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In this paper, we consider the Cauchy problem for the wave equation with time dependent
damping b(t)ut and absorbed semilinear term |u|ρ−1u. Here, b(t) = b0(1 + t)−β with −1 <

β < 1 and b0 > 0. Using the weighted energy method, we obtain the L1 and L2 decay rates
of the solution, which coincide to those for self-similar solutions to the corresponding
parabolic equation when 1 < ρ < ρF (N) := 1 + 2

N .
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We consider the Cauchy problem for the time dependent damped wave equation{
utt − �u + b(t)ut + |u|ρ−1u = 0, ∀(t, x) ∈ R

+ × R
N ,

(u, ut)(0, x) = (u0, u1)(x), ∀x ∈ R
N .

(1.1)

Here u is real-valued, b(t) = b0(1 + t)−β , b0 > 0, −1 < β < 1, ρ > 1 and N � 1.
When b(t) is a positive constant, i.e. β = 0, the problem (1.1) is reduced to{

utt − �u + ut + |u|ρ−1u = 0, ∀(t, x) ∈ R
+ × R

N ,

(u, ut)(0, x) = (u0, u1)(x), ∀x ∈ R
N .

(1.2)

The solution u to (1.2) can be expected to behave as the solution to the problem for the corresponding heat equation{−�φ + φt + |φ|ρ−1φ = 0, ∀(t, x) ∈ R
+ × R

N ,

φ(0, x) = φ0(x), ∀x ∈ R
N .

(1.3)

In fact, Kawashima, Nakao and Ono [11] showed that there exists a unique time-global solution

u ∈ X := C
([0,∞); H1) ∩ C1([0,∞); L2)
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to (1.2) for any data (u0, u1) ∈ X0 := H1 × L2 where

1 < ρ <
N + 2

[N − 2]+ =
{∞, N = 1,2,

N+2
N−2 , N � 3,

and that, when 1 + 4
N < ρ < N+2

[N−2]+ , the global solution u decays as∥∥u(t)
∥∥

L2 = O
(
t− N

2 ( 1
r − 1

2 )
)

for (u0, u1) ∈ X0 ∩ (Lr × Lr), 1 � r � 2. After this result, in the supercritical case

ρ > ρF (N) := 1 + 2

N
,

it is shown in [4,8,10,16] that the asymptotic profile of the solution u is θ0G(t, x), that is,

u(t, x) ∼ θ0G(t, x) as t → ∞,

where

G(t, x) = (4πt)−
N
2 e− |x|2

4t

and

θ0 =
∫

RN

(u0 + u1)dx −
∞∫

0

∫
RN

|u|ρ−1u dx dt.

In the critical case ρ = ρF (N), see Hayashi, Kaikina and Naumkin[6,7]. In the subcritical case ρ < ρF (N), applying the
weighted L2-energy method, Nishihara and Zhao [17] showed that the solution u of (1.2) uniquely exists, which satisfies for
t � 0 and 1 < ρ � N

[N−2]+ ,∥∥u(t, ·)∥∥L2 � C I0(1 + t)−
1

ρ−1 + N
4 , (1.4)

with the assumption that I2
0 := ∫

RN eδ|x|2(u2
1 + |∇u0|2 + uρ+1

0 )dx < ∞ for some δ > 0. The decay rate (1.4) is same as that of
the self-similar solution

w0(t, x) = (t + 1)
− 1

ρ−1 f

(
x√

t + 1

)
to (1.3) when 1 < ρ < ρF (N). So (1.4) works effectively in the subcritical case. In fact, when ρ is near to ρF (N), the
self-similar solution w0(t, x) was proved to be an asymptotic profile in Hayashi, Kaikina and Naumkin [5].

The aim of this paper is to estimate the decay rate of solutions to (1.1) in general case of b(t) = b0(1 + t)−β with
−1 < β < 1, which is effective in the subcritical case. In the supercritical case the solution will behave as that of the
corresponding linear equation. For the linear problem, using the Fourier transform method, J. Wirth [23,24] got several
sharp L p − Lq estimates of the solution u for −1 < β < 1.

