NORTH-HOLLAND

The Arithmetic - Geometric -Harmonic-Mean and Related Matrix Inequalities

M. Alić

Department of Mathematics
University of Zagreb
Zagreb 10,000, Croatia
B. Mond

School of Mathematics
La Trobe University
Bundoora, Victoria, 3083, Australia
J. Pečarić

School of Mathematics
La Trobe University
Bundoora, Victoria 3083, Australia
and
Faculty of Textile Technology
University of Zagreb
Zagreb 10,000, Croatia
and
V. Volenec

Department of Mathematics
University of Zagreb
Zagreb 10,000, Croatia

Submitted by H. J. Werner

ABSTRACT

Recently, Sagae and Tanabe defined a geometric mean of positive definite matrices and proved the harmonic-geometric-arithmetic-mean inequality. Here, we give a reversal of these results. © 1997 Elsevier Science Inc.

1. INTRODUCTION

Let w_{1}, \ldots, w_{r} be positive numbers such that $w_{1}+\cdots+w_{r}=1$, and let C_{1}, \ldots, C_{r} be $n \times n$ positive definite Hermitian matrices. Consider weighted power means of the matrices C_{i}, defined by

$$
\begin{align*}
& M_{s}=\left(w_{1} C_{1}^{s}+\right.\left.\cdots+w_{r} C_{r}^{s}\right)^{1 / s}, \tag{1.1}\\
& M_{0}=G=C_{r}^{1 / 2}\left(C _ { r } ^ { - 1 / 2 } C _ { r - 1 } ^ { 1 / 2 } \cdots \left(C_{3}^{-1 / 2} C_{2}^{1 / 2}\left(C_{2}^{-1 / 2} C_{1} C_{2}^{-1 / 2}\right)^{u_{1}}\right.\right. \\
&\left.\left.\times C_{2}^{1 / 2} C_{3}^{-1 / 2}\right)^{u_{2}} \cdots C_{r-1}^{1 / 2} C_{r}^{-1 / 2}\right)^{u_{r-1}} C_{r}^{1 / 2}
\end{align*}
$$

where $u_{i}=1-w_{i+1} / \sum_{k=1}^{i+1} w_{k}$ for $i=1, \ldots, r-1$. We shall also use the notation $A=M_{1}$ and $H=M_{-1}$.

The following results were proved in [1]:

$$
\begin{align*}
G \exp \left(G^{-1} A-I\right) & =\exp \left(A G^{-1}-I\right) G \\
& \geqslant \frac{1}{2}\left(A G^{-1} A+G\right) \\
& \geqslant A \geqslant G \geqslant H \tag{1.2}\\
& \geqslant 2\left(H^{-1} G H^{-1}+G^{-1}\right)^{-1} \\
& \geqslant G \exp \left(I-H^{-1} G\right)=\exp \left(I-G H^{-1}\right) G
\end{align*}
$$

and

$$
\begin{align*}
H \exp \left(H^{-1} A-I\right) & =\exp \left(A H^{-1}-I\right) H \\
& \geqslant \frac{1}{2}\left(A H^{-1} A+H\right) \\
& \geqslant A \geqslant G \geqslant H \tag{1.3}\\
& \geqslant 2\left(H^{-1} A H^{-1}+A^{-1}\right)^{-1} \\
& \geqslant A \exp \left(I-H^{-1} A\right) \\
& =\exp \left(I-A H^{-1}\right) A
\end{align*}
$$

where all the inequalities are strict unless $C_{1}=\cdots=C_{r}$, in which case all the equalities hold. Note that $A \geqslant G$ means that $A-G$ is positive semidefinite.

In fact, the main results from [1] are the inequalities

$$
\begin{equation*}
H \leqslant G \leqslant A \tag{1.4}
\end{equation*}
$$

In this paper, we shall prove reverse inequalities to (1.4). For our reverse results, we relax the requirement that all the weights w_{i} must be positive.

2. THE REVERSE ARITHMETIC-GEOMETRIC-HARMONICMEAN MATRIX INEQUALITIES

In this section, we shall use the notation A_{r}, G_{r}, and H_{r} for A, G, and H respectively.

We begin with the following:

Lemma 2.1. If $\alpha \in(0,1)$, then

$$
\begin{equation*}
G_{2} \equiv C_{2}^{1 / 2}\left(C_{2}^{-1 / 2} C_{1} C_{2}^{-1 / 2}\right)^{\alpha} C_{2}^{1 / 2} \leqslant \alpha C_{1}+(1-\alpha) C_{2} \equiv A_{2} \tag{2.1}
\end{equation*}
$$

but if either $\alpha<0$ or $\alpha>1$, the reverse inequality, i.e.

$$
\begin{equation*}
G_{2} \geqslant A_{2} \tag{2.2}
\end{equation*}
$$

is valid.

