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Vector spaces of functions and equivalence classes of functions for which 
a natural projective limit structure exists are studied in a systematic manner. 
The theory is illustrated by a series of examples arising from specific applica- 
tions to the stability of feedback systems and the theory of hereditary differential 
systems. 

1. INTRODUCTION 

Function spaces with an inductive limit structure have known a great 
deal of popularity in the theory of partial differential equations and hence 
benefited from a sustained attention. Function spaces with a projective limit 
structure also have some interesting applications. They can be used in the 
Theory of Differential Equations where one is interested in working in a 
space (preferably a FrCchet space) where global solutions can be considered. 
Within this framework one can also study the stability of the solutions and 
their behaviour at infinity. The extended spaces introduced by Sandberg [ 1, 21 
and Zames [3, 41 in the study of the stability of feedback controlled systems, 
and, the local spaces used in the theory of hereditary differential systems as 
developed by Delfour and Mitter [5, 61 are examples of such spaces. Here 
they are FrCchet spaces with a natural projective limit structure. 

In Sections 2 and 3 we establish some fundamental results which do not 
appear to be available in the literature and in Section 4 we consider some 
examples useful in applications. 

2. DEFINITION OF THE SPACES V(X, E) AND V(X, E) 

Let X be an arbitrary set, E a real vector space and N the set of all positive 
nonzero integers. We shall construct a space Y”(X, E) of maps X ---f E and a 
space V(X, E) of equivalence classes of elements of Y”(X, E). We are given 
a family of subsets of X with the following properties: 
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FUNCTION SPACES 555 

DEFINITION 2.1. A family Y(X) of nonempty subsets of X is said to be 
saturated if 

(i) S, TEY(X)* SU TEY(X) 

(ii) U {S 1 SE Y(X)} = X. 

A saturated subfamily W(X) of Y(X) is equiwalent to Y(X) if VS E Y(X) 
3R EL%‘(X) such that S C R. 

A family Y(X) is denumerably saturated if it is saturated and equivalent to a 
saturated subfamily with a denumerable number of elements. I 

Remark 1. Ordered by inclusion, Y’(X) is a directed set. 

Remark 2. If there exists a denumerable subfamily (Dn)nsN of Y(X) 
such that 

(0 D,CD,+,, neN 
(ii) VS E Y(X) 3n EN for which SC D, , 

then Y(X) is denumerably saturated. 

EXAMPLES. The family p(X) of all nonempty subsets of a set X is satu- 
rated. When X is a topological space the family p(X) of all nonempty 
closed subsets of X is saturated. When X is HausdorfI the family Y(X) of all 
nonempty compact subsets of X is saturated; if in addition X is u-compact (or 
locally compact denumerable at infinity) Y(X) is a denumerably saturated 
family [7, Chap. 1, Section 9, no. 9, Prop. 15 and Cor. 1, pp. 106-1071. 
When X C R the families 

and 
~(&I 9 + a) = {[to, tl I t > 43) (to E 4 

are denumerably saturated (using Remark 2). The family Z([t,, , + a~[) 
and d(t, , + co) are equivalent. 

We associate with the saturated family Y(X) a family {V(S, E)) of real 
vector spaces of maps S + E indexed by S E Y(X); it is assumed that the 
following hypotheses hold: 

HYPOTHESES 2.2. 

(i) for al2 SE Y(X) V”(S, E) is a complete real locally convex topologica2 
vector space the topology of which is defined by the single seminorm qs , 
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(ii) for all pairs R C S in Y(X) the restriction map 

rrRs: V(S, E) + Y’-(R, E) 

is well defined and 

~R(~RsW) G 4&f) tJf c +‘-(S, E). I (2.1) 

DEFINITION 2.3. V(X, E) denotes the space of all maps f: X--f E for 
which the restriction v~( f) off to S belongs to V(S, E) for all S E 9’(X). 
V(X, E) is endowed with the initial topology for the family (~~s)~~~p~) . 1 

PROPOSITION 2.4. V(X, E) is a real topological vector space with the 
following properties: 

