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The aim of this paper is to present some existence results for a nonlinear nth-order
boundary value problem with nonlocal conditions. Various fixed point theorems are used
in the proofs. Examples are included to illustrate the results.
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1. Introduction

In [1], Eloe and Ahmad studied the problem

u(n) + f (t, u) = 0, t ∈ (0, 1), (1.1)

u(0) = 0, u′(0) = 0, . . . , u(n−2)(0) = 0, αu(η) = u(1), (1.2)

where 0 < η < 1, 0 < αηn−1 < 1, and f : [0, 1] × R −→ R is a continuous function, and they proved the existence of
solutions for the problem (1.1)–(1.2)when f is either sublinear or superlinear. In this paper,we are interested in the existence
of both sign changing solutions and positive solutions for this problem under conditions different from those imposed in [1].
Our approach is based on the application of three different fixed point theorems. In the last section of the paper we extend
the results obtained for this problem to the boundary value problem consisting of Eq. (1.1) and the multipoint boundary
condition

u(0) = 0, u′(0) = 0, . . . , u(n−2)(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi).

First, we introduce some notation and preliminary facts that are used throughout the paper. Let E = C0([0, 1],R) be the
Banach space of all continuous functions from [0, 1] into R endowed with the norm

‖u‖ = sup {|u(t)| : 0 ≤ t ≤ 1} ,

and let L1([0, 1],R) be the Banach space of integrable functions on [0, 1]with the norm

|u|1 =
∫ 1

0
|u(s)| ds.

We need the following lemmas in the sequel. The first three of these are due to Eloe and Ahmad.
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Lemma 1.1 ([1, Lemma 2.2]). Let 0 < αηn−1 < 1. If u ∈ E satisfies the differential inequality u(n)(t) ≤ 0 for 0 < t < 1 and
the boundary conditions (1.2), then u ≥ 0 on [0, 1].

Lemma 1.2 ([1, Lemma 2.3]). Let 0 < αηn−1 < 1. If u satisfies u(n)(t) ≤ 0 for 0 < t < 1 and the boundary conditions (1.2),
then

inf
t∈[η,1]

u(t) ≥ γ ‖u‖,

where γ = min
{
αηn−1, α(1− η)(1− αη)−1, ηn−1

}
.

Lemma 1.3 ([1]). The Green’s function G(t, s) associated with the problem (1.1)–(1.2) is defined by

G(t, s) =


a(s)tn−1

(n− 1)!
, if 0 ≤ t ≤ s ≤ 1,

a(s)tn−1 + (t − s)n−1

(n− 1)!
, if 0 ≤ s ≤ t ≤ 1,

(1.3)

where

a(s) =


−
(1− s)n−1

1− αηn−1
, η ≤ s,

−
(1− s)n−1 − α(η − s)n−1

1− αηn−1
, s ≤ η.

It is easy to prove the following result.

Lemma 1.4. The Green’s function G(t, s) associated with the problem (1.1)–(1.2) is negative on (0, 1)× (0, 1) and satisfies

|G(t, s)| ≤
1

(n− 1)!

[
1+

1+ αηn−1

1− αηn−1

]
≡ σn for all t, s ∈ [0, 1].

Remark 1.1. In [1], there were a couple of misprints that have led to some confusion. For example, the α in the second
part of the expression above for a(s)was missing. Also, although it was not stated explicitly, it is implied in Lemma 1.2 that
αη < 1 in order to ensure that γ is positive.

2. Existence of sign changing solutions

In this section, we are concernedwith the existence of sign changing solutions for the problem (1.1)–(1.2) under different
kinds of growth conditions on the nonlinear function f . Such problems were considered by, for example, Infante [2] and
Infante and Webb [3] for the case n = 2. Our main result in this section is the following.

Theorem 2.1. Assume that one of the following hypotheses is satisfied.

(a) There exist q ∈ L1([0, 1],R+), a continuous function F : R −→ R+, and a constant r0 > 0 such that

|f (t, u)| ≤ q(t)F(u) for all (t, u) ∈ [0, 1]× R

and

max
|y|≤r0

F(y) ≤
r0

σn|q|1
. (2.1)

(b) There exist q ∈ L1([0, 1],R+) and a continuous function F : R −→ R+ such that

|f (t, u)| ≤ q(t)F(u) for all (t, u) ∈ [0, 1]× R

and

σnF0|q|1 < 1,

where

lim
s→0

F(s)
s
= F0.
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(c) There exists a continuous function F : [0, 1]×R −→ R+ that is nondecreasing in its second argument and a constant r1 > 0
such that

|f (t, u)| ≤ F(t, u) for all (t, u) ∈ [0, 1]× R

and ∫ 1

0
F(s, r1) ds ≤

r1
σn
.

