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We use the continued fraction expansion of : to obtain a simple, explicit formula
for the sum

Cm(:, #)= :
1�k�m

([k:+#]& 1
2)

when : is irrational. From this we deduce a number of elementary bounds on the
growth and behaviour of Cm(:, #). In particular, we show that as m varies the
extent of the fluctuations in size can be determined almost entirely from the non-
homogeneous continued fraction expansion of # with respect to :. These sums are
closely related to the discrepancy of the sequence ([n:]); we state a related explicit
formula that yields similar bounds for the discrepancy. Sums of this form also occur
in a lattice point problem of Hardy and Littlewood. � 1997 Academic Press

1. INTRODUCTION

In a recent paper, Brown and Shiue [3] use the continued fraction
expansion of : to obtain an explicit formula for the sum

C:(m)= :
1�k�m

([k:]& 1
2)

and to give simple proofs of results of Lerch [12], Hardy and Littlewood
[8; 9, ``Problem B''], Ostrowski [14], and So� s [20]. In particular, in addi-
tion to producing explicit upper and lower bounds for |C:(m)|, they show
that if the partial quotients of : are bounded by A then, for some explicit
constant dA , both C:(m)>dA log m and C:(m)<&dA log m hold for
infinitely many m.
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We show here that a surprisingly similar formula holds in the non-
homogeneous case,

Cm(:, #)= :
1�k�m

([k:+#]& 1
2),

leading to comparable upper and lower bounds for the absolute value of
this quantity. There is at least one major difference though; it is no longer
true that bounded quotients are sufficient to cause the sizeable positive�
negative swings that occur when #=0. For example (as we shall show in
a subsequent paper), if :=- 2 one-sidedly bounded sums Cm(- 2, 1

2)>0
occur when #=1�2. However, such a gamma should be thought of as
exceptional. We show that the extent or absence of these fluctuations is (in
some asymptotic sense) determined by the non-homogeneous continued
fraction expansion of # with respect to :.

Sums of the form Cm�|(:, &:(m�|)) were studied in detail by Hardy and
Littlewood [8; 9, ``Problem A''] in connection with the problem of
approximating the number of lattice points in a right-angled triangle. Most
of their bounds follow straightforwardly from ours. The sums Cm(:, #) are
also closely related to the discrepancy of the sequence ([n:]); in particular,
our formula yields expressions reminiscent of the ``explicit formulae'' of So� s
and Dupain [5�7, 21�23] and could be used to duplicate many of their
results. Similar formulae and estimates appear in the work of Schoissengeier
[1, 16�19].

In the next section we introduce the various notations and give the
machinery and basic properties of the regular and non-homogeneous con-
tinued fraction expansions; we postpone the proof of those propositions
until the end of Section 5. In Section 3 we state the main results; we give
the proofs in Section 5. In Section 4 we state without proof the corre-
sponding formula and results for the discrepancy function.

2. BASIC NOTATION

For any irrational real :, real # and integer m�1, we write

Cm(:, #) := :
1�k�m

([k:+#]& 1
2)

where as usual [x]=x&[x] denotes the fractional part of x.
We shall suppose throughout that : is irrational and has the continued

fraction expansion

:=[a0 , a1 , a2 , ...],
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where

an+1 :=_ 1
:n& , :n+1 :={ 1

:n= , :0 :=[:], (1)

and shall use pi �qi to denote the i th convergent to :,

pn+1 :=an+1 pn+ pn&1 , p&1 :=1, p&2 :=0,

qn+1 :=an+1qn+qn&1 , q&1 :=0, q&2 :=1,

with

=i :=qi:& pi=
(&1) i

qi+1+:i+1 qi

denoting the closeness of such an approximation.
Following Brown�Shiue, we shall make frequent use of the unique

decomposition of an m<qt as

m=ztqt&1+ } } } +z2q1+z1 q0

(the so called ``Zeckendorff Representation'' of m), where

(i) 0�z1�a1&1,

(ii) 0�zi�ai , 2�i�t,
(iii) if zi=ai then zi&1=0 (2�i�t),

and use mj , 1� j�t, to denote the corresponding subsums

mj=z1q0+ } } } +zjqj&1.

Note that for all j

mj+mj&1+1�qj . (2)

We shall also need some new gamma dependent parameters

;n=;n(:, #) :={[#qn&1]
1&[#qn&1]

if n is even,
if n is odd,

(3)

and

un=un(:, #) :=min {k # N : [k:+#]{_k
pn&1

qn&1

+#&= . (4)

The following proposition enables us to explicitly compute the ui :
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Proposition 1.

un=;n qn+(*n+;n+1) qn&1

where

*n :={1 if :n;n>;n+1 (or :n;n=;n+1 if n is even),
0 if :n;n<;n+1 (or :n;n=;n+1 if n is odd ).