Theorem 1.1. Suppose 1 < ρ < N+2
[N−2]+ , −1 < β < 1 and (u0, u1) ∈ H1 × L2 with compact support supp{(u0, u1)} ⊂ BL := {x; |x| �

L}. If u ∈ C([0,∞); H1) ∩ C1([0,∞); L2) is a weak solution to (1.1), then the following decay estimates hold:∥∥u(t)
∥∥

L1 � C(t + 1)
−( 1

ρ−1 − N
2 )(1+β)

,
∥∥u(t)

∥∥
L2 � C(t + 1)

−( 1
ρ−1 − N

4 )(1+β)
,

where the constant C depends on ‖u0‖H1 , ‖u1‖L2 and the size L of the support.

Notice that for

1 < ρ <
N + 2

[N − 2]+
there exists a unique weak solution to (1.1) for some T > 0 in the space

XT := C
([0, T ); H1) ∩ C1([0, T ); L2)

whose support is in Bt+L (see [19]). Hence, if we obtain the decay estimates for u ∈ XT , then we have both the global
existence of solution and decay rates when 1 < ρ < N+2

[N−2]+ .
In the case of a semilinear source term, instead of the absorbing one in (1.1), the first author showed the unique global

existence of solution with small data in [14] in the supercritical case ρ > ρF (N), and some blow-up results in case of
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1 + 2β
N � ρ � 1 + 1+β

N with 0 � β < 1. When β = 0, see [12,15,20,27,28] for details. For the space dependent damped wave
equation see [9,13,21].

Theorem 1.1 is proved by the weighted L2-energy estimates in the next section. In Section 3, we give some results on
both the self-similar solutions to the related time dependent semi-linear parabolic equation and decay properties of the
solution to the time dependent linear parabolic equation, as well as the discussion about the critical exponent. In the final
section we summarize our results and future considerations.

2. Weighted L2-energy estimates

For the solution u ∈ XT to (1.1) with compact support it is sufficient to obtain the decay estimates with the constant C
independent of T for the proof of Theorem 1.1.

First we take β ∈ [0,1). Multiplying (1.1) by e2ψ ut , since

e2ψ ut · b(t)ut = e2ψb(t)|ut |2,
we get that

0 = ∂

∂t

[
e2ψ

2

(|ut |2 + |∇u|2) + e2ψ

ρ + 1
|u|ρ+1

]
− ∇ · (e2ψ ut∇u

)
+ e2ψ

[{(
b(t) − |∇ψ |2

−ψt

)
− ψt

}
|ut |2 + −2ψt

ρ + 1
|u|ρ+1

]
+ e2ψ

−ψt
|ψt∇u − ut∇ψ |2. (2.1)

And multiplying (1.1) by e2ψ u, since

e2ψ u · b(t)ut = b0e2ψ(1 + t)−β ∂

∂t

(
1

2
u2

)
= ∂

∂t

(
b0

2
e2ψ(1 + t)−βu2

)
+

(
−b0ψt(1 + t)−β + βb0

2
(1 + t)−β−1

)
e2ψ u2,

we obtain

0 = ∂

∂t

[
e2ψ

(
uut + b(t)

2
u2

)]
− ∇ · (e2ψ u∇u

) + e2ψ

(
|∇u|2 +

(
−ψt + β

2(1 + t)

)
b(t)u2 + |u|ρ+1

)
+ e2ψ

(−2ψt uut − |ut |2 + 2u∇ψ · ∇u
)
. (2.2)

Here, we choose

ψ(t, x) = a
|x|2

(t + t0)1+β
(2.3)

for suitable small parameter a > 0 and large t0 � 1. Thus,

ψt = −a(1 + β)
|x|2

(t + t0)2+β
, ∇ψ = a

2x

(t + t0)1+β
.