Proof. The following generalization of Bernoulli's inequality is well known (see e.g. [2, p. 34], or [3, p. 65]): For $-1<x \neq 0$

$$
(1+x)^{\alpha}>1+\alpha x \quad \text { if } \quad \alpha>1 \text { or } \alpha<0
$$

and

$$
\begin{equation*}
(1+x)^{\alpha}<1+\alpha x \quad \text { if } \quad 0<\alpha<1 \tag{2.3}
\end{equation*}
$$

For $1+x=t$, this is equivalent to

$$
\begin{equation*}
t^{\alpha}>\alpha t+1-\alpha \quad \text { if } \quad \alpha>1 \text { or } \alpha<0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{\alpha}<\alpha t+1-\alpha \quad \text { if } \quad 0<\alpha<1 \tag{2.5}
\end{equation*}
$$

For $t=1$, we have equality.
If the positive definite matrix C has the representation $C=\Gamma D_{\lambda} \Gamma^{*}$ when Γ is unitary and $D_{\lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where $\lambda_{1}, \ldots, \lambda_{n}$ are characteristic roots of C, then it follows from (2.4) and (2.5) that

$$
D_{\lambda}^{\alpha}>\alpha D_{\lambda}+(1-\alpha) I \quad \text { if } \quad \alpha>1 \text { or } \alpha<0
$$

and

$$
D_{\lambda}^{\alpha}<\alpha D_{\lambda}+(1-\alpha) I \quad \text { if } \quad 0<\alpha<1
$$

Pre- and postmultiplication by Γ and Γ^{*} respectively, yields

$$
C^{\alpha}>\alpha C+(1-\alpha) I \quad \text { if } \quad \alpha>1 \text { or } \alpha<0
$$

and

$$
C^{\alpha}<\alpha C+(1-\alpha) I \quad \text { if } \quad 0<\alpha<1
$$

with equalities iff $C=I$.
If we now set $C=C_{2}^{-1 / 2} C_{1} C_{2}^{-1 / 2}$, we obtain

$$
\left(C_{2}^{-1 / 2} C_{1} C_{2}^{-1 / 2}\right)^{\alpha}>\alpha C_{2}^{-1 / 2} C_{1} C_{2}^{-1 / 2}+(1-\alpha) I
$$

if $\alpha>1$ or $\alpha<0$, and

$$
\left(C_{2}^{-1 / 2} C_{1} C_{2}^{-1 / 2}\right)^{\alpha}<\alpha C_{2}^{-1 / 2} C_{1} C_{2}^{-1 / 2}+(1-\alpha) I
$$

for $0<\alpha<1$. Pre- and postmultiplication by $C_{2}^{1 / 2}$ now yields (2.2) and (2.1) respectively. Equality holds iff $C_{2}^{-1 / 2} C_{1} C_{2}^{-1 / 2}=I$ or equivalently $C_{1}=C_{2}$.

Sagae and Tanabe [1] used (2.1) and mathematical induction to prove the inequality $G_{r} \leqslant A_{r}$ for positive weights. Similarly, we shall use (2.2).

Theorem 2.1. Let $w_{i}, i=1, \ldots, r$, be real numbers such that

$$
w_{1}>0, w_{i}<0, \quad i=2, \ldots, r ; \quad w_{1}+\cdots+w_{r}=1
$$

Then

$$
\begin{equation*}
A_{r} \leqslant G_{r} \tag{2.6}
\end{equation*}
$$

If we also have $w_{1} C_{1}^{-1}+\cdots+w_{r} C_{r}^{-1}>0$, then

$$
\begin{equation*}
G_{r} \leqslant H_{r} \tag{2.7}
\end{equation*}
$$

Equality holds in (2.6) and (2.7) iff $C_{1}=\cdots=C_{r}$.
Proof. For $r=2$, (2.6) is proved in Lemma 2.1, i.e., it is the inequality (2.2). Suppose $r>1$ and (2.6) holds for $r-1$.

Let A_{r-1} and G_{r-1} be weighted arithmetic and geometric means of matrices C_{1}, \ldots, C_{r-1} with weights $\tilde{w}_{i}=w_{i} / \sum_{i=1}^{r-1} w_{i}$ for $i=1, \ldots, r-1$. Note that $\tilde{w}_{1}>0, \tilde{w}_{i}<0, i=2, \ldots, r-1 ; \tilde{w}_{1}+\cdots+\tilde{w}_{r-1}=1 ; \tilde{u}_{i}=1-$ $\tilde{w}_{i+1} / \sum_{j=1}^{i+1} \tilde{w}_{j}=1-w_{i+1} / \sum_{j=1}^{i+1} w_{j}=u_{i}$ for $i=1, \ldots, r-2$; and $u_{r-1}=$ $1-w_{r}(>1)$. So we have

