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ABSTRACT 

Recently, Sagae and Tanabe defined a geometric mean of positive definite 
matrices and proved the harmonic-geometric-arithmetic-mean inequality. Here, we 
give a reversal of these results. © 1997 Elsevier Science Inc. 

1. I N T R O D U C T I O N  

L e t  w 1 . . . . .  w r be positive numbers  such that  w 1 + ... + w  r = 1, and  let  
C 1 . . . . .  C r be n x n positive definite Hermi t i an  matrices.  Cons ider  weighted  
power  means of  the  matrices C~, def ined  by  

--s-1/s 
M~ = , ~, + ""  + W r 6 ' r )  , s :k O (1.1)  

¢21/21K'- 1/2f'1/2 ( (C;1/2C1C;1/2)ul M o = G = ~ r  W r  ~ r - ~  "'" C { ~ / 2 C ~ / 2  

. . .  

= /,--,+ l for i = 1, . .  r -  1. W e  shall also use the  where  u, 1 - w ~ + l / L k = l  w k . , 

notat ion A = M 1 and H = M_ 1. 
The  following results were  proved in [1]: 

G e x p ( G - 1 A  - I )  = e x p (  A G - '  - I )  G 

>t I (  A G - , A  + G )  

> ~ A > ~ G > ~ H  

>i 2 (  H - 1 G H  - 1  + G - l )  -1  

(1.2) 

>1 G e x p (  I - H - 1 G )  = e x p (  I - G H  - 1 )  G 
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and 

H exp( H -  1A - I )  = exp( AH-1  _ t )  H 

1 
>~ ~ (  AH-1A + H )  

>~A>~G>~H 
(1.3) 

>1 2( H-1AH - l  + A - l )  -1 

>1 Aexp(  I - H-1A)  

= exp (  I - A H -  1) A ,  

where all the inequalities are strict unless C 1 . . . . .  Cr, in which case all 
the equalities hold. Note that A 1> G means that A - G is positive semidefi- 
nite. 

In fact, the main results from [1] are the inequalities 

H ~ < G  ~<A. (1.4) 

In this paper, we shall prove reverse inequalities to (1.4). For our reverse 
results, we relax the requirement that all the weights w~ must be positive. 

2. T H E  REVERSE A R I T H M E T I C - G E O M E T R I C - H A R M O N I C -  
MEAN MATRIX INEQUALITIES 

In this section, we shall use the notation Ar, Gr, and H r for A, G, and H 
respectively. 

We begin with the following: 

LEMMA 2.1. I f  a ~ (0, 1), then 

G 2--C~/2(C~1/zC1C~' /2)~C~/2  <<. aC 1+ ( 1 -  a ) C  2 =-A 2, (2.1) 

but i f  either a < 0 or a > 1, the reverse inequality, i.e. 

G 2 >>. A2, (2.2) 

is valid. 
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Proof. The following generalization of  Bernoulli 's inequality is well 

and 

and 

(1 + x ) " <  1 + ax if 0 <  a <  1. (2.3)  

For  1 + x = t, this is equivalent to 

t ~ > a t + l - a  if a > l o r  a < 0  (2.4) 

and 

t ~ < a t + l - a  if 0 < ~ < 1 .  (2.5) 

For  t = 1, we have equality. 
If  the positive definite matrix C has the representation C = FDAF* when 

F is unitary and D x = diag(A 1 . . . . .  A n) where A 1 . . . . .  /~n are characteristic 
roots of  C, then it follows from (2.4) and (2.5) that 

D ~ > a D a + ( 1 - a ) I  if a > l  or a < 0  

and 

D ~ < a D ~ + ( 1 - a ) I  if 0 < a < l .  

Pre- and postmultiplication by F and F* respectively, yields 

C a> a C +  ( 1 - a ) I  

C ~ < a C + ( 1 - a ) I  if 0 < o t < l  

with equalities iff C = I. 
If  we now set C = C~1/~C1C~ 1/2, we obtain 

(C21/2C1C21/2) a > 0lC21/2C1C21/2 -~- ( 1  --  O~)I 

if a > l  or a < 0  

if a > l  or a < 0  

known (see e.g. [2, p. 34], or [3, p. 65]): For  - 1 < x v~ 0 

(1 + x ) " >  1 +  ax 
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if a >  1 o r  a < 0 ,  and 

( C 2 1 / 2 C 1 C 2 1 / 2 )  a ( 0 l C 2 1 / 2 C 1 C 2 1 / 2  -~- (1  - i T ) I  

for 0 < a < 1. Pre- and postmultiplication by C~/2 now yields (2.2) and 
(2.1) respectively. Equali ty holds iff C~1/2C1C72 1 / 2 =  I or equivalently 

C 1 = C 2. • 

Sagae and Tanabe  [1] used (2.1) and mathemat ical  induction to prove the 
inequality G r <~ A r for positive weights. Similarly, we shall use (2.2). 

THEOREM 2.1. Le t  wi,  i = 1 . . . . .  r, be real numbers  such that  

w 1 > 0 ,  w ~ < O ,  i = 2  . . . .  , r ;  w 1 + . . .  + w  r = 1 .  

Then  

A~ ~< G~. (2.6)  

I f  we  also have  w l C ~  1 + "'" -~-wrCr 1 > O, then 

G r < H r. ( 2 . 7 )  

Equal i ty  holds in (2.6) and  ( 2 . 7 ) / f f  C 1 . . . . .  C r. 