So it is easy to see that

|∇ψ |2
−ψt

= 4a

1 + β

1

(t + t0)β
� 4a

(1 + β)b0
b(t). (2.4)

Multiplying (2.1) by (t0 + t)β to cover the bad term −e2ψ |ut |2 in (2.2), we can get that

0 � ∂

∂t

[
e2ψ(t0 + t)β

2

(|ut |2 + |∇u|2) + e2ψ(t0 + t)β

ρ + 1
|u|ρ+1

]
− ∇ · (e2ψ(t0 + t)βut∇u

)
+ e2ψ

[{(
b0 − 4a

(1 + β)b0
− β

(t0 + t)1−β

)
− (t0 + t)βψt

}
u2

t

]
+ e2ψ −2ψt(t0 + t)β

ρ + 1
|u|ρ+1

− βe2ψ

(t0 + t)1−β

(
1

2
|∇u|2 + 1

ρ + 1
|u|ρ+1

)
+ e2ψ(t0 + t)β

−ψt
|ψt∇u − ut∇ψ |2. (2.5)

Since

1

−ψt
|ψt∇u − ut∇ψ |2 = 1

−ψt

(
(ψt)

2|∇u|2 − 2ψt ut∇u · ∇ψ + |∇ψ |2|ut |2
)

� −ψt |∇u|2 + |∇ψ |2 |ut |2,

2 ψt
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the sum of (2.5) and ν · (2.2) with ν > 0 yields

∂

∂t

[
e2ψ

(
(t0 + t)β

2
|ut |2 + νuut + νb0

2(1 + t)β
u2

)
+ e2ψ

(
(t0 + t)β

2
|∇u|2 + (t0 + t)β

ρ + 1
|u|ρ+1

)]
− ∇ · (e2ψ(t0 + t)βut∇u + νe2ψ u∇u

)
+ e2ψ

[{(
b0 − 4a

(1 + β)b0
− β

(t0 + t)1−β
− ν

)
− 1

2
(t0 + t)βψt

}
|ut |2

+
(
ν − β

2(t0 + t)1−β
− 1

2
ψt(t0 + t)β

)
|∇u|2 + ν

(
−ψt + β

2(1 + t)

)
b(t)u2

+
(
ν − β

(ρ + 1)(t0 + t)1−β
+ −2ψt(t0 + t)β

ρ + 1

)
|u|ρ+1

]
+ e2ψ(−2νψt uut + 2νu∇ψ · ∇u)

� 0. (2.6)

Then, we choose ν = b0
8 , 0 < a  1 and t0 � 1 such that b0 − 2a

(1+β)b0
− β

t1−β
0

−ν � b0
2 , ν− β

2t1−β
0

� b0
16 , and ν − β

(ρ+1)t1−β
0

� b0
16 .

Since

|−2νψt uut | =
∣∣∣∣2ν

(−ψt

b(t)

) 1
2

ut · (−ψtb(t)
) 1

2 u

∣∣∣∣
� −ν

2
ψtb(t)u2 − 4ν

ψt

b(t)
|ut |2

= −ν

2
ψtb(t)u2 − 4ν

b0
ψt(1 + t)β |ut |2,

and

|2νu∇ψ · ∇u| � ν

4
|∇u|2 + 4ν|∇ψ |2u2 � ν

4
|∇u|2 − 4ν · 4a

(1 + β)b0
b(t)ψt u2,

we integrate (2.6) over R
N to get

d

dt

∫
RN

e2ψ

(
(t0 + t)β

2
|ut |2 + b0

8
uut + b0

16
b(t)u2 + (t0 + t)β

2
|∇u|2 + (t0 + t)β

ρ + 1
|u|ρ+1

)
dx

+ c0

∫
RN

e2ψ
{(

1 − ψt(t0 + t)β
)|ut |2 + (

1 − ψt(t0 + t)β
)|∇u|2 − ψtb(t)u2

+ (
1 − ψt(t0 + t)β

)|u|ρ+1 + |u|ρ+1}dx

=: d

dt
Ẽψ(t; u) + Hψ(t; u) � 0. (2.7)