We shall also need to consider the non-homogeneous continued fraction
expansion of # with respect to : (see Borwein�Borwein [2] for more
details). Suppose that the continued fraction for : produces a sequence of
an and :n as above, then we generate an accompanying sequence of non-
homogeneous partial quotients cn and remainders #n by setting

cn+1 :=_#n

:n& , #n+1 :={#n

:n= , #0 :=[#]. (5)

Noting the relation

[#]= :
n

i=1

ci |=i&1|+#n |=n&1| (6)

the ci give us an expansion of # in terms of ::

Proposition 2. For 0�#<1,

#= :
�

i=1

ci |=i&1|,

where the ci produced by (5) have the following properties:

(i) 0�ci�ai

(ii) if ci=ai then ci+1=0

(iii) ci{ai for infinitely many odd and infinitely many even i.

Moreover, such an expansion is unique (i.e. if #=��
i=1 bi |=i&1| with integers

bi satisfying (i), (ii), and (iii) then bi=ci for all i).

Note that this expansion is distinct from that employed by So� s and
Dupain [5, 21�23] (attributed by them to Lesca [13] and Descombes
[4]) where =i&1 replace the |=i&1|.
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We set vn to be the sums

vn := :
n

i=1

(&1)n&i ciqi&1

and observe that one can express the ;n and un in terms the vi and #i .

Proposition 3.

;n=ln+(&1)n (vn+#nqn&1) |=n&1|

un=lnqn+(ln+1+*n) qn&1+(&1)n vn

where

ln :={1 if (&1)n (vn+#nqn&1)<0 (or =if n is odd ),
0 if (&1)n (vn+#nqn&1)>0 (or =if n is even),

*n :={1 if :n ln+(&1)n#n>ln+1 (or =if n is even),
0 if :n ln+(&1)n #n<ln+1 (or =if n is odd ).

The parameters vn appear in Borwein�Borwein [2] disguised as tn&1=
qn+qn&1+(&1)nvn . We note the elementary bounds

&qn&1�vn�qn .

Proposition 3 is perhaps more digestible in its expanded form:
When n is odd,

qn+qn&1&vn if cn{0 (or cn=0, #nqn&1�vn&1) and cn+1=0,

un={qn&vn if cn{0 (or cn=0, #nqn&1�vn&1) and cn+1{0,

vn&1 if cn=0 and #nqn&1<vn&1 ,

and when n is even,

qn&1+vn if cn{0 (or cn=0, #nqn&1�vn&1),

un={qn+qn&1&vn&1 if cn=0 and #nqn&1<vn&1 and :n+#n<1,

qn+2qn&1&vn&1 if cn=0 and #nqn&1<vn&1 and :n+#n�1.

In several of the proofs we shall make use of the parameters

$n=$n(:, #) :=[#qn&1], dn=dn(:, #) :=[#qn&1]. (7)

We also recall the common notations

x+=max(x, 0), x&=min(x, 0)
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and &x&, the distance from x to the nearest integer. Finally, we define a
useful variant of the integer part

[x]
*

={[x]
x&1

if x � Z,
if x # Z.

(8)

3. OUR MAIN RESULTS

With ;i , ui and [x]
*

defined in (3), (4) and (8) above, we show the
following simple, explicit, formula for the sum Cm(:, #):

Theorem 1. If m=z1q0+ } } } ztqt&1 is the Zeckendorff representation
of m�1, then

Cm(:, #)= :
1�i�t

(&1) i Mi ,

where

Mi=&
1
2

zi |=i&1| (mi+mi&1+1)+\;i&
1
2+ zi+\zi&_ui&mi&1

qi&1 &
+

*
+

+

.

Note that when #=0,

;i={0 if i is even,
1 if i is odd,

ui={qi&1

qi+qi&1

if i is even,
if i is odd,

giving (for zi�ai)

\zi&_ui&mi&1

qi&1 &
+

*
+

+

={zi

0
if i is even,
if i is odd,

and we immediately recover Brown�Shiue [3, Theorem 1(c)],

Cm(:, 0)= :
t

i=1

(&1) i 1
2zi(1&|=i&1| (mi+mi&1+1)). (9)

Rough estimation readily gives us a rough upper bound:

Corollary 1. With m as above

|Cm(:, #)|� 3
2 :

t

i=1

zi , max
1�m<qt

|Cm(:, #)|< 3
2 :

t

i=1

ai .
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With a bit more effort one can show more precisely how the partial
quotients ai of : and the non-homogeneous partial quotients ci of # with
respect to : (as defined in (5) above), affect the growth of Cm(:, #):

Corollary 2. (i) If we fix : and # and vary m then, for any t�1,

max
1�m<qt

Cm(:, #)=
1
2

:
t

i=1
i odd

ci

ai \1&
ci

ai+ ai+
1
2

:
t

i=1
i even

\1
2

&
ci

ai+
2

ai+E1(t),

min
1�m<qt

Cm(:, #)=&
1
2

:
t

i=1
i even

ci

ai \1&
ci

ai+ ai&
1
2

:
t

i=1
i odd

\1
2

&
ci

ai+
2

ai&E2(t),

where |Ei(t)|� 1
2 (5t+1).

(ii) If we fix : and m=z1q0+ } } } +zt qt&1 and vary #, then

sup
# # [0,1)

Cm(:, #)=
1
2

:
t

i=1

zi

ai \1&
zi

ai+ ai+F1(t),

inf
# # [0,1)

Cm(:, #)= &
1
2

:
t

i=1

zi

ai \1&
zi

ai+ ai&F2(t),

where |Fi(t)|� 1
2(5t+1).