(i) the restriction map rrs: V(X, E) -+ V(S, E) is linear and continuous, 

(ii) given a family (fs)ss9(x) , fs E V(S, E), such that for all R C S 
in Y(X) we have nRs(fs) = fR there exists a unique f E V(X, E) such that 
rrs( f) = fs for all S E Y(X), 

(iii) Vf # 0 in V’(X, E)3S E Y(X) such that rrs( f) # 0, 

(iv) for all pairs R C S in Y(X) rrR = rRs 0 rrs . I 

The space -Y-(X, E) we constructed has a very interesting structure. Let 
?+” = proj(Y(S, E), rrRRs) be the projective limit of the spaces (V(S, E)&(r) 
for the maps (nRs) [S, Chap. 3, Section 7, no. 1, p. 761. Let v, be the canonical 
map V --f V(S, E). 

PROPOSITION 2.5. Y’(X, E) is isomorphic to V. 

Proof. By Proposition 2.4 there is a unique map u: V(X, E) --f V such 
that v, = ns 0 u for SE Y(X), when u is defined by 

U(Y) = (~S(YNSE9w E n -Ir(S, El 
SEsqX) 

[g, Chap. 3, No. 2, Prop. 1, p. 771. The map u is linear since the z-s’s are linear. 
It is injective since for any f # g in -Y-(X, E) there exists S E Y(X) for which 
~-s(f) # ns(g) [g, Chap. 3, No. 2, Prop. 1, p. 771. It is surjective by Prop. 
2.4(ii). To show this let x E V and consider (vs(x))so~p(x~ . By definition of 
the projective limit v for all pairs R C S in Y(X), ~s~(v~(x)) = vs(x). 
Proposition 2.4(ii) asserts the existence of an element y in V-(X, E) such that 
4~) = v&) and 

U(Y) = (~s(Y))s&w = (v&)>s&w = x. 

This proves that u is an algebraic isomorphism. By definition the projective 
limit topology in V is the initial topology for the maps v, . Hence 
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u: V-(X, E) + V is continuous o v, 0 u is continuous VS E Y(X) 
u-l is continuous 0 Z~ 0 u-r is continuous VS E Y(X). 

But by definition rr, = v, 0 u, v, = 7rs 0 u-r and the maps ns and v,, are 
continuous for all S E Y(X). This proves the proposition. I 

Consider the linear subspace J”(X, E), 

J+‘“(-% E) = (f E %K E) I I = 0, VS E ~sp(X)l, 

of N(X, E) and the quotient space V(X, E) = V(X, E)/M(X, E). We 
now add some hypotheses on V(X, E) in order to obtain a projective limit 
structure for V(X, E). 

HYPOTHESES 2.6. In addition to Hypotheses 2.2 we assume that 

(i) Y’(X) is a denumerably saturated family, 
(ii) given a family (fs)sEypcx) , fs E V(S, E), such that for all R C S 

in Y(X) we have qR(rRs(fs) - fR) = 0, then there exists an f E V(X, E) 
such that ps(fs - rs( f )) = 0 for all S E 9’(X), 

(iii) for all SE 9’(X), TT~(JV(X, E)) = JP”(S, E) where N(S, E) is the 
&near subspuce of all f E V(S, E) such that qs( f) = 0. I 

We also define the quotient space V(S, E) = V(S, E)/N(S, E) and the 
canonical surjections j: V(X, E) + V(X, E) and j,: V”(S, E) -+ V(S, E). 

DEFINITION 2.7. For S E Y(X) the map es: V(X, E) -+ V(S, E) is the 
unique linear map making the following diagram commutative 

(kerj C ker(j, 0 TV)) 

W(X, E) i\ V(X, E) 

(2.2) 

c 
V(i, E) is\ V(S, E). 

Also for all pairs R C S in 9(X) the map fiRs: V(S, E) + V(R, E) is the 
unique linear map for which the following diagram commutes 

(ker& C ker(h 0 w)) 

V(S, E)iS V(S, E) 

(2.3) 

?R, E) & V(R, E). 1 
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For all S E Y(X) V(S, E) is a Banach space since its topology is Hausdorff 
and defined by a unique seminorm (hence a norm). The quotient norm is 
written 4~. We now summarize the properties of V(X, E) and V(S, E) 
which can be directly obtained from the properties of V(X, E) and V(S, E). 