Define

Eψ(t; u) =
∫

RN

e2ψ
{
(t0 + t)β

(|ut |2 + |∇u|2 + |u|ρ+1) + b(t)u2}dx. (2.8)

Then we have

c1 Eψ(t; u) � Ẽψ(t; u) � C1 Eψ(t; u). (2.9)

Since

Hψ(t; u) = c0

∫
RN

e2ψ
{(

1 − ψt(t0 + t)β
)(|ut |2 + |∇u|2 + |u|ρ+1) + |u|ρ+1 − ψtb(t)u2}dx,

we multiply (2.7) by (t0 + t)k to obtain

d

dt

{
(t + t0)

k Ẽψ(t; u)
} + (t + t0)

k
(

Hψ(t; u) − k

t + t0
Ẽψ(t; u)

)
︸ ︷︷ ︸ � 0. (2.10)
(∗)
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We can estimate (∗) as

(∗) � Hψ(t; u) − kC1

t + t0
Eψ(t; u)

=
∫

RN

e2ψ

{
c0

(
1 − ψt(t0 + t)β

) − kC1(t0 + t)β

t0 + t

}(|ut |2 + |∇u|2 + |u|ρ+1)dx

+
∫

RN

e2ψ

{
c0

(|u|ρ+1 − ψtb(t)u2) − kC1

t + t0
b(t)u2

}
dx

=: I1 + I2. (2.11)

Choose t0 large enough such that 1
2 c0 > kC1

t1−β
0

. Thus,

I1 � c0

2

∫
RN

e2ψ
(
1 − ψt(t0 + t)β

)(|ut |2 + |∇u|2 + |u|ρ+1)dx. (2.12)

To estimate I2, denoting

Ωκ :=
{

x
∣∣∣ |x|2

t1+β
� κ

}
, and Ωc

κ = R
N \ Ωκ,

we divide I2 into to two parts:

I2 =
∫

Ωκ

+
∫

Ωc
κ

=: I21 + I22. (2.13)

Here we choose κ � 1, then

I22 �
∫

Ωc
κ

e2ψ

(
c0

a(1 + β)κ

t + t0
− kC1

t + t0

)
b(t)u2 dx + c0

∫
Ωc

κ

e2ψ |u|ρ+1 dx � c0

∫
Ωc

κ

e2ψ |u|ρ+1 dx � 0 (2.14)

and using Young’s inequality with 1
ρ+1

2

+ 1
ρ+1
ρ−1

= 1, we get

I21 �
∫

Ωκ

e2ψ

(
c0|u|ρ+1 − kC1b0

(t + 1)1+β
u2

)
dx

�
∫

Ωκ

e2ψ

(
c0|u|ρ+1 − c0

2
|u|ρ+1 − C(t + 1)

−(1+β)
ρ+1
ρ−1

)
dx

� c0

2

∫
Ωκ

e2ψ |u|ρ+1 dx − C(t + 1)
−(1+β)

ρ+1
ρ−1

∫
Ωκ

dx

� c0

2

∫
Ωκ

e2ψ |u|ρ+1 dx − C(t + 1)
−(1+β)

ρ+1
ρ−1 + (1+β)N

2 . (2.15)

Combining (2.12)–(2.15), we have

(t + t0)
k
(

Hψ(t; u) − k

t + t0
Ẽψ(t; u)

)
� c2(t + t0)

k
∫

RN

e2ψ
(
1 − ψt(1 + t)β

)(|ut |2 + |∇u|2 + |u|ρ+1)dx − C2(t + t0)
k(t + 1)

−(1+β)
ρ+1
ρ−1 + (1+β)N

2 . (2.16)

