ng of total

RNA, 0.6 mM each of gene-specific forward and reverse primers, and 0.2

mM of gene-specific fluorescent probe. SOCS-1-specific primers were:

forward, TGGGTCGGAGGGAGTGGT; reverse, AGAGGTGGGATGAGG

TCTCCA; probe, AGGGTGAGATGCCTCCCACTTCTGG. Gene-specific

PCR products were measured using ABI PRISM 7700 Sequence Detection

System following the manufacturer’s instructions (PE Corp.).

NF-kB Analysis

Human NK cells and macrophages were isolated from a donor’s spleen.

NK cells were coincubated with macrophages (5.0 � 106 each in 5 ml

macrophage-SFM medium), rested for 12 hr, and treated with TWEAK

(100 ng/ml) or TNF-a (100 ng/ml). Lysates for immunoblot (20 mg total

protein) and immunoprecipitates (50 mg total protein) were prepared

according to antibody manufacturer’s instructions (Cell Signaling, Bev-

erly, MA).

Histology and Immunohistochemistry

Tissues of 3-, 6-, and 12-month-old male TWEAK�/� and TWEAK+/+ mice

were weighed, fixed, sectioned, and analyzed for pathological status.

Hematoxylin-and-eosin-stained sections were analyzed for gross histo-

logical abnormalities. Peanut agglutinin (Vector Research, Burlingame,

CA) stained frozen sections were analyzed for structure of germinal cen-

ters. Five TWEAK�/� and TWEAK+/+ spleens from 12-month-old male

mice were dissociated, stained, and quantitated for lymphocyte cellularity

utilizing TruCount beads (BD Biosciences).

B16 Melanoma Experiments

Ten TWEAK�/� and TWEAK+/+ male mice were injected subcutaneously

(s.c.) with 0.1 � 106 or 0.5 � 106 cells/0.1 ml in sterile saline in the right

hind flank. Tumor measurements were taken every other day for 4–6

weeks. At study termination, tumors were removed, weighed, and disso-

ciated first through wire mesh screens followed by treatment with nonen-

zymatic cell dissociation buffer (Sigma) for 5 min to create single-cell sus-

pensions. Splenocytes were prepared from tumor-injected mice and

coincubated with either sterile saline or B16.F10 tumor cell suspensions

in the presence of brefeldin A for 12 hr to measure intracellular cytokine

production.

T cell-chimeric mice were generated by transferring 1� 107 T cells (iso-

lated using Thy1.1 or Thy1.2 Miltenyi magnetic beads) from male donor

into male recipient mice as illustrated in Figure S4. Chimeric mice were in-

jected with 0.5 � 106 B16.BL6 tumor cells. At 4 weeks, Thy1.1 and

Thy1.2 CD4+ and CD8+ T cells from spleens of tumor-bearing mice

were rechallenged ex vivo with tumor cells and analyzed for IFN-g pro-

duction.

Statistical Analysis

Statistical analysis, where appropriate, was conducted utilizing multifac-

tor ANOVA analysis followed by Newman-Keuls post hoc tests. Signifi-

cance was defined for p values < 0.05.

Supplemental Data

Supplemental Data include one table and four figures and can be found

with this article online at http://www.cell.com/cgi/content/full/123/5/

931/DC1/.
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