PROPOSITION 2.8. 

(i) For all SE Y(X) V(S, E) is a Banach space endowed with the 
quotient norm qs as constructed from qs . 

(ii) For all pairs R C S in 9’(X) ii, = cRs 0 fis . 

(iii) Given f # 0 in V(X, E) there exists S E Y(X) such that iis( f) # 0. 

(iv) Givtm a familr (j&~) , Js E VS, E), for which *Rs(&) =JR 
for allpair R C Sin Y(X), then there exists anfin V(X, E) such thatJs = *s(f) 
for all S l Y(X). 

(v) For all pairs R C S in 9’(X) 

!?R@RS(f )) < !h(f) Vf E V(S, E). 

Proof. (i) is clair. (ii) Given f E V(X, E) there exists g E V(X, E) such 
that j(g) = f. We know that n, = n,, 0 rrs and hence 

(jR ’ TR) (g) = (jR ’ =RS ’ %) (g). 

But 

and 

(jR ’ TR) (d = (6R ‘8 (g) = *R(f) 

(jR ’ lTR~ ’ d (g) = (+Rs ’ jS o “S) (g) = (+Rs ’ 6 Oj) (d 

= (*RS ’ *s) (j(d) = (*RS ’ *s) ( f). 

Finally 

*R(f) = (+RS ‘5s) (f>* 

(iii) Assume there exists no S E Y(X) such that ii,(f) # 0. For some 
g E V-(X, E) j(g) = f and +r( j(g)) = 0 for all S. But js 0 rs = 4 0 j and 
hence TJg) E &“(S, E) for all S. This means that g E x(X, E) and 
f = j(g) = 0, which contradicts the fact that f # 0. 

(iv) There exists a family ( fs)se~(x) , fs E V(S, E) such that j,( fs) = js . 

For all R C S in 9’(X) fiR&) = 3R . But 

(jR ’ TRS) (fS) = (+Rs ’ jS> (fd = jR(fR) 

and hence qR(nRs(fs) - fR) = 0. By hypotheses 2.6(ii) there exists an 
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f~ T(X, E) such that qs(fs - ~~rs( f)) = 0 for all S. This implies that 
fs - rs(f> E J’V% E) and 

1s = js(fs) = (is o 4 (f) = (6s 0-i) (f> = +sMf>) 

for all S E Y(X). We can now pickJ = j(f). 

(v) By definition of the quotient norm. I 

PROPOSITION 2.9. (i) V(X, E) is isomorphic to the projective limit 

V = proj.(V(S, E), 7jRs), 

(ii) The initial topology z is coarser than the quotient topology 9 in 
VW, E). 

Proof. (i) Directly from Proposition 2.8 (ii) to (iv) by techniques similar 
to the ones used in the proof of Proposition 2.5. 

(ii) Since the diagram (2.2) is commutative i;s o j = js 0 ns and fis 0 j 
is continuous for all SE Y(X). So j is continuous for the topology gi . As 
for y;, it is the finest topology for which the map j is continuous. Hence < 
is coarser than f. I 

Remark 3. Notice that Hypotheses 2.6(i), and (iii) have not yet been 
used. They will be used in Section 3 to show that V(X, E) is a FrCchet 
space. In particular we shall see that the equivalence of the topologies < 
and y follows from Hypothesis 2.6(iii). 

3. PROPERTIES OF THE SPACES -Y-(X, E) AND V(X,E) 

In this section we study the properties of the space Y(X, E) of 
Definition 2.3 under Hypotheses 2.2 and the space V(X, E) constructed from 
Y’(X, E) under Hypotheses 2.6. We have already established that there exists 
an isomorphism between Y(X, E) (resp. V(X, E)) and the projective limit Y 
(rep. V). 

THEOREM 3.1. 

(i) V(X, E) is a Frichet space and T(X, E) is a complete locally convex 
topological space with a denumerable fundamental system of neighborhoods at 
each point. 