Similarly, if we vary both m and #,

sup
# # [0, 1)

max
1�m<qt

Cm(:, #)= 1
8 :

t

i=1

ai+G1(t),

inf
# # [0, 1)

min
1�m<qt

Cm(:, #)=& 1
8 :

t

i=1

ai&G2(t),

with |Gi(t)|� 1
2 (5t+1).

We observe that the right-hand sides of the expressions in (i) are attained
for the choice m$# :=� zi$ qi&1 and m#" :=� zi"qi&1 respectively, where

[ci\
1
2ai] if i is even, [(ai&ci)\ 1

2ai] if i is odd,

zi$ :={ai&ci i odd, ci{0, zi" :={ci i even, ci{ai ,

0 i odd, ci=0, 0 i even, ci=ai ,

with the \ sign chosen such that 0�zi$ , zi"<ai . Similarly, the right-hand
sides in (ii) are achieved when

#$m :=1& :
t

i=1
i odd

zi |=i&1|, #"m := :
t

i=1
i even

zi |=i&1|. (10)
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Using m( j) to denote the sum of the odd indexed, �i odd ziqi&1 , or even
indexed, �i even ziqi&1, terms of the Zeckendorff representation of
m=� zi qi&1 , as j is odd or even respectively, we note that #$m=[&m(1):]
and #"m=[&m (0):]. In particular Cm(:, #) can in these cases be rewritten
as a sum of wholly positive or wholly negative terms;

Cm(:, #$m)=&[#$m]+ :
t

i=1

1
2zi(1&|=i&1| (m (i)

i +m (i)
i&1+1)),

(11)

Cm(:, #"m)=&[#"m]& :
t

i=1

1
2zi(1&|=i&1| (m (i)

i +m (i)
i&1+1)),

via the simple relation Cm+n(:, &n:)=Cm(:, 0)&Cn(:, 0)&[&n:].
We remark that for general # it is no longer true that bounded partial

quotients are sufficient to cause Cm(:, #) to take arbitrarily large positive
and negative values (recall, Hardy 6 Littlewood [8, Theorem B4], that if
the ai�A then Cm(:, 0)>cA log m and Cm(:, 0)<&cA log m must both
hold for infinitely many m). We note the values #0 :=��

i=1 [a2i �2] |=2i&1|
and #1 :=��

i=1 [a2i&1�2] |=2i&2| for which the sums are particularly one-
sided (notice that if the ai are all even then #0= 1

2 and #1= 1
2 [:])

max
1�m<qt

Cm(:, #0)= 1
8 :

t

i=1

ai+O(t), min
1�m<qt

Cm(:, #0)=O(t),

(12)

max
1�m<qt

Cm(:, #1)=O(t), min
1�m<qt

Cm(:, #1)= & 1
8 :

t

i=1

ai+O(t),

and #2 :=��
i=1 [( 1

2\- 2�4) ai] |=i&1| for which the positive�negative
swings are the most symmetric

max
1�m<qt

Cm(:, #2)= 1
16 :

t

i=1

ai+O(t), min
1�m<qt

Cm(:, #2)= & 1
16 :

t

i=1

ai+O(t).

(13)

For #=0 the corollary gives (similar to Schoissengeier [18])

max
1�m<qt

Cm(:, 0)= 1
8 :

t

i=1
i even

ai+O(t), min
1�m<qt

Cm(:, 0)= & 1
8 :

t

i=1
i odd

ai+O(t).

In contrast, the difference between the largest and smallest value is little
affected by the choice of #:

max
1�m<qt

Cm(:, #)& min
1�m<qt

Cm(:, #)= 1
8 :

t

i=1

ai+O(t).
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Using the parameters ;i of (3) rather than the ci , we can similarly obtain
the less discrete but perhaps more straightforward variant of (i),

max
1�m<qt

Cm(:, #)= 1
2 :

t

i=1
i odd

;i(1&;i) ai+
1
2 :

t

i=1
i even

( 1
2&;i)

2 ai+E3(t),

min
1�m<qt

Cm(:, #)=& 1
2 :

t

i=1
i even

;i(1&;i) ai&
1
2 :

t

i=1
i odd

( 1
2&;i)

2 ai&E4(t),

where & 1
4 (11t+1)�Ei(t)� 1

2 (5t+1). The connection becomes clear on
observing that [#qi&1]=ci �ai+O(1�ai) if ci{0, with [#qi&1]=O(1�ai) or
1&O(1�ai) if ci=0.

As an easy consequence of Corollary 2 we have the following upper and
lower bounds on the growth rate of |Cm(:, #)|:

Corollary 3. For t�1,

1
16 :

t

i=1

(ai&40)+� max
1�m<qt

|Cm(:, #)|� 1
8 :

t

i=1

(ai+24).