Then the problem (1.1)–(1.2) has at least one solution.

The proof of this theorem makes use of the following result known as Schauder’s fixed point theorem.

Theorem A ([4]). Let E be a Banach space and let C ⊂ E be a bounded, closed, and convex subset of E. Let A : C −→ C be a
completely continuous operator. ThenA has a fixed point in C.

Proof of Theorem 2.1. Set C = {u ∈ E : ‖u‖ ≤ r0} and define the operatorA : C −→ E by

Au(t) = −
∫ 1

0
G(t, s)f (s, u(s)) ds.

We can easily verify that fixed points of the operator A are solutions of the problem (1.1)–(1.2). A standard application of
the Arzela–Ascoli theorem guarantees thatA is completely continuous. All we need to show is thatA(C) ⊂ C .
(a) For t ∈ [0, 1], we have

|Au(t)| ≤
∫ 1

0
|G(t, s)|q(s)F(u(s)) ds

≤ σn

∫ 1

0
q(s)F(u(s)) ds

≤ σn|q|1 max
|y|≤r0

F(y)

≤ r0

for all u ∈ C . Thus, ‖Au‖ ≤ r0, and soA(C) ⊂ C .
(b) Choose ε > 0 so that σn(F0 + ε)|q|1 ≤ 1. There exists r0 > 0 such that

|v| < r0 implies
∣∣∣∣F(v)v − F0

∣∣∣∣ < ε.

For t ∈ [0, 1],

|Au(t)| ≤
∫ 1

0
|G(t, s)|q(s)F(u(s)) ds

≤ σn(F0 + ε)|q|1|u(s)|
≤ σn(F0 + ε)|q|1r0
≤ r0

for all u ∈ C . Hence, ‖Au‖ ≤ r0 and soA(C) ⊂ C .
(c) For t ∈ [0, 1], we have

|Au(t)| ≤
∫ 1

0
|G(t, s)||f (s, u(s))| ds

≤ σn

∫ 1

0
F(s, |u(s)|) ds

≤ σn

∫ 1

0
F(s, ‖u‖) ds

≤ σn

∫ 1

0
F(s, r1) ds

≤ r1

for all u ∈ C . Therefore, ‖Au‖ ≤ r1 and soA(C) ⊂ C . This completes the proof of the theorem. �

We will illustrate the above theorem with a couple of examples.
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Example 2.1. Consider the nonlinear third-order boundary value problem

u′′′ + t4(u+ 1)5/10 = 0, t ∈ (0, 1), (2.2)

u(0) = 0, u′(0) = 0, u(1/2) = u(1). (2.3)

Note that

|G(t, s)| ≤ σ3 = 4/3 for all t, s ∈ [0, 1].

By taking q(t) = t4/10 and F(u) = |u+ 1|5, we then have |q|1 = 1/50, so condition (2.1) holds with r0 = 1. From part (a)
of Theorem 2.1, the problem (2.2)–(2.3) has at least one nontrivial solution.

Example 2.2. Consider the problem

u′′′ + t3
√
|u+ 1| = 0, t ∈ (0, 1), (2.4)

u(0) = 0, u′(0) = 0, u(1/2) = u(1). (2.5)

By taking q(t) = t3 and F(u) =
√
|u+ 1|, then from part (c) of Theorem 2.1 with r1 = 1, the problem (2.4)–(2.5) admits at

least one nontrivial solution.

3. The sublinear case

In this section, we are concerned with the existence of solutions for the problem (1.1)–(1.2) under a sublinear condition
on the function f . Our main result of this type is the following.

Theorem 3.1. Assume that there are functions q1, q2 ∈ L1([0, 1],R+) such that

|f (t, u)| ≤ q1(t)|u| + q2(t) for all t ∈ [0, 1] and u ∈ R.

If σn|q1|1 < 1, then the problem (1.1)–(1.2) has at least one solution.

The proof of this theorem will make use of the following Leray–Schauder nonlinear alternative.

Theorem B ([5,4]). Let E be a Banach space and let Ω be a bounded open subset of E with 0 ∈ Ω , and let A: Ω −→ E be a
completely continuous operator. Then either there exist u ∈ ∂Ω and λ > 1 such that Au = λu, or there exists a fixed point
u∗ ∈ Ω of the mapping A.