$$
\begin{aligned}
A_{r} & =\sum_{i=1}^{r-1} w_{i} C_{i}+w_{r} C_{r}=\left(1-w_{r}\right) A_{r-1}+w_{r} C_{r} \\
& \leqslant\left(1-w_{r}\right) G_{r-1}+w_{r} C_{r} \quad \text { (by the inductive hypothesis) } \\
& \leqslant C_{r}^{1 / 2}\left(C_{r}^{-1 / 2} G_{r-1} C_{r}^{-1 / 2}\right)^{1-w_{r}} C_{r}^{1 / 2}=G_{r} \quad[\text { by (2.2)] }
\end{aligned}
$$

The equality $A_{r}=G_{r}$ holds only when all the equalities are valid simultaneously. Equality in the first inequality holds if $A_{r-1}=G_{r-1}$, i.e. $C_{1}=$ $C_{2}=\cdots=C_{r-1}$, by induction for $r-1$; and equality in the second inequality holds if $G_{r-1}=C_{r}$, by the conditions for equality for $r=2$. Therefore, the equality $A_{r}=G_{r}$ holds iff $A_{r}=G_{r-1}=C_{r}$, i.e. $C_{1}=C_{2}=\cdots=C_{r}$.

Now by the substitutions $C_{i}^{-1} \rightarrow C_{i}, i=1, \ldots, r$, we get (2.7) from (2.6).

Remark. It is interesting that (2.6), i.e., the reverse arithmetic-geomet-ric-mean inequality, is stronger than the arithmetic-geometric-mean inequality itself, in the sense that we can obtain the second inequality in (1.4) from (2.6).

Let us consider (2.6) with nonnormalized weights, i.e., if

$$
\begin{equation*}
w_{1}>0, \quad w_{i}<0, \quad i=2, \ldots, r, \quad \text { and } \quad W_{r}=\sum_{i=1}^{r} w_{i}>0 \tag{2.8}
\end{equation*}
$$

then

$$
\begin{array}{r}
\frac{1}{W_{r}} \sum_{i=1}^{r} w_{i} C_{i} \leqslant C_{r}^{1 / 2}\left(C _ { r } ^ { - 1 / 2 } C _ { r - 1 } ^ { 1 / 2 } \cdots \left(C_{3}^{-1 / 2} C_{2}^{1 / 2}\left(C_{2}^{-1 / 2} C_{1} C_{2}^{-1 / 2}\right)^{u_{1}}\right.\right. \\
\times \tag{2.9}\\
\left.\left.C_{2}^{1 / 2} C_{3}^{-1 / 2}\right)^{u_{2}} \cdots C_{r-1}^{1 / 2} C_{r}^{-1 / 2}\right)^{u_{r-1}} C_{r}^{1 / 2}
\end{array}
$$

where u_{i} is defined as for (1.1). Now, let $p_{i}, i=1, \ldots, r$, be positive weights with $P_{r}=\sum_{k=1}^{r} p_{k}$, and let $D_{i}, i=1, \ldots, r$, be positive definite Hermitian matrices.

We are going to prove the following inequality:

$$
\begin{aligned}
\frac{1}{P_{r}} \sum_{i=1}^{r} p_{i} D_{i} \geqslant D_{r}^{1 / 2}\left(D_{r-1}^{1 / 2} \cdots\right. & \left(D _ { 3 } ^ { - 1 / 2 } D _ { 2 } ^ { 1 / 2 } \left(D_{2}^{-1 / 2} D_{1}\right.\right. \\
& \left.\left.\left.\times D_{2}^{-1 / 2}\right)^{\bar{u}_{1}} D_{2}^{1 / 2}\right)^{\bar{u}_{2}} \cdots D_{r-1}^{1 / 2} D_{r}^{-1 / 2}\right)^{\bar{u}_{r-1}} D_{r}^{1 / 2}
\end{aligned}
$$

where

$$
\bar{u}_{i}=1-\frac{p_{i+1}}{\sum_{k=1}^{i+1} p_{k}} \quad(i=1, \ldots, r-1) .
$$

To this end we make the substitutions in (2.8) and (2.9)

$$
\begin{gathered}
w_{1}=P_{r}, \quad C_{1}=\frac{1}{P_{r}} \sum_{j=1}^{r} p_{j} D_{j}, \\
w_{i}=-p_{r-i+2}, \quad C_{i}=D_{r-i+2}, \quad i=2, \ldots, r .
\end{gathered}
$$