In view of (12) and (13) the constants 1�8 and 1�16 are plainly optimal.
Using Corollary 3, a number of well known properties of Cm(:, 0) extend
immediately to our more general sums Cm(:, #). We should remark that
similar upper bounds (although without our explicit constants) could be
alternatively obtained from known results for the discrepancy via the rela-
tions (14) and (15) below.

Property 1. (a) If �t
i=1 ai�At for all t�1, then

|Cm(:, #)|< 1
3 (A+24) log(3m)

for all # and m�1.

(b) If �t
i=1 ai�(B+40) t for infinitely many t then, for any fixed #,

|Cm(:, #)|>
1

16
B

(B+40)
log m

for infinitely many m.

Under the stronger hypothesis ai�A for all i in (a), or ai�B for all i
in (b), one can replace the corresponding bound by

|Cm(:, #)|�
1
8 \

A
log A

+55+ log(3m), |Cm(:, #)|�
1

16
(B&9)

log(B+1)
log m,
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respectively (a bound which is then asymptotically sharp in terms of A or B).
More generally, for a fixed : the sums |Cm(:, #)| are o(m) as m � �

(uniformly in #) but are not o(m) uniformly in ::

Property 2. (a) For any fixed : and all #

|Cm(:, #)|�3
m

max[qs<- m]
=o:(m)

as m � �.

(b) For any t�1

max
m<qt

|Cm(:, #)|�
1

16 \
qt

qt&1

&41+ .

In particular, given any function f (n)=o(n), there are infinitely many :
such that, for any fixed #,

limsup
n � � }Cn(:, #)

f (n) }=�.

In general a precise knowledge of the growth of the partial quotients of
: (equivalently the quality of rational approximations to :) leads to
accurate bounds on the growth of |Cm(:, #)|. We give the following
primarily to show that most of the results of Hardy�Littlewood [9,
Theorems 2, 3] do still hold for these more general sums (similar theorems
occur in Ostrowski [14, pp. 80�81]).

Property 3. (a) For any r�0 and non-decreasing function f, such that
q1+r f (q) &q:&>1 for all q # N,

|Cm(:, #)|<4mr�1+r f (m)1�1+r log(3m)

for all # and m�1.

(b) If, for some fixed r>0, q1+r &q:&<1 for infinitely many q # N
then, for any fixed #,

|Cm(:, #)|> 1
64mr�1+r

for infinitely many m.

Notice from (a) that if : is algebraic then, by Roth's Theorem [15], for
any =>0 there is a constant c1(:, =) such that |Cm(:, #)|<c1(:, =) m=.
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4. THE DISCREPANCY OF THE SEQUENCE ([n:])

For a sequence S=(bi), bi # [0, 1) one measures how close the subinter-
val I of [0, 1) comes to receving its ``fair share'' of points by means of the
function:

2N(I, S) := :
N

i=1

(/I(bi)&|I | ),

where /I(x) denotes the characteristic function of I and |I | the length of I.
We recall the definition of the discrepancy DN(S) :=supI |2N(I, S)| of S

and its variant, the extreme discrepancy D*N(S) of S, that we shall use
here

D*N(S) :=sup
;

|2N([0, ;), S)|.

For the sequences S=([n:])�
n=1 we use the abbreviations

2N(;, :) :=2N([0, ;), ([n:])�
n=1), D*N(:) :=(([n:])�

n=1).

Since for 0�#<1

[n:+#]=[n:]+/[0,1&#)([n:])&(1&#)

we observe the following simple relation between the Cm(:, #) and
2N(;, :);

Cm(:, #)=Cm(:, 0)+2m(1&#, :). (14)

Lesca [3] has shown further that

Cm(:, 0)=& 1
22m([(m&1) :], :), (15)

so that the discrepancy formulae of So� s et al. could presumably be con-
versely used to obtain a related formula for Cm(:, #). From (14) and
Theorem 1 we obtain at once the following explicit formula for the dis-
crepancy:

Corollary 4. If m=z1q0+ } } } +ztqt&1 is the Zeckendorff representa-
tion of m�1 and 0�#<1, then

2m(1&#, :)= :
t

i=1

(&1) i Hi
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where

Hi=&(1&;i) zi+\zi&_ui&mi&1

qi&1 &
+

*
+

+

.

We immediately obtain the rough bounds

D*m(:)� :
t

i=1

zi , max
1�m<qt

D*m(:)< :
t

i=1

ai .

Corresponding to Corollary 2 we observe the asymptotically precise
bounds

Corollary 5. (i) If we fix : and # and vary m then, for any t�1,

max
1�m<qt

2m(1&#, :)= :
t

i=1
i odd

ci

ai \1&
ci

ai+ ai+E1(t),

min
1�m<qt

2m(1&#, :)=& :
t

i=1
i even

ci

ai \1&
ci

ai+ ai&E2(t),

where &(t+1)�Ei�
1
2(5t+1).

(ii) If we fix : and m=z1q0+ } } } +ztqt&1 and vary # then

sup
# # [0,1)

2m(1&#, :)= :
t

i=1
i odd

zi

ai \1&
zi

ai+ ai+F1(t),

inf
# # [0,1)

2m(1&#, :)= & :
t

i=1
i even

zi

ai \1&
zi

ai+ ai&F2(t),

where &(t+1)�Fi�
1
2(5t+1).