Proof of Theorem 3.1. LetΩ is a bounded open set to be chosen later, let u ∈ ∂Ω , and let λ > 1 be such thatAu = λu. For
t ∈ [0, 1], we have

|u(t)| ≤
1
λ

∫ 1

0
|G(t, s)||f (s, u(s))| ds

≤ σn

∫ 1

0
(q1(s)|u(s)| + q2(s)) ds

≤ σn (|q1|1‖u‖ + |q2|1) .

Hence, ‖u‖ ≤ σn (|q1|1‖u‖ + |q2|1), or ‖u‖ ≤
(

σn|q2|1
1−σn|q1|1

)
≡ M . WithΩ = {u ∈ E : ‖u‖ < M + 1}, the second alternative

in Theorem B is not satisfied, so the existence of a solution to the problem (1.1)–(1.2) follows. �

Example 3.1. Consider the nonlinear third-order problem

u′′′ + t3
√
|u| + t + 1 = 0, t ∈ (0, 1), (3.1)

u(0) = 0, u′(0) = 0, u(1/2) = u(1). (3.2)

Taking f (t, u) = t3
√
|u|+ t+1, q1(t) = t3, and q2(t) = t+1, Theorem 3.1 implies that the problem (3.1)–(3.2) has at least

one nontrivial solution.

As a final remark in this section, we should point out that since the trivial solution satisfies the boundary conditions, it
is possible that the solution whose existence is guaranteed in Theorems 2.1 and 3.1 may in fact be the zero solution. The
added condition that f (t, 0) 6≡ 0 ensures that this is not the case (see Examples 2.1, 2.2 and 3.1).
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4. Existence of positive solutions

Under suitable assumptions on the nonlinear function f , we shall prove the existence of a positive solution to the problem
(1.1)–(1.2). The proofs rely on the Guo–Krasnosel’skii fixed point theorem in cones given in Theorem C. This approach has
been used by many authors in the last ten years. In a very nice paper that recently appeared, Webb [6] used the fixed point
index to prove the existence of positive solutions. He made use of a careful analysis of the Green’s function.

Theorem C ([7,8]). Let E be a Banach space and K ⊂ E be a cone in E. Assume that Ω1 andΩ2 are two bounded open sets in E
such that 0 ∈ Ω1 andΩ1 ⊂ Ω2. Let A : K ∩ (Ω2 \Ω1) −→ K be a completely continuous operator such that either:

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or
(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

ThenA has at least one fixed point in K ∩ (Ω2 \Ω1).

We will prove three existence theorems; the first one is the following.

Theorem 4.1. Suppose that f : [0, 1] × R+ −→ R+ is continuous and there exist positive constants M1, M2, C1, and C2 such
that

(i) f (t, u) ≤ M1 for t ∈ [0, 1] and 0 ≤ u ≤ C1, and
(ii) f (t, u) ≥ M2 for t ∈ [η, 1] and γ C2 ≤ u ≤ C2,

where C1 = σnM1 and C2 = M2
∫ 1
η
|G(η, s)|ds. Then the problem (1.1)–(1.2) has at least one positive solution.

Proof. Without loss of generality, we assume that C1 < C2 and set

Ω1 = {u ∈ E : ‖u‖ < C1} and Ω2 = {u ∈ E : ‖u‖ < C2} .

We take as our cone the set

K =
{
u ∈ E : u ≥ 0 and min

t∈[η,1]
u(t) ≥ γ ‖u‖

}
.

A standard application of the Arzela–Ascoli theorem shows that the operatorA is completely continuous. It also follows by
Lemma 1.2 thatAmaps K into K .
Let u ∈ K ∩ ∂Ω1, i.e., u ∈ K and ‖u‖ = C1. We then have

0 ≤ Au(t) ≤
∫ 1

0
|G(t, s)|f (s, u(s)) ds

≤ σnM1
= C1
= ‖u‖.

Taking the supremum, we obtain

‖Au‖ ≤ ‖u‖ on K ∩ ∂Ω1.

Let u ∈ K ∩ ∂Ω2, i.e., u ∈ K and ‖u‖ = C2. Using the fact that mint∈[η,1] u(t) ≥ γ ‖u‖, we have

Au(η) =
∫ 1

0
|G(η, s)|f (s, u(s)) ds

≥

∫ 1

η

|G(η, s)|f (s, u(s)) ds

≥ M2

∫ 1

η

|G(η, s)| ds

= C2
= ‖u‖.