(ii) The initial topology 4 (resp. 5) in Y-(X, E) (resp. V(X, E)) is 
equivalent to the topology YP (resp. yP) defined by the saturatedfamily (P&S(~) 
(resp. (~S)s6Yp(x) of seminorms, wherep, = qs 0 rs (resp. (P, = & 0 es). 

409/42/3-S 
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(iii) The quotient topology 9 and the initial topology Fti are equivalent 
in V(X, E). 

(iv) Assume W(X) is a saturated subfamily of Y(X) equivalent to Y(X) 
the initial topoZogies in Y-(X, E) (resp. V(X, E)) with respect to 99(X) and Y(X) 
are equivalent. I 

The above theorem summarizes our results; it will be proved via several 
propositions. 

Remark. The isomorphism between V (resp. V) and 9(X, E) (resp. 
V(X, E)) makes it possible to use the well developed theory of projective 
limit spaces in order to obtain the properties of Y’(X, E) (resp. I’(X, E)). 
In the remainder we shall not distinguish between V and Y’(X, E) (resp. I/ 
and V(X, E)). 

PROPOSITION 3.2. The initial topology S$ (resp. z) on Y(X, E) (resp. 
V(X, E)) for thefamiZy (iis)sGs(x) (resp. (n-s)scs(x~) is equivalent to the topology 
YD (resp. gD) defined by the saturated family (ps)s.y(x) (resp. (&)sc~(cx)) of 
seminorms, wherep, = qs 0 ns (resp. p7, = t& 0 i;,). 

Proof. Again we only prove that & and 9YP are equivalent. The proof of 
the equivalence of yi and 3?D proceeds along identical lines. For all S E 9’(X) 
the composite map p, = qs 0 rs is a continuous seminorm for the topology 
4; hence YD is coarser than K . To show the converse pick a neighborhood U 
of 0 in (V-(X, E), YJ. By definition of the initial topology there exists a 
finite subfamily {S,>bl of Y(X) and f or each Si a neighborhood Vi of 0 in 
Y(Si , E) such that 

For each Vi there exists ri > 0 such that 

thus 

n-,:(RJ C n,;( Vi). 

But 

c:(Ri) = {y E V-Y E)I PS,(Y) < yi>, 

Hence there exists a neighborhood 0, 

0 = f) (Y E VW, E) I P&J) < rJv 
i=l 
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of the origin in (Y(X, E), 9,) such that 

6-c h %-~~(Vi)C u. 
i=l 

This establishes that Fp is finer than & , 
By the definition of a saturated family Y(X) the corresponding family of 

seminorms (p,),Eg(,, is saturated by Hypothesis 2.4(iii) (Eq. (2.1)). 1 

PROPOSITION 3.3. The quotient topology y and the initial topology yi are 
equivalent in V(X, E). 

Proof. We use Hypotheses 2.6(iii) to prove the proposition. Since the 
topology J< on V(X, E) can be defined in terms of a saturated family 
(p,),,,(,) of seminorms, the family (js)slseYcr) (A , the quotient seminorm 
on V(X, E) constructed from ps) defines the quotient topology g on the 
space V(X, E) [9, p. 1061. By definition 

where j(f) = J; but 

Pdf + 4 = !Lhs(f) + us) 
and since 

(the diagram (1.3) is commutative) 

This shows that for all S E .Y(X) & = js and the topologies y and gi are 
equivalent. I 

PROPOSITION 3.4. Given an equivalent saturated subfamiZy 9(X) of 9’(X) 
the initial topologies q(9) and q(9’) in Y(X, E) with respect to 9?(X) and 
9’(X) are equivalent. This is also true of V(X, E). 

Proof. The proposition will only be proved for V’(X, E). By definition 
the initial topology q(a) is weaker than &(Y). By Proposition 3.2 both 
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topologies can be defined in terms of their respective family of seminorms 
(pJREIcX) and ($s)seYfx, . But since W(X) is equivalent to Y(X) for all 
S E Y(X) there exists R E g’(X) such that S C R. Hence for all f E V(X, E) 
and S E Y(X) there exists R Ed such that 

by Hypothesis 2.2(i). Thus z(W) is fi ner than K(Y) since the two families 
of seminorms are saturated [9, p. 96 and Prop. 2, p. 971. This proves the 
proposition. I 

PROPOSITION 3.5. 