It is perhaps worth recalling here the theorem of Kesten [10]; namely
that if the partial quotients of : are bounded, then 2m(1&#, :) is bounded
if and only if #=[n:] for some integer n (equivalently ci=0 for all but
finitely many i ). Notice that, varying both m and #,

sup
# # [0, 1)

max
1�m<qt

2m(#, :)= 1
4 :

t

i=1
i odd

ai+G1(t),

inf
# # [0, 1)

min
1�m<qt

2m(#, :)=& 1
4 :

t

i=1
i even

ai&G2(t),
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where & 9
8 (t+1)�Gi(t)� 1

2(5t+1). Expressions similar to this and (ii)
appear in Schoissengeier and Baxa [1, 16, 17, 19]. The right-hand sides
in (i) are in this case attained for m~ $# :=�i odd (ai&ci) qi&1 and
m~ "# :=�i even ciqi&1 respectively, those in (ii) are again achieved for the #$m
and #"m of (10).

Plainly there is a Corollary-3-type inequality

1
8 :

t

i=1

(ai&9)+� max
1�m<qt

D*m(:)� 1
4 :

t

i=1

(ai+12).

The various properties given for Cm(:, #) likewise hold for D*m(:) after
appropriate adjustments to the precise constants. Many similar results on
the discrepancy can be found in Kuipers�Niederreiter [11, Chapter 3] and
So� s [22, 23].

Finally we show very simply that when the partial quotients are (on
average) bounded, and # allowed to vary, 2m(#, :) must take logarithmi-
cally large and small values:

Corollary 6. If �t
i=1 ai�At for infinitely many t then

sup
#

2m(#, :)>cA log m, inf
#

2m(#, :)<&cA log m

each hold for infinitely many m, where we may take cA=1�90A2.

5. THE PROOFS

We shall need the following simple, yet crucial, lemma:

Lemma 1. For 1�n�qi ,

[n:+#]{_n
pi&1

qi&1

+#&
if and only if n=ui(:, #)+lqi&1 for some integer l�0. Moreover, the dif-
ference is at most 1.

Proof. Let

Si={n1 : _n1

pi&1

qi&1

+#&{[n1 :+#]= .

Then if n1 # Si ,

[n1:+#]<_n1

pi&1

qi&1

+#& i even, [n1:+#]>_n1

pi&1

qi&1

+#& i odd.
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Hence for any n2=n1+lqi&1 , l�1 we have

_n2

pi&1

qi&1

+#&=_n1

pi&1

qi&1

+#&+lpi&1

[n2:+#]=[(n1 :+#)+(&1) i&1 l |=i&1|]+lpi&1

giving

[n2:+#]�[n1:+#]+lpi&1<_n2

pi&1

qi&1

+#& if i is even,

[n2:+#]�[n1:+#]+lpi&1>_n2

pi&1

qi&1

+#& if i is odd,

and n2 # Si . In particular n # Si for any n of the form ui+lqi&1 , l�0.
Conversely, suppose n1 , n2 are both in Si with n1 , n2�qi . Then for some

integers m1 , m2 ,

n1:<m1&#�n1

pi&1

qi&1
or

n1:�m1&#>n1

pi&1

qi&1

n2:<m2&#�n2

pi&1

qi&1

n2:�m2&#>n2

pi&1

qi&1

,

as i is even or odd respectively. Subtracting and multiplying by qi&1 then
gives

|(m1&m2) qi&1&(n1&n2) pi&1|<max(n1 , n2) |=i&1|.

Now if both n1 and n2�qi<|=i&1|&1, integrality forces

(m1&m2) qi&1=(n1&n2) pi&1

and, by the coprimeness of pi&1 and qi&1 ,

n1#n2 (mod qi&1).

In particular, any n�qi in Si would have to be the form ui+lqi&1 , where
ui is the smallest element of Si .

Since

} (n:+#)&\n
pi&1

qi&1

+#+}=n
|=i&1|
qi&1

<
n

qi qi&1

,

the difference is plainly at most 1 for all 1�n�qi qi&1 . K
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Proof of Theorem 1. We first analyse the related sum

S(m)=S(:, #, m) := :
1�n�m

[n:+#]

and note that for any j and m�qj+1 we can (by the above lemma) replace
the : by its approximation pj�qj ,

Sj(m)=Sj(:, #, m) := :
1�n�m _n

pj

qj
+#& ,

at the price of a simple additional term

S(m)&Sj(m)=(&1) j *[1�n�m: n=uj+1+lqj , l�0]

=(&1) j _m&uj+1

qj
+1&

+

.

Hence if m=bqj+l<qj+1 with 0�l<qj ,

S(m)=Sj(bqj)+ :
bqj<n�bqj+l _n

pj

qj
+#&+(&1) j _m&uj+1

qj
+1&

+

=Sj(bqj)+lbpj+Sj(l)+(&1) j _m&uj+1

qj
+1&

+

=Sj(bqj)+lbpj+S(l)+(&1) j \_m&uj+1

qj
+1&

+

&_l&uj+1

qj
+1&

+

+ .