Proof.  For  r = 2, (2.6) is proved in L e m m a  2.1, i.e., it is the inequality 
(2.2). Suppose r > 1 and (2.6) holds for r - 1. 

Le t  A t _  1 and Gr_ 1 be  weighted ari thmetic and geometr ic  means of  
. .  = w i / ~ , i = l W i  for i = 1 , . . . ,  r -  1. matrices C1, . ,  C r -  1 with weights wi r -  1 

Note  that wl  > 0, t~ i < 0 ,  i = 2  . . . . .  r -  1; t~ 1 + - - -  +~br_ 1 = 1 ;~ i  = 1 - -  
/~7,i+1 . r ' , i +  1 i+ l /~ , j= lCv j  = 1 - w i + l / z , j = l w j  = u  i for i = 1 . . . . .  r -  2; and Ur_ 1 = 

1 - - W  r ( >  1). SO we have 

A t = 

r - 1  

E w i f i  q- w r C r  ~- (1  - w r ) A r _  1 q- w r C  r 
i=1  

( 1 -- W r ) G  r_ 1 -~- W r f r  (by  the inductive hypothesis) 

4 C ~ / 2 ( C [ ' / 2 G r - l C [ 1 / 2 ) ' - W ~ c ~ / 2  = Gr [by (2 .2 ) ] .  



60 M. ALIC ET AL. 

The equality A r = G r holds only when all the equalities are valid simuka- 
neously. Equality in the first inequality holds if A r _  1 = Gr-1, i.e. C l = 
C2 . . . . .  Cr-  l, by induction for r - 1; and equality in the second inequal- 
ity holds if G r_ 1 = Cr, by the conditions for equality for r = 2. Therefore,  
the equality A t = G r holds iff A r = G r_ 1 = C r ,  i.e. C x = C 2 . . . . .  C~. 

Now by the substitutions C/-1 --* C i, i = 1 . . . . .  r, we get (2.7) from 
(2.6). • 

REMARK. It is interesting that (2.6), i.e., the reverse ar i thmet ic-geomet-  
ric-mean inequality, is stronger than the ar i thmet ic-geometr ic-mean inequal- 
ity itself, in the sense that we can obtain the second inequality in (1.4) from 
(2.6). 

Let  us consider (2.6) with nonnormalized weights, i.e., if 

w l > 0 ,  w , < O ,  i = 2  . . . . .  r ,  and W r =  ~ w , > O ,  (2.8)  
i=1 

then 

1 r 

~J4 wiCi ~ r ~ r r-1 C 1/21 C-  1/2C1/2 '' ' (C 31/2C1/2(C 21/2CIC21/2) ul 
Wri=l  

x f l / 2 f 3 1 / 2 ) u i  "" C1/2c-l/2~Ur-l-rr-1 r ] C 1/2, (2 .9 )  

where u i is defined as for (1.1). Now, let Pi, i = 1 . . . . .  r ,  be positive weights 
with Pr = E r ", k= 1 Pk, and let Di, i = 1 , . .  r, be positive definite Hermitian 
matrices. 

We are going to prove the following inequality: 

- -  p,  Di  >1 191/2 131/2 ~r-1  "'" ( D31/2DXg/2( D ;  1/2D 1 
Pr i=l 

XU21/2)Ulul/2)u2 ... D1/2D-1 /2~  ~-  r-1 ~ j I D1/Z, 

where 

Pi+ 1 
= 1  ~ i +  1 

k=l Pk 
~ ,  ( i  = 1 . . . . .  r - 1 ) .  
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To this end we make the substitutions in (2.8) and (2.9) 
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Wl = e r ,  
r 

= E pjOj, C1 "~rj= 

wi = - P r - ~ + 2 ,  C i = D r _ ~ + 2 ,  i = 2  . . . . .  r .  

Now the conditions (2.8) are satisfied with W r = Pl, and 

t" 

i = 

Then (2.9) implies 

2 / ~ 2  ~ 3 " ' ' ~ r - l ~ r l ~ r  l'-errj~l ) ul 

xnl/2D_l/z].~ )-r-, aJr r-1 ] "'" 01/2021/2 01/2 ~ Ol, 

from which we have 

u2 ) ur-I 
×D~/2DT__l( ~ ... D~/2D[1/~ >1 D [ ' / ~ D x D [  1/2. 
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Since 1 / u  r_ 1 = Ul < 1, by the Loewner  theorem the last inequality implies 

(D-1/2D1/2[D-1/2[ 1 r ) ) ui 021/2D1/2 "'" r--1 r t ~ t ~ j~=, pjDj Dr 1,~ 

X.I/2.-I /21 u' (D;1/2D1D;1/2)Ul ' ~,- ~r-, ] ... V~/~V~,/2 >1 

)" 
-'~- "Jr n l / 2 n -  ~-'r - 1/21 ... D~/2D~ 1/2 

I f  we continue this procedure,  we get 

1 r 
~ j=~l pjDj >i -~]-~'/2/t urFI- 1/2/-)1/2~r_, "'" ( D ;  '/2D1/2( D~I/ZD1D~ 1/2) ~1 

XD~/ZD;'/z) ~2 ... Dlr/_~Dr,/2) u 'O~/2, 

the a r i thmet ic -geomet r i c -mean  inequality. 
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