It follows from (2.10) and (2.16) that

d

dt

{
(t0 + t)k Ẽψ(t; u)

} + c2(t + t0)
k
∫

RN

e2ψ
(
1 − ψt(1 + t)β

)(|ut |2 + |∇u|2 + |u|ρ+1)dx

� C2(t + t0)
k(t + 1)

−(1+β)
ρ+1
ρ−1 + (1+β)N

2 . (2.17)
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Noting that C−1

t+t0
� 1

t+1 � C
t+t0

, for some 0 < ε < 1 we choose

k − (1 + β)
ρ + 1

ρ − 1
+ (1 + β)N

2
= −1 + ε,

i.e.,

k = (1 + β)

(
ρ + 1

ρ − 1
− N

2

)
− 1 + ε. (2.18)

Thus, integrating (2.17) over [0, t], we obtain

(t + 1)k Eψ(t; u) +
t∫

0

(τ + 1)k
∫

RN

e2ψ
(|uτ |2 + |∇u|2 + |u|ρ+1)dx dτ � C + C2(t + 1)ε .

It follows that

Eψ(t; u) � C(t + 1)
−(1+β)(

ρ+1
ρ−1 − N

2 )+1
.

In particular, we have∫
RN

e2ψb(t)u2 dx � C(t + 1)
−(1+β)(

ρ+1
ρ−1 − N

2 )+1
,

which implies that∫
RN

e2ψ u2 dx � C(t + 1)
−(1+β)(

ρ+1
ρ−1 − N

2 )+1+β = C(t + 1)
−(1+β)( 2

ρ−1 − N
2 )

.

Thus, we obtain∥∥u(t)
∥∥

L2 � C(t + 1)
−( 1

ρ−1 − N
4 )(1+β)

. (2.19)

Moreover, since

∥∥u(t)
∥∥

L1 =
∫

RN

eψ |u| · e−ψ dx �
( ∫

RN

e2ψ |u|2 dx

) 1
2
( ∫

RN

e−2ψ dx

) 1
2

� C(t + t0)
−( 1

ρ−1 − N
4 )(1+β)+ N(1+β)

4 ,

we have∥∥u(t)
∥∥

L1 � C(t + 1)
−( 1

ρ−1 − N
2 )(1+β)

. (2.20)

So, in case of β ∈ [0,1), we proved Theorem 1.1 by (2.19) and (2.20). In case of β ∈ (−1,0), we only need to modify the
proof mentioned above. Instead of (2.5)–(2.2), we multiply (1.1) by 1

(b(t))2 e2ψ ut and 1
b(t) e2ψ u, respectively, to obtain

∂

∂t

[
e2ψ

2(b(t))2

(|ut |2 + |∇u|2) + e2ψ

(ρ + 1)(b(t))2
|u|ρ+1

]
− ∇ · e2ψ ut∇u

b(t)

+ e2ψ

{(
1 + |∇ψ |2

ψtb(t)
− ψt

b(t)

)
u2

t

b(t)
− 2ψt

(ρ + 1)(b(t))2
|u|ρ−1

+ −2β

(t + 1)(b(t))2

(
e2ψ

2

(|ut |2 + |∇u|2) + e2ψ

ρ + 1
|u|ρ+1

)}
− e2ψ

ψt(b(t))2
|ψt∇u − ut∇ψ |2 = 0, (2.21)

and

∂

∂t

[
e2ψ

(
uut

b(t)
+ u2

2

)]
− ∇ · e2ψ u∇u

b(t)
+ e2ψ

{ |∇u|2
b(t)

− ψt u2 + |u|ρ+1

b(t)

}
+ e2ψ

{(
−2ψt + −β

)
uut − |ut |2 + 2u∇ψ · ∇u

}
= 0. (2.22)
t + 1 b(t) b(t) b(t)
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Now we take

ψ(t, x) = a
|x|2

(t + 1)1+β

and note that

|∇ψ |2
−ψt

= 4a

1 + β
(t + 1)−β = 4a

b0(1 + β)
b(t),

instead of (2.4). The remaining proof is exactly same as the proof mentioned above.