In particular, if we write m=z1q0+z2q1+ } } } +zt qt&1 (with mi denot-
ing the i th subsum), and repeatedly apply the above with b=zj+1 and
l=mj for j=t&1 to 0, we obtain

S(m)= :
t

i=1

(Si&1(ziqi&1)+mi&1zi pi&1+(&1) i&1 Ii(m)),

where

Ii(mi)=Ii(mi , :, #) :=_mi&ui

qi&1

+1&
+

&_mi&1&ui

qi&1

+1&
+

=\zi&_ui&mi&1

qi&1 &
+

*
+

+

.
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Now the Sj(bqj) are not difficult to evaluate. Indeed,

Sj(bqj)=
1
2

bqj(bqj+1)
pj

qj
+bqj#& :

1�n�bqj
{n

pj

qj
+#=

=
1
2

b(bqj+1) pj+bqj#&b :
1�n�qj

{n
pj

qj
+#=

where, with di and $i as defined in (7),

:
1�n�qj

{n
pj

qj
+#== :

1�n�qj
{npj+dj+1+$j+1

qj =
= :

0�a�qj&1
{a+$j+1

qj == :
0�a�qj&1

a+$j+1

qj

=
1
2

(qj&1)+$j+1.

So

Si&1(ziqi&1)= 1
2zi pi&1(ziqi&1+1)+zi(

1
2&$i)+zi qi&1(#& 1

2)

and

S(m)= :
t

i=1

1
2zi pi&1(ziqi&1+1+2mi&1)

+ :
t

i=1

(zi(
1
2&$i)&(&1) i Ii(m))+(#& 1

2) m.

Now the first sum may be rewritten in terms of : rather than pi&1:

= :
t

i=1

1
2zi(qi&1:&=i&1)(ziqi&1+1+2mi&1)

= 1
2: \ :

t

i=1

(ziqi&1)2+2 :
t

i=1

:
i&1

j=1

ziqi&1zjqj&1++ 1
2m:

& 1
2 :

t

i=1

zi=i&1(ziqi&1+1+2mi&1)

= 1
2m(m+1):& 1

2 :
t

i=1

zi=i&1(ziqi&1+1+2mi&1).

63SUMS OF FRACTIONAL PARTS



File: 641J 208017 . By:CV . Date:19:06:97 . Time:10:42 LOP8M. V8.0. Page 01:01
Codes: 2176 Signs: 764 . Length: 45 pic 0 pts, 190 mm

Hence, finally

Cm(:, #)= :
1�n�m

((n:+#)&[n:+#]& 1
2)

= 1
2 m(m+1) :+#m&S(m)& 1

2m

= :
t

i=1

( 1
2zi=i&1(ziqi&1+1+2mi&1)&zi(

1
2&$i)+(&1) i Ii(m)). K

Proof of Corollary 1. Immediate from the trivial bounds

0�\zi&_ui&mi&1

qi&1 &
+

*
+

+

�zi , &
1
2

zi�zi \;i&
1
2+�

1
2

zi

and, recalling (2), the rough estimation

0� 1
2zi |=i&1| (mi+mi&1+1)< 1

2 zi . K

Proof of Corollary 2. We first use the expansions of Proposition 3 to
approximate Mn by the more predictable function

Fn=&
1

2an
z2

n+\bn

an
&

1
2+ zn+(zn&bn)+

where

bn={cn

an&cn

if n is even,
if n is odd.

Since (with the notations of Proposition 3) for 0�zn�an

Fn#&
1

2an
z2

n+\ln+(&1)n cn

an
&

1
2+ zn+(zn&(lnan+(&1)n cn))+,

we can write

Mn=Fn+A1+A2+A3

where

A1=\1
2

zn&(&1)n cn+ (qn&2+:nqn&1)
zn

an
|=n&1|,

A2=\(&1)n (#n qn&1&vn&1)&mn&1&
1
2+ zn |=n&1|,

A3=(zn&(lnan+(&1)ncn+U)+)+&(zn&(lnan+(&1)n cn))+,
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with

U=_ln qn&2+(*n+ln+1) qn&1&(&1)nvn&1&mn&1

qn&1 &
*

.

We shall show that

&\3&
1

2an+�Mn&Fn�\2&
1

2an+ .

The proof is rather tedious and could be shortened at the cost of less
precise constants.

We note the elementary estimates

1
2

an(qn&2+:nqn&1) |=n&1|�
an

an+2
�1&

2
3

a&1
n ,

anqn&2 |=n&1|�
an

an+1
�1&

1
2

a&1
n .

We first suppose that n is even.
If ln=1 then cn=0, #qn&1&vn&1<0, ln+1+*n=1 or 2 and the bounds

follow from the rough estimates 0�A1�(1& 2
3a&1

n ), &2<A2<0, A3=0
or 1.

If ln=0 then ln+1+*n=1 and, writing u :=(qn&1&vn&1&mn&1& 1
2)�qn&1 ,

the lower bound follows easily from the inequalities &1<u<2,
A2�&(1&u)+, A3�&[u]+ and, since ( 1

2zn&cn) zn�& 1
2 a2

n , A1�
&(1& 2

3 a&1
n ).