(i) Y(X, E) and V(X, E) are locally convex topological vector spaces 
with a denumerable fundamental system of neighborhoods at each point. 

(ii) In addition V(X, E) is Hausdorff and complete (hence Frkhet) and 
Y-(X, E) is complete. 

Proof. 

(i) By definition -Y(X, E) is a locally convex topological vector space. 
Since Y(X) is a denumerable saturated family there exists a denumerable 
subfamily g(X) which is equivalent to Y(X) and generates the initial topo- 
logy K(g) equivalent to q;:(Y) (Proposition 3.4). But the topology T;:(g) 
can be defined in terms of a denumerable faxnily of seminorms since g(X) 
is denumerable (Proposition 3.2). Thus each point in V(X, E) has a denumer- 
able fundamental system of neighborhoods. The same arguments can be 
repeated for V(X, E). 

(ii) V(S, E) is Hausdorff and complete (S E Y(X)) and for each f # 0 
in V(X, E) there exists S E Y(X) such that tis( f) # 0 by parts (i) and (iii) 
of Proposition 2.8. Hence V(X, E) is Hausdorff and complete [9, p. 152 and 
Proposition 3, p. 1531. Combining the above results with (i) V(X, E) is a 
FrCchet space. Finally V(X, E) is complete by the properties of the canonical 
surjection j since V(X, E) is complete and the initial and quotient topologies 
y and yi are equivalent in V(X, E) (Proposition 3.3). I 

4. EXAMPLES 

In this section we assume X is u-compact (or locally compact denumerable 
at infinity [7, Chap. 1, Section 9, no. 91. Let JV be a u-algebra of subsets of X 
containing all the Bore1 sets and p a positive regular measure on X. Assume 
also that Y(X) is a denumerably saturated family of nonempty closed subsets 
of X. We also assume that E is a Banach space. 
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4.1. The Spaces C&X, 9; E), Z1~&, Y; E) and L& (p, Y; E). 

Let C(S, E), SE Y(X), be the Banach space of all continuous maps 
f:X+Eforwhich 

q&f) = sup{lf(x)/: x E S> < co* 

Cr,,(X, Y; E) will denote the real vector space of all continuous maps 
f: X-t E such that ns(f) E C(S, E) for all S E Y’(X). Here 

V(X, E) = Y-(X, E) = C1,,(X, 9; E) 

is a Frechet space. 
Let (X, J%, CL) be a measured space [lo, p. 2291, where X, A and p are as 

defined at the beginning of this section. Since S E Y(X) is closedit is measur- 
able and we denote by ~?P(,u 1 S, E) the real vector space of all p-measurable 
[lo, p. 2321 maps X-+ E which are p-integrable in S, 1 <p < co, or 
essentially bounded in S, p = co. p*(p j S, E) is endowed with the semi- 
norm 

[j, Iflpdp]l’P if 1 ,< P < 00, 
KS(f) = 

ess;up If I if p = co. 

* Zr&(p, 9; E) will denote the real vector space of all p-measurable maps 
f: X -+ E such that rrs( f) E d;p”(p 1 S, E)) for all S E Y(X). Corresponding 
to -%&, Y; E) (rev. Z*(P I s, E)) we define the natural quotient space 
L&&, 9; E) (resp. 5?*(~ 1 S, E). Here the conclusions of Propositions 2.4, 
2.8, and Theorem 3.1 apply with 

%K E) = -%%(P, y; E) and WC E) = -%c(p, 9; E). 

4.2. Spaces with the Topology of Compact Convergence. 

Here we further specialize the results of Section 4.1 to the situation where 
Y(X) is ,X(X) the family of all nonempty subsets of a u-compact space X. 
Since ,X(X) is a denumerably saturated family (see examples in Section 2), 
the results of Section 4.1 apply. It is customary to denote the spaces 
Go@-, s; E), =%,A s; E) and G&(cL, z; 4 by WK El, =%&, E) 
and L&&A, E) [13, p. 2221. The following propositions are interesting in the 
sense that they are proved via the projective limit structure of the spaces in 
presence. 