3. Discussions on the critical exponent

In this section we want to discuss both the critical exponent β for the effectivity of the damping term +b(t)ut and the
critical exponent ρ when the damping term is effective.

As shown in Wirth [22–24], β = 1 is critical whether the damping is effective or not. We observe this fact from the point
of the decay rates of solutions to the corresponding linear parabolic equation

φt − 1

b(t)
�φ = 0, (t, x) ∈ R

+ × R
N (3.1)

with the initial data

φ(0, x) = φ0(x), x ∈ R
N . (3.2)

The solution φ(t, x) of (3.1)–(3.2) is represented by

φ(t, x) =: (e(
∫ t

0
dτ

b(τ )
)�

φ0
)
(x) =

∫
RN

G B(t, x − y)φ0(y)dy, (3.3)

where

G B(t, x) = (
4π B(t)

)− N
2 e− |x|2

4B(t) , B(t) :=
t∫

0

dτ

b(τ )
. (3.4)

Note that G B(t, x) is the Gauss kernel when b(t) ≡ 1. By the Hausdorff and Young inequality

‖ f ∗ g‖L p � ‖ f ‖Lr ‖g‖Lq , 1 � p,q, r � ∞ with
1

p
= 1

r
+ 1

q
− 1,

we have for γ ∈ N
N
0 , N0 = {0,1,2, . . .}, 1 � q � p � ∞ and t > 0,

∥∥∂
γ
x φ(t, ·)∥∥L p � C‖φ0‖Lq

(
B(t)

)− N
2 ( 1

q − 1
p )− |γ |

2 , (3.5)

and ∥∥∂t∂
γ
x φ(t, ·)∥∥L p � C‖φ0‖Lq

(
B(t)

)− N
2 ( 1

q − 1
p )− |γ |

2 · |B ′(t)|
B(t)

,

∥∥∂2
t ∂

γ
x φ(t, ·)∥∥L p � C‖φ0‖Lq

(
B(t)

)− N
2 ( 1

q − 1
p )− |γ |

2 ·
[( |B ′(t)|

B(t)

)2

+ |B ′′(t)|
B(t)

]
. (3.6)

When, in particular, b(t) = b0(1 + t)−β ,

B(t) =
{ 1

b0(1+β)
[(1 + t)1+β − 1], β �= −1,

1
b0

loge (1 + t), β = −1,

and, as t → ∞,

B(t) =
⎧⎨⎩

O (t1+β), β > −1,

O (loge t), β = −1, (3.7)
O (1), β < −1.
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Hence, for t � t0 > 0,

∥∥∂
γ
x φ(t, ·)∥∥L p �

⎧⎪⎪⎨⎪⎪⎩
C‖φ0‖Lq t− (1+β)N

2 ( 1
q − 1

p )− (1+β)|γ |
2 , β > −1,

C‖φ0‖Lq [loge t]− N
2 ( 1

q − 1
p )− |γ |

2 , β = −1,

C‖φ0‖Lq , β < −1,

(3.8)

∥∥∂t∂
γ
x φ(t, ·)∥∥L p �

⎧⎪⎪⎨⎪⎪⎩
C‖φ0‖Lq t− (1+β)N

2 ( 1
q − 1

p )− (1+β)|γ |
2 −1

, β > −1,

C‖φ0‖Lq [loge t]− N
2 ( 1

q − 1
p )− |γ |

2 −1t−1, β = −1,

C‖φ0‖Lq tβ, β < −1

(3.9)

and

∥∥∂2
t ∂

γ
x φ(t, ·)∥∥L p �

⎧⎪⎪⎨⎪⎪⎩
C‖φ0‖Lq t− (1+β)N

2 ( 1
q − 1

p )− (1+β)|γ |
2 −2

, β > −1,

C‖φ0‖Lq [loge t]− N
2 ( 1

q − 1
p )− |γ |

2 −1t−2, β = −1,

C‖φ0‖Lq tβ−1, β < −1.

