Conclusion: Strong correlations between predicted and achieved mean OAR doses indicates that RapidPlan could accurately predict achievable mean doses, showing the feasibility of using RapidPlan DVH predictions alone for automated individualized HNC plan QA. Since this QA approach does not require the creation of additional plans, the findings indicate that automated individualized plan QA is now a realistic proposition for individual centers and clinical trials.

PV-0176
Evaluation of biologically effective dose in stereotactic radiotherapy for prostate cancer
T. Viren¹, T. Lahtinen², J. Hopewell³, J. Seppälä¹
¹Kuopio University Hospital, Cacer Center, KYS, Finland
²Delfin Technologies Ltd, Kuopio, Finland
³University of Oxford, Green Templeton College, Oxford, United Kingdom

Purpose or Objective: Image guided robotic stereotactic radiotherapy (SRT) is becoming increasingly commonly used in the treatment of prostate cancer. As SRT treatment may consist of 100-300 small beams, the dose-rate (DR) and thus the biologically effective dose (BED) can vary significantly within the target volume, despite the creation of a very uniform total physical dose distribution (1). However, the significance of the spatial variations in DR on BED in robotic SRT treatments remains unknown.

The aim of the present study is to measure the DR distribution, with treatment progression, in a representative robotic SRT treatment for prostate cancer and to investigate the effect of these spatial and time related variations in the measured DR on the calculated BED.

Material and Methods: A representative robotic SRT treatment plan for prostate cancer (5 x 7.25 Gy, 222 beams, treatment time 28 min) was created with the Multiplan treatment planning software (v 4.6.0., Accuray, USA). Based on this plan a quality assurance plan was calculated for the Multiplan treatment planning software (v 4.6.0., Accuray, USA). Based on this plan a quality assurance plan was calculated for a Multiplan phantom incorporating a MatrixXX Detector (32 x 32 matrix of ionization chambers) spatial resolution 7.6 mm, time resolution 0.5 s (IBA Dosimetry, Germany). The DR distributions were measured in four different coronal planes (separated by 1cm) covering the volume of the target structure to create a 3D DR distribution. Then BED values, calculated using bi-exponential repair (repair half times 0.2 h and 2.5 h, α/β =1.5Gy) were calculated for each voxel based on the measured DR (BED_M), average dose-rate (measured dose divided by the overall treatment time, BED_A) and physical dose (measured dose without the repair component, BED_P) distributions.

Results: Compared to the BED_P, where no repair was allowed for, both BED_M and BED_A values, within the target volume, were significantly lower (Fig 1). Furthermore, BED_M values were found to be systematically higher than BED_A values. Significant variation was observed in BED_M values corresponding to the same BED_P value (Fig 1). This effect was not observed with BED_A values (Fig 1).

Figure 1. A: Representative SRT plan, B: corresponding BED_P values, C: Frequency distributions of BED_P, BED_M and BED_A values within the target volume, D: Range of BED_M or BED_A values corresponding uniform BED_P value.

Conclusion: The simple use of the average DR in the determination of BED does not take into account the variations in the spatial DR, and this leads to an underestimation of BED values. Furthermore, significant variations were observed in BED_M values when compared to uniform BED_P values, an observation also consistent with comparable Gamma Knife treatments (1). Thus, the actual and not the average DR should be used in the calculation of BED when the efficacy of the SRT treatments is evaluated or different treatment modalities are compared.

References

Honorary Members Lectures:

SP-0177
Evidence-based education: Radiation Oncology’s forgotten foundation?
S. Turner¹
¹Westmead Hospital, Radiation Oncology, Sydney, Australia

Learning Objectives
1. reasons why educational ‘science’ may be overlooked
2. how principles of adult learning might apply to radiation oncology
3. potential benefits of applying an evidence-based approach to educationalactivities

Radiation Oncology is a discipline with a history firmly founded on the sciences of radiobiology, radiation physics, anatomy, pathology and clinical medicine that remain as relevant as ever to its exciting future. An evidence-based approach to practice and progress in our field is seen as core to our identity as radiation oncology professionals.

So how can it be that the ‘science’ of teaching the next generation of practitioners, as well as the current one (ourselves), especially in such a rapidly changing arena, is often left to chance? Why is so little focus placed on the