PROPOSITION 4.1. With X, A, p and E as dejked earlier, C(X, E) is 
dense in L&(~, E) for 1 <p < 00. 
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Proof. For each K E ,X(X) we know that C(K, E) is dense in L+ / K, E). 
Denote by j,: C(K, E) -+L”(p / K, E) the continuous injection. This 
generates the unique continuous injection j making the following diagram 
commutative for all K E x(X): 

C(K E) & Lp(p / K, E). 

The spacesj,(C(K, E)) f orm a projective system with respect to the family 
of maps (iiKL): 

Moreover 
j(C(X, EN m lim (j~(c(K, E), 6~). 

j(C(X EN = lim(.MK E), GL) = limCk(C(Kc, E), GL) 

[7, Chap. 1, Section 4, p. 521 and 

b(jK(C(K, ET), ?J& = b(L’(K, E), 7j& m L?o’,,(X, E). 

Hence C(X, E) is dense in Lf&(X, E). I 

PROPOSITION 4.2. The injection L,P,&, E) -+ Lo&, E) is continuous for 
allp’andpsuch that 1 <p’ <p < CO. 

Proof. For all K E&(X) the injection map j,: LQ / K, E) 4 LP’(p 1 K, E) 
is continuous. For all K CL in .X(X) the following diagram is commutative 

L”(P I L, E) 3t Lp’(p 1 L, E) 

LQ / K, E) jK bL”‘(p 1 K, E). 

This establishes the existence and uniqueness of the continuous injection 
j: %& E) -Ll”dc ( P , E) making the following diagram commutative: 

%&L, E) j Lu% -q 

L”(/i 1 K, E) jK kLP’(p / K, E). 1 
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When X C Rn it is often more convenient to work with a saturated family 
equivalent to .X(X). F or instance let X = [to, ta[, t, E R and t1 E]& , + co], 
then the denumerably saturated subfamily &(t, , tr) (see Examples in Sec- 
tion 2) of Z(t, , tl) = Z([t, , tl[) is equivalent to the latter. It is usually 
more convenient to test a property for all t E It,, , ti[ rather than for all com- 
pact subsets of [t, , tl[ (Thm. 3.l(iv)). 

4.3. The extended Spaces of Sandberg and Zames 

Let X = R (resp. X = [to , cc[ for some t, E R). Consider the denumerably 
saturated family a(- co, co) (resp. &(t, , a)) as defined in the examples of 
Section 2. Let m be the complete Lebesgue measure in R. The extended 
spaces of Sandberg and Zames are 

and 
L”(- 00, 00; E) = Gb,,)(m, E) 

However in their original definition the extended spaces were not topologized. 
This was attempted later in a effort to generalize the notion of an extended 
space; for this matter the reader is referred to J. C. Willems [l I] who makes 
use of such spaces to study the stability of feedback systems [12]. Notice 
that the family S(t,, , + cc) is an equivalent subfamily of 

and that 
qto , + a) = W[4l 9 + 4) 

LeP(to , *; E) = -Gf3+&, E). 

However this is not true of L,P(- co, co; E) and L$-(-m,mj(m, E) since 
&(- oc), co) and&(- 00, co) =x(1- co, cc[) are not equivalent saturated 
families (they are not even equal). 

As can be seen from the above examples the projective limit structure is 
very natural in engineering problems. As a result this detailed study opens the 
way to the solution of such problems by functional analysis techniques. 