(3.10)

Now, let u(t, x) be a solution to the linear damped wave equation

utt − �u + b(t)ut = 0, (t, x) ∈ R
+ × R

N (3.11)

with the initial data

(u, ut)(0, x) = (u0, u1)(x), x ∈ R
N . (3.12)

Then, if the solution u is assumed to behave as the solution φ to (3.1)–(3.2) as t → ∞, then the L1-norms of both �u
and b(t)ut decay with the same rate t−1−β when β > −1, while the L1-norm of utt decays with the rate t−2. Since utt

should decay faster than �u and b(t)ut for the diffusion phenomena, β should be less than 1. In fact, when −1 < β < 1,
Wirth has shown in [24] that the solution u and its derivatives ∇u and ut behave samely as φ, ∇φ and φt , respectively,
for p with 1

p + 1
q = 1, 1 � q � 2 and for the data of (3.12) with suitable regularity. The diffusion phenomena is also shown

when −1/3 < β < 1. On the other hand, when β > 1, Eq. (3.11) is governed by the wave part, not the parabolic part. See
also [18,25,26]. When β � −1, we do not know how the solution u behaves.

Next, when −1 < β < 1 or the damping is effective, we consider the self-similar solution to the semilinear problem (1.1).
The related time dependent semi-linear parabolic equation including the sourced semilinear term is

−�φ + b(t)φt ± |φ|ρ−1φ = 0, ∀(t, x) ∈ R
+ × R

N . (3.13)±
To avoid the effect of the constant b0, we change the time scale with τ = ct , and the equation for

φ(τ , x) = φ(t, x)

is written as

−�φ + c1+βb0(c + τ )−βφτ ± |φ|ρ−1φ = 0, (τ , x) ∈ R
+ × R

N . (3.14)±
To seek self-similar solutions

φ(τ , x) = (c + τ )
− 1+β

ρ−1 F

(
x

(c + τ )
1+β

2

)
,

it is easy to see that F (y) satisfies

�F + c1+βb0(1 + β)

2
y · ∇ F + c1+βb0(1 + β)

ρ − 1
F = ±|F |ρ−1 F , ∀y ∈ R

N . (3.15)±

For the existence of self-similar solutions we have the following proposition.

Proposition 3.1. Choose the constant c > 0 as c1+βb0(1 + β) = 1.

(1) If 1 < ρ < ρF (N) = 1 + 2
N , then there is a unique smooth radial symmetric solution f (|y|) = F (y) to Eq. (3.15)+ with

f (r) > 0, on [0,∞); f ′(0) = 0; and lim
r→∞ r

2
ρ−1 f (r) = 0.

(2) There are infinitely many radially decreasing solutions to Eq. (3.15)− when ρ < N+2
[N−2]+ , and the solutions are positive if and only

if ρ > ρF (N).
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Proof. The result (1) is proved by H. Brezis, L.A. Peletier and D. Terman in [1]. For (2), the results can be obtained from
A. Haraux and F.B. Weissler [3] as well as M. Escobedo and O. Kavian [2]. �

By the Proposition 3.1 our problem (3.13)+ has the self-similar solution

w0(t, x) = [
c(1 + t)

]− 1+β
ρ−1 f

( |x|
[c(1 + t)] 1+β

2

)
, (3.16)

with c1+βb0(1 + β) = 1 when ρ < ρF (N). The decay rate is∥∥w0(t, ·)
∥∥

L p � C(1 + t)−(1+β)( 1
ρ−1 − N

2p )
, (3.17)

which is same as (2.19)–(2.20). When ρ > ρF (N), the exponent (1+β)N
2 (1 − 1

p ) of L p-decay rate (1 � p � 2) of u to (3.11)–

(3.12) is bigger than (1 + β)( 1
ρ−1 − N

2p ). Therefore, ρF (N) is exactly critical from the viewpoint of the diffusion phenomena
or effective damping. Also, we note that, if the solution to (1.1) behaves as that to (3.11)–(3.12), then as t → ∞,