Now the conditions (2.8) are satisfied with $W_{r}=p_{1}$, and

$$
\frac{1}{W_{r}} \sum_{i=1}^{r} w_{i} C_{i}=D_{1} .
$$

Then (2.9) implies

$$
\begin{aligned}
& D_{2}^{1 / 2}\left(D _ { 2 } ^ { - 1 / 2 } D _ { 3 } ^ { 1 / 2 } \cdots \left(D_{r-1}^{-1 / 2} D_{r}^{1 / 2}\left(D_{r}^{-1 / 2}\left(\frac{1}{P_{r}} \sum_{j=1}^{r} p_{j} D_{j}\right) D_{r}^{-1 / 2}\right)^{u_{1}}\right.\right. \\
&\left.\left.\times D_{r}^{1 / 2} D_{r-1}^{-1 / 2}\right)^{u_{2}} \cdots D_{3}^{1 / 2} D_{2}^{-1 / 2}\right)^{u_{r-1}} D_{2}^{1 / 2} \geqslant D_{1},
\end{aligned}
$$

from which we have

$$
\begin{aligned}
&\left(D _ { 2 } ^ { - 1 / 2 } D _ { 3 } ^ { 1 / 2 } \cdots \left(D_{r-1}^{-1 / 2} D_{r}^{1 / 2}\left(D_{r}^{-1 / 2}\left(\frac{1}{P_{r}} \sum_{j=1}^{r} p_{j} D_{j}\right) D_{r}^{-1 / 2}\right)^{u_{1}}\right.\right. \\
&\left.\left.\times D_{r}^{1 / 2} D_{r-1}^{-1 / 2}\right)^{u_{2}} \cdots D_{3}^{1 / 2} D_{2}^{-1 / 2}\right)^{u_{r-1}} \geqslant D_{2}^{-1 / 2} D_{1} D_{2}^{-1 / 2} .
\end{aligned}
$$

Since $1 / u_{r-1}=\bar{u}_{1}<1$, by the Loewner theorem the last inequality implies

$$
\begin{gathered}
D_{2}^{-1 / 2} D_{3}^{1 / 2} \cdots\left(D_{r-1}^{-1 / 2} D_{r}^{1 / 2}\left(D_{r}^{-1 / 2}\left(\frac{1}{P_{r}} \sum_{j=1}^{r} p_{j} D_{j}\right) D_{r}^{-1 / 2}\right)^{u_{1}}\right. \\
\left.\times D_{r}^{1 / 2} D_{r-1}^{-1 / 2}\right)^{u_{2}} \cdots D_{3}^{1 / 2} D_{2}^{-1 / 2} \geqslant\left(D_{2}^{-1 / 2} D_{1} D_{2}^{-1 / 2}\right)^{\bar{u}_{1}}, \\
\left(D _ { 3 } ^ { - 1 / 2 } D _ { 4 } ^ { 1 / 2 } \cdots \left(D_{r-1}^{-1 / 2} D_{r}^{1 / 2}\left(D_{r}^{-1 / 2}\left(\frac{1}{P_{r}} \sum_{j=1}^{r} p_{j} D_{j}\right) D_{r}^{-1 / 2}\right)^{u_{1}}\right.\right. \\
\left.\left.\times D_{r}^{1 / 2} D_{r-1}^{-1 / 2}\right)^{u_{2}} \cdots D_{4}^{1 / 2} D_{3}^{-1 / 2}\right)^{u_{r-2}} \\
\geqslant D_{3}^{-1 / 2} D_{2}^{1 / 2}\left(D_{2}^{-1 / 2} D_{1} D_{2}^{-1 / 2}\right)^{\vec{u}_{1}} D_{2}^{1 / 2} D_{3}^{-1 / 2} .
\end{gathered}
$$

If we continue this procedure, we get

$$
\begin{aligned}
\frac{1}{P_{r}} \sum_{j=1}^{r} p_{j} D_{j} \geqslant D_{r}^{1 / 2}\left(D_{r}^{-1 / 2} D_{r-1}^{1 / 2}\right. & \cdots\left(D_{3}^{-1 / 2} D_{2}^{1 / 2}\left(D_{2}^{-1 / 2} D_{1} D_{2}^{-1 / 2}\right)^{\bar{u}_{1}}\right. \\
& \left.\left.\times D_{2}^{1 / 2} D_{3}^{-1 / 2}\right)^{\bar{u}_{2}} \cdots D_{r-1}^{1 / 2} D_{r}^{-1 / 2}\right)^{\bar{u}_{r-1}} D_{r}^{1 / 2}
\end{aligned}
$$

the arithmetic-geometric-mean inequality.

REFERENCES

1 M. Sagae and K. Tanabe, Upper and lower bounds for the arithmetic-geometricharmonic means of positive definite matrices, Linear and Multilinear Algebra 37:279-282 (1994).
2 D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, New York, 1970.
3 D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Boston, 1993.

Received 10 July 1995; final manuscript accepted 13 June 1996