Now for zn�cn we have A1�0, A2�u |=n&1| zn qn&1 and A3�&[u]&,
with &1<u<1+qn&2 �qn&1 giving A1+A2+A3<1+anqn&2 |=n&1|�
(2& 1

2a&1
n ).

For zn>cn we have A1<(1& 2
3 a&1

n ), A2�1+[u], A3�&[u] and the
upper bound is plain.

Next, suppose that n is odd.
If ln=0 then cn=0, #n qn&1&vn&1<0 and *n+ln+1=0. Hence

0�A1<(1& 2
3a&1

n ), &1<A2<1, A3=0, and the bounds are clear.
When ln=1, we have A1�0. Set w :=[(qn&2+qn&1+vn&1&

mn&1& 1
2)�qn&1]. Then &1�w�2, and the inequalities A2�&(2&w)&

znqn&2 |=n&1|, A3�&w, lead to the lower bound A1+A2+A3�
&(3& 1

2 a&1
n ).

When zn�(an&cn) we have A1�(1& 2
3a&1

n ). The inequalities A2�
((vn&1&mn&1)�qn&1)+ and A3�&[(qn&2+vn&1&mn&1)�qn&1]

*
& readily

yield A2+A3<1 and thus the upper bound in this case.
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Clearly, &1�U�2. Hence when zn�(an&cn+2), or zn=(an&cn+1)
and U{2, we have A3�&U. Since *n+ln+1 is 1 or 0 as #n<:n or #n�:n

we also have A2�1+U&(qn&2+:nqn&1) zn |=n&1|. Plainly, A1�
3
2 (qn&2+:nqn&1) zn |=n&1|, and so A1+A2+A3�1+(1& 2

3a&1
n ) in these

cases too.
Finally, when zn=(an&cn+1) and U=2 we have A3=&1, A2�1, and

the upper bound follows on observing that, since cn�1, A1� 1
2 (an+2)

(qn&2+:n qn&1) |=n&1|�1.
The first expressions in Corollary 2 then follow since (varying zn ,

0�zn�an) Fn has minimum value

&
1
2

bn

an \1&
bn

an+ an ,

achieved at zn=bn (or equivalently at zn=0 if bn=an) and maximum

1
2 \

bn

an
&

1
2+

2

an&
1

2an {
an

2 =
2

achieved at zn=[bn\ 1
2an]. Since we can take these extremal values with

zn<an we can find m that maximise or minimise the (&1)nFn

simultaneously.
The second expresssions follow on observing that for varying bn the func-

tion Fn has maximum and minimum value

zi

ai \1&
zi

ai+ ai , &
zi

ai \1&
zi

ai+ ai

achieved at bn=an or 0 and at bn=zn (equivalently at bn=an or 0 if
zn=an or 0) respectively.

The bounds for the discrepancy in Corollary 5 arise by similarly showing
that &3<Hn& fn<2, where

fn=&\1&
bn

an+ an+(zn&bn)+,

with some gain from the trivial bound when zn=0 (the maximum of fn). K

Proof of Corollary 3. Clearly for 0�ci�ai we have

\ci

ai
&

1
2+

2

�
1
4

,
ci

ai \1&
ci

ai+�
1
4

.
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Hence from Corollary 2

max
1�m<qt

|Cm(:, #)|� 1
8 :

t

i=1

(ai+20)+ 1
2 .

From the proof of Corollary 2 we also have

2 max
m<qt

|Cm(:, #)|

�max
m<qt

Cm(:, #)& min
m<qt

Cm(:, #)

� :
t

n=1
{\1

2 \
bn

an
&

1
2+

2

an&3+
+

&\&
1
2

bn

an \1&
bn

an+ an+2+
&

=
� :

t

n=1
\1

8
an&5+

+

. K

Proof of Property 1(a). Suppose that m=z1q0+ } } } +zt qt&1 , zt{0.
Then, since the slowest growth in denominators occurs for the Fibonacci
numbers Fn ,

m�qt&1�Ft�\1+- 5
2 +

t&2

O t�
log \3+- 5

2
m+

log \1+- 5
2 +

.

Hence if �t
i=1 ai�At then, from Corollary 3,

|Cm(:, #)|�
1
8

(A+24) t�
(A+24)

8 log \1+- 5
2 +

log \3+- 5
2

m+ . K

Proof of Property 1(b). By a lemma of Ostrowski [14, pp. 85�86] it
is certainly true that �t

i=1 ai>log qt . Hence, if �t
i=1 ai�(B+40) t,

Corollary 3 gives

max
m<qt

|Cm(:, #)|�
1

16
:
t

i=1

(ai&40)�
1

16
max(Bt, log qt&40t)

�
1

16
B

B+40
log qt .
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The bounds stated when ai�A or ai�B arise similarly on noting that