1

b(t)

∫
RN

|u|ρ−1u(t, x)dx = O
(
tβ−ρ[ (1+β)N

2 (1− 1
ρ )]) = O

(
t−1− (1+β)N

2 (ρ−1− 2
N )

)
,

i.e.

1

b(t)

∫
RN

|u|ρ−1u(t, x)dx ∈ L1(0,∞) if ρ > ρF (N).

Hence we conjecture that, when ρ > ρF (N), the asymptotic profile of the solution u to (1.1) is given by θ0G B(t, x) (θ0: some
constant). In the critical exponent ρ = ρF (N) we will have a slightly sharper decay rate than (2.19)–(2.20) thanks to the
absorbing term, but this also remains open.

4. Summary

We summarize our results and future considerations on the problem (1.1).

The case −1 < β < 1 (effective damping case).
In Theorem 1.1 we obtained the decay rates of the solution to (1.1) with compactly supported data in H1 × L2,∥∥u(t, ·)∥∥L1 = O

(
t−( 1

ρ−1 − N
2 )(1+β))

,
∥∥u(t, ·)∥∥L2 = O

(
t−( 1

ρ−1 − N
4 )(1+β)) (4.1)

as t → ∞ provided that 1 < ρ < N+2
[N−2]+ .

In the subcritical case ρ < ρF (N) = 1 + 2
N , we have a self-similar solution to the corresponding parabolic equation

(3.13)+ in Proposition 3.1, whose decay rates are same as (4.1). Hence, our decay rates in (4.1) are optimal from the view
point of the diffusion phenomena. Though the self-similar solution is expected to be an asymptotic profile of the solution
to (1.1), it remains open. Even in the case β = 0, we have the fact in [5] only when ρF (N) − ε < ρ < ρF (N), 0 < ε  1.

In the supercritical case ρ > ρF (N), the solution of the linear problem (3.11)–(3.12) related to (1.1) is shown in [24] to
decay with its rate∥∥u(t)

∥∥
Lq = O

(
t− N

2 ( 1
p − 1

q )(1+β))
for the data in L p , 1

p + 1
q = 1, p ∈ [1,2] with suitable regularity. Also, the solution of the corresponding linear parabolic

problem (3.1)–(3.2) decays with∥∥φ(t, ·)∥∥L1 = O (1),
∥∥φ(t, ·)∥∥L2 = O

(
t− N

4 (1+β)
)
, (4.2)

as seen in (3.8), whose rates are sharper than (4.1) in the supercritical case. If u behaves as (4.2), then 1
b(t) |u|ρ−1u ∈

L1(0,∞; L1). Hence, even in the case of semilinear problem (1.1) we can expect the solution u to decay with the same rates
in (4.2). More precisely, we expect that the solution u(t, x) behaves as θ0G B(t, x) for some constant θ0, where G B is given
in (3.4).

In the critical case ρ = ρF (N) the solution to Eq. (1.1) will decay with slightly faster rates than (4.1) or (4.2), thanks to
the absorbing semilinear term. We also note that, though (4.1) is available in the critical and supercritical cases, the rates
are less sharp than the expected ones.

The case β � 1.
As in [23], when β > 1, the damping is not effective, and even for the semilinear problem (1.1) the solution will behave

as that of the corresponding wave equation. The case β = 1 is critical and the situation will be delicate as in [22].
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The case β � −1.
We have no result in this case. As pointed in [24, Theorem 28], the solutions to the linear damped wave problem

(3.11)–(3.12) converge to a function that is generally non-vanishing as t tends to infinity. See [24] for detail.
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