Thus,

‖Au‖ ≥ ‖u‖ on K ∩ ∂Ω2.

By Krasnosel’skii’s fixed point theorem, Theorem C, the problem (1.1)–(1.2) has a positive solution u(t) such that C1 ≤ ‖u‖
≤ C2. �



J.R. Graef, T. Moussaoui / Computers and Mathematics with Applications 58 (2009) 1662–1671 1667

To illustrate this result, we have the following example.

Example 4.1. Consider the nonlinear third-order problem

u′′′ + f (t, u) = 0, t ∈ (0, 1), (4.1)

u(0) = 0, u′(0) = 0, u(1/2) = u(1), (4.2)

where

f (t, u) =



3
4

√
ut3, if t ∈ [0, 1], u ∈

[
0,
4
3

]
t3
[(
27, 648−

3
√
3
4

)
u− 36, 864+

3
√
3
2

]
, if t ∈ [0, 1], u ∈

[
4
3
, 2
]
,

1152t3u4, if t ∈
[
1
2
, 1
]
, u ∈ [2,+∞).

It is easy to see that
∫ 1
1
2
|G( 12 , s)|ds =

1
144 and γ =

1
4 . Theorem 4.1 is satisfied with M1 = 1, C1 = 4/3, M2 = 1152, and

C2 = 8, so the problem (4.1)–(4.2) has at least one positive solution u(t)with 4/3 ≤ ‖u‖ ≤ 8.

Our second existence theorem in this section employs a type of growth condition on the nonlinear function f very
different to those used in our previous theorems.

Theorem 4.2. Suppose that f : [0, 1] × R+ −→ R+ is a continuous function and there are continuous functions F1, F2, G1,
G2 : R+ −→ R+, where F1 and G1 are nonincreasing and

F2
F1
and G2G1 are nondecreasing, such that

G1(u)+ G2(u) ≤ f (t, u) ≤ F1(u)+ F2(u) for all (t, u) ∈ [0, 1] × R+.

If there exist constants r0, R0 > 0, r0 6= R0, such that

σnF1(0)
(
1+

F2(r0)
F1(r0)

)
≤ r0 and G1(R0)

(
1+

G2(γ R0)
G1(γ R0)

)∫ 1

η

|G(η, s)|ds ≥ R0, (4.3)

then the problem (1.1)–(1.2) has at least one positive solution.

Proof. With no loss in generality, we may assume that r0 < R0 and set

Ω1 = {u ∈ E : ‖u‖ < r0} and Ω2 = {u ∈ E : ‖u‖ < R0} .

If u ∈ K ∩ ∂Ω1, then

0 ≤ Au(t) ≤ σn

∫ 1

0
(F1(u(s))+ F2(u(s))) ds

≤ σnF1(0)
(
1+

F2(r0)
F1(r0)

)
≤ r0
= ‖u‖.

We then have

‖Au‖ ≤ ‖u‖ on K ∩ ∂Ω1.

If u ∈ K ∩ ∂Ω2, then

Au(η) =
∫ 1

0
|G(η, s)|f (s, u(s)) ds

≥

∫ 1

η

|G(η, s)|f (s, u(s)) ds

≥

∫ 1

η

|G(η, s)| (G1(u(s))+ G2(u(s))) ds

=

∫ 1

η

|G(η, s)|G1(u(s))
(
1+

G2(u(s))
G1(u(s))

)
ds
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≥

∫ 1

η

|G(η, s)|G1(‖u‖)
(
1+

G2(γ ‖u‖)
G1(γ ‖u‖)

)
ds

= G1(R0)
(
1+

G2(γ R0)
G1(γ R0)

)∫ 1

η

|G(η, s)| ds

≥ R0
= ‖u‖,

so

‖Au‖ ≥ ‖u‖ on K ∩ ∂Ω2.

By Krasnosel’skii’s fixed point theorem, the problem (1.1)–(1.2) has at least one positive solution u(t) with r0 ≤ ‖u‖
≤ R0. �

As an example of Theorem 4.2 we have the following.

Example 4.2. Consider the third-order problem

u′′′ +
t2 + 1
t2 + 2

[
e−u/40 + eu/10

]
, t ∈ (0, 1), (4.4)

u(0) = 0, u′(0) = 0, u(1/2) = u(1). (4.5)

The first inequality in (4.3) is satisfied with r0 = 4. The second inequality in (4.3) reduces to 1+ eR0/32 ≥ 288R0eR0/40, which
is clearly satisfied for sufficiently large R0. Theorem 3.1 then shows that the problem (4.4)–(4.5) has at least one nontrivial
solution u(t)with 4 ≤ ‖u‖ ≤ R0.