4.4 The Spaces AC&,,(t, , t,; E). 

Let t, E R, tl E It, , co], X = [to , tl[ and 1 < p < co. For all t E It,, , tl[ 
let ACp(t,, , t; E) be the vector space of all maps f: [t,, , t] -+ E which 
are differentiable almost everywhere in [to, t] with derivative df/dt in 
P’(t,, , t; E) and such that 

f(s) = f(to> + f, $ (Y) dr, s~r4l,tl. 
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In simpler terms AO(t, , t; E) is the vector space of all absolutely continuous 
maps defined on [to, t] with values in E which have a derivative in 
9’(to , t; E). This space naturally arises in the study of differential equations 
since it is precisely the space in which solutions are sought ([5], [6]). It is a 
Banach space when it is endowed with the norms: 

[I f(to)lp + Jlo / fy 1” ds]lia, 1 < p < co, 

4tCf) = 
df (4 max I f (48 , es; yp 7 1 I II , 

p = co. 
09 

We now define the vector space AC&,(t, , t,; E) of all absolutely continuous 
maps [to, tl[ + E with a derivative in 5f’~oo(to, t,; E). It is easy to verify 
that this space and the saturated family X(t, , t,) satisfy Definition 2.1 and 
Hypotheses 2.2 and 2.6; here 9(X, E) = V(X, E) and AC&,(t, , t,; E) 
is a FrCchet space. 

Let St(t, , t; E) be the vector space of all step maps [to, t] -+ E (with 
respect to the Lebesque measure), where t ~]t~, tl[. We define the vector 
space Stloc(to , t,; E) of all maps f: [to , tl[ + E such that mt( f) E St(t, , t; E) 
for all t E ]to, tl[. By techniques similar to the ones of Proposition 4.1 it is 
easy to show that Stloc(t, , t,; E) is dense in Lfo,(to , t,; E) for 1 < p < CO. 
It is also readily seen that ACp(t, , t; E) (resp. AC&(&, , t,; E)) is isometrically 
isomorphic to E x Lp(to , t; E) (resp. E x Llp,,(t, , t,; E)). An immediate 
consequence of all this is that the vector space of all maps f: [to, tl[ -+ E of 
the form 

f(t) = xo + Jt, 4~) dr> t E [to > hll, 

where x0 E E and s E St&to, t,; E), is dense in AC&(to , t,; E) for 
1 < p < co. This means that we can approximate elements in AC-&, by 
piecewise linear maps. 

The space AC& and L,P,, were used in the theory of hereditary differential 
systems ([5], [6]). A s a specific example we quote the following theorem 
from [5]. 

THEOREM 4.3. Let N > 1 be an integer, let a > 0 and 

- a=%,< *** < 0, < e. = 0 

be reals, let E be a Banad space, let 1 < p < CO and let 

- co < to < t, < + co. 
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Assume that the map f : [to , tl[ x (EN x Mp(- b, 0; E))l -+ E satisfy the 
following properties: 

(CAR-l) The map t t+ f (t, z) is m-measurable for all z E EN x MP( - b, 0; E); 

(LIP) There exists a positiwe function n in I$,,($, , t,; R), p-l + 4-l = 1, 

such that for all x1 and x2 in EN x Mp(- b, 0; E) 

I f (4 21) - f(4 %)I G n(t) I/ % - x2 II&M" 

a.e. in [to , t,[; 

PC) The map tt-+f(t, 0) is an eZement of LQto , t,; E). 

Then there exists a unique global solution xh in ACi,,(t,, , t,; E) to the Cauchy 
problem 

x(t) =f (t, a@ + eN),-, a(t + e,), %) p-P* [h 7 h[ 

f(t, + 0) = W), 8 E Z( - b, 0), h E MP( - b, 0; E), 

where 

Z(s) = I 
h(s - to), s E Z(t,, - b, to) 
%(Sh s E [to > t1[ 

and 2, E Mp(- b, 0; E) is defkd by a,(e) = 2(t + 0). Moreover the map 

h it x,: M”(- b, 0; E) -+ AC:,,&, , t,; E) 

is continuous and for all t in It0 , tJ 

II v,(x, - xk)IIACt d 0, t - to) II h - k lI,,p 

for some constant d(p, t - to) > 0 (7rtx is the restriction to [to, t] of a map 
x: [t,, , t,[ -+ E). 

Now that we have solution in the quite large space AC~,,,,(t,, , t,; E) we 
can study the various properties of families of solutions. 
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1 Mp(--b, 0; E) is isometrically isomorphic to E X Lp( --b, 0; E). See (5) for details. 
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