Our final existence theorem is the following.

Theorem 4.3. Suppose that f : [0, 1] × R+ −→ R+ is continuous and there are q1, q2 ∈ L1([0, 1] ,R+) and a continuous
function F : R −→ R+ such that

q1(t)F(u) ≤ f (t, u) ≤ q2(t)F(u) for all (t, u) ∈ [0, 1]× R+,
σnF0|q2|1 < 1, and γ F∞q∗1 > 1,

where

F0 = lim
s→0+

F(s)
s
∈ (0,+∞), F∞ = lim

s→+∞

F(s)
s
∈ (0,+∞),

and

q∗1 =
∫ 1

η

|G(η, s)|q1(s) ds > 0.

Then the problem (1.1)–(1.2) has at least one positive solution.

Proof. Choose ε > 0 such that σn(F0 + ε)|q2|1 ≤ 1. There exists H1 > 0 such that

F(x) ≤ (F0 + ε)x for 0 < x < H1.

Let

Ω1 = {u ∈ E : ‖u‖ < H1}

and take u ∈ K ∩ ∂Ω1. Then,

0 ≤ Au(t) ≤ σn

∫ 1

0
q2(s)F(u(s)) ds

≤ σn

∫ 1

0
q2(s)u(s)(F0 + ε) ds

≤ σn(F0 + ε)‖u‖|q2|1
≤ ‖u‖.

Hence,

‖Au‖ ≤ ‖u‖ on K ∩ ∂Ω1.
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Now choose ε > 0 so that (F∞ − ε)q∗1 ≥ 1. There exists H2 > 0 such that

F(x) ≥ (F∞ − ε)x for x ≥ H2.

Let H2 = max
{
2H1,H2/γ

}
and set

Ω2 = {u ∈ E : ‖u‖ < H2} .

For u ∈ K ∩ ∂Ω2, we have

Au(η) =
∫ 1

0
|G(η, s)|f (s, u(s)) ds

≥

∫ 1

η

|G(η, s)|f (s, u(s)) ds

≥

∫ 1

η

|G(η, s)|q1(s)F(u(s)) ds

≥

∫ 1

η

|G(η, s)|(F∞ − ε)|u(s)|q1(s) ds

≥

∫ 1

η

|G(η, s)|(F∞ − ε)γ ‖u‖q1(s) ds

≥ ‖u‖.

Thus,

‖Au‖ ≥ ‖u‖ on K ∩ ∂Ω2.

Krasnosel’skii’s theorem again implies that the problem (1.1)–(1.2) has at least one positive solution u(t) with H1 ≤ ‖u‖
≤ H2. �

As an example of this theorem, we give the following.

Example 4.3. Consider the nonlinear third-order problem

u′′′ +
1
8
(t3 + 1) (u+ sin u+ 2940 u arctan u) = 0, t ∈ (0, 1), (4.6)

u(0) = 0, u′(0) = 0, u(1/2) = u(1). (4.7)

Taking q1 ≡ 1, q2(t) = t3 + 1, and F(u) = 1
8 (u+ sin u+ 2940 u arctan u), the hypotheses of Theorem 4.3 are satisfied, so

the problem (4.6)–(4.7) has at least one positive solution.

We can also prove the following corollary.

Corollary 4.4. Suppose that f : R+ −→ R+ is continuous and satisfies

f0 = lim
s→0+

f (s)
s
∈ (0,+∞) and f∞ = lim

s→+∞

f (s)
s
∈ (0,+∞),

with

σnf0|q|1 < 1 and γ f∞q∗ > 1,

where

q∗ =
∫ 1

η

|G(η, s)|q(s) ds > 0.

Then the problem

u(n) + q(t)f (u) = 0, t ∈ (0, 1), (4.8)

u(0) = 0, u′(0) = 0, . . . , u(n−2) = 0, αu(η) = u(1), (4.9)

has at least one positive solution.

Remark 4.1. In the same way as is done in [1], we can prove the following:
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If either

(a) f0 = lims→0+
f (s)
s = 0 and f∞ = lims→+∞

f (s)
s = +∞, or

(b) f0 = lims→0+
f (s)
s = +∞ and f∞ = lims→+∞

f (s)
s = 0,

then the problem (4.8)–(4.9) has at least one positive solution.

5. Extensions

The results above can be extended to them-point boundary value problem

u(n) + f (t, u) = 0, t ∈ (0, 1), (5.1)

u(0) = 0, u′(0) = 0, . . . , u(n−2)(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi), (5.2)

where now 0 < η1 < η2 < · · · < ηm−2 < 1, αi > 0, and D =
∑m−2
i=1 αiη

n−1
i < 1. A direct calculation (or see, for example,

Pang et al. [9]) shows that the Green’s function associated with this problem is

H(t, s) =


−
tn−1(1− s)n−1

(n− 1)!(1− D)
+

∑
s≤ηi

αi
(ηi − s)n−1tn−1

(n− 1)!(1− D)
, if 0 ≤ t ≤ s ≤ 1,

−
tn−1(1− s)n−1

(n− 1)!(1− D)
+
(t − s)n−1

(n− 1)!
+

∑
s≤ηi

αi
(ηi − s)n−1tn−1

(n− 1)!(1− D)
, if 0 ≤ s ≤ t ≤ 1.

(5.3)

We then have that u is a solution of the problem (5.1)–(5.2) if and only if

u(t) = −
∫ 1

0
H(t, s)f (s, u(s))ds,

and moreover the following estimate is satisfied:

|H(t, s)| ≤
1

(n− 1)!

[
1+

1+ D
1− D

]
≡ ρn.

Theorems 2.1 and 3.1 hold with σn replaced by ρn; this is also the only change that needs to be made in the proofs. In
order to extend Theorems 4.1–4.3 to the problem (5.1)–(5.2), we will need the following lemma.

Lemma 5.1. Let 0 < αm−2ηm−2 < 1. If u satisfies u(n)(t) ≤ 0 for 0 < t < 1 and the boundary conditions (5.2), then

inf
t∈[ηm−2,1]

u(t) ≥ Γ ‖u‖,

where

Γ = min
{
αm−2(1− ηm−2)
(1− αm−2ηm−2)

, αm−2η
n−1
m−2, η

n−1
m−2

}
.

Proof. The proof of this lemma is similar in some respects to the proof of Lemma 1.2 above, i.e., Lemma 2.3 in [1], so we
only sketch the details. Let t̂ denote the zero of u′(t) in (0, 1). Then u′(t̂) = 0 and ‖u‖ = u(t̂). We consider two cases.
Case 1. Assume t̂ ≤ ηm−2. The line joining the points (1, u(1)) and (ηm−2, u(ηm−2)) is given by

v(t) = u(1)+
u(1)− u(ηm−2)
1− ηm−2

(t − 1).

Observe that

u(t̂) ≤ v(t̂) = u(1)+
u(1)− u(ηm−2)
1− ηm−2

(t̂ − 1).

Now u(1) = mint∈[ηm−2,1] u(t) and αm−2u(ηm−2) < u(1), so

u(t̂) ≤ u(1)−
u(1)− u(ηm−2)
1− ηm−2

≤ u(1)
[
1− αm−2ηm−2
αm−2(1− ηm−2)

]
.

Thus,

u(1) ≥
[
αm−2(1− ηm−2)
1− αm−2ηm−2

]
u(t̂),
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so

min
t∈[ηm−2,1]

u(t) ≥
[
αm−2(1− ηm−2)
1− αm−2ηm−2

]
‖u‖. (5.4)

Case 2. Assume that ηm−2 < t̂ . There are two possible subcases.
Case 2(a): u(ηm−2) ≥ u(1). In this case mint∈[ηm−2,1] u(t) = u(1). An argument like the one in [1] yields

u(t) > u(t̂)tn−1 for 0 < t < t̂,

so

u(ηm−2) > ηn−1m−2‖u‖.

Thus,

u(t) ≥ u(1) ≥ αm−2u(ηm−2) ≥ αm−2ηn−1m−2‖u‖,

i.e.,

u(t) ≥ αm−2ηn−1m−2‖u‖ for ηm−2 ≤ t ≤ 1. (5.5)

Case 2(b): u(ηm−2) < u(1). Now we have mint∈[ηm−2,1] u(t) = u(ηm−2). Like in Case 2(a), we have

u(t) ≥ u(ηm−2) ≥ ηn−1m−2‖u‖. (5.6)

The conclusion of the lemma then follows from (5.4)–(5.6).
The results in Section 4 now hold for the problem (5.1)–(5.2) with γ , η, and σn replaced by Γ , ηm−2, and ρn,

respectively. �
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