(ai+25)�
A

log A
log ai+26, (ai&9)�

(B&9)
log(B+1)

log(ai+1)

together with the trivial bounds >i�t ai�qt�>i�t (ai+1). K

Proof of Property 2(a). For any convergent denominator qs Corollary 1
gives

|Cm(:, #)|�
3
2

:
t

i=1

zi�
3
2 \ :

s

i=1

zi qi&1+
1
qs

:
t

i=s+1

ziqi&1+�
3
2 \qs+

m
qs+

and the result follows on picking qs to be the largest convergent less than
- m. Plainly for fixed, irrational :, such a bound is o(m) (since
max[qs<- m] � � as m � �). K

Proof of Property 2(b). From Corollary 3 we have

max
m�qt

|C(m)|�
1

16
(at&40)�

1
16 \

qt

qt&1

&41+ (16)

and this is not o(m) uniformly in :. Specifically, given any f (n)=o(n) we
can generate : with the desired behaviour by (iteratively) choosing the
partial quotients to satisfy

aj+1�min {n�82qj : } f (m)
m }� 1

32qj g( j)
for all m�

n
16= ,

where g( j) can be any function such that g( j) � � as j � �. From (16) we
know that there exists an m<qj+1 with

|Cm(:, #)|�
1

16 \
qj+1

qj
&41+�

1
32

qj+1

qj
,

where the trivial bounds 1
2m�|Cm(:, #)|� 1

32aj+1 ensure that m is suf-
ficiently large that (by the definition of aj+1)

max
m<qj+1 }

Cm(:, #)
f (m) }� 1

32
qj+1

qj

32qj g( j)
m

> g( j) � �, as j � �. K

Proof of Property 3(a). Observe that

1
f (qi&1) q1+r

i&1

<&qi&1:&<
1
qi

O qi&1>\ qi

f (qi&1)+
1�1+r

.
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Hence if zi{0 then qi&1�mi<qi and

zi�
mi

qi&1

<mi \ f (qi&1)
qi +

1�1+r

<mr�1+r
i f (mi)

1�1+r.

Thus, by Corollary 1,

|Cm(:, #)|�
3
2

:
t

i=1

zi�
3
2

m1�1+r f (m)1�1+rt

�
3 log \3+- 5

2
m+

2 log \1+- 5
2 +

m1�1+r f (m)1�1+r. K

Proof of Property 3(b). Suppose that for a suitably large q (large
enough that qr�1+r�164) we have q1+r &q:&�1. Then q must be a con-
vergent (qt&1 say) with

1
2qt

<&qt&1:&<
1

q1+r
t&1

O qi&1<2q1�1+r
t .

Hence by Corollary 4(b) there exists an m<qt with

|Cm(:, #)|�
1

16 \
qt

qt&1

&41+�
1

64
qr�1+r

t �
1

64
mr�1+r.

Since the bound grows with qt we clearly generate infinitely many distinct
m in this way. K

Proof of Corollary 6. Suppose that �t
i=1 ai�At for some t�

(3168A+1152). Then there are certainly at least [t�4] partial quotients
a2j�4A, 2j�t. From these we can select a subsequence of at least
N=[t�8] with a2ni�4A and ni+1&ni�2 for each 1�i�N.

Taking m=q2n1&2+q2n2&2+ } } } +q2nN&2<qt we observe that

m2ni&1+m2ni&2+1=q2ni&2+2m2ni&5+1�q2ni&2+q2ni&3

and

|=2ni&2|&1=q2ni&1+:2ni&1 q2ni&2�(q2ni&2+q2ni&3)(1+ 1
2:2ni&1)
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where

:2ni&1=
1

a2ni+:2ni

>
1

4A+1
.

Hence, since plainly A�1, (9), (11), and (14) give

2m(1&#$, :)=&[#$]+ :
[t�8]

i=1

(1&|=2ni&2| (m2ni&1+m2ni&2+1))

�&1+_ t
8&

5
11(4A+1)

�
1

18A(4A+1)
:
t

i=1

ai

>
1

18A(4A+1)
log qt .

The lower bound follows on reversing the roles of odd and even. K

Proof of Proposition 1. With di and $i as in (7), writing

_k
pn&1

qn&1

+#&=_kpn&1+dn+$n

qn&1 &=_kpn&1+dn

qn&1 &
and

[k:+#]={_
kpn&1+dn+($n+k |=n&1|)

qn&1 & if n is odd,

_kpn&1+dn+($n&k |=n&1|)
qn&1 & if n is even.

it is not hard to see that,

un=min[k # N: $n+k |=n&1|�1 and kpn&1+dn+1#0 (mod qn&1)]

if n is odd, and

un=min[k # N : $n&k |=n&1|<0 and kpn&1+dn#0 (mod qn&1)].

if n is even.
Hence, recalling the familiar identity qn pn&1&qn&1 pn=(&1)n, we

readily see that, when n is odd
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un=min[qn(dn+1)&sqn&1 : (qn(dn+1)&sqn&1)�(1&$n) |=n&1|&1]

=qn(dn+1)&qn&1[#qn&:n;n]

=qn(dn+1)&qn&1(dn+1&*n)

=;n qn+(;n+1+*n) qn&1.

Similarly, when n is even

un=min[tqn&1&dnqn : (tqn&1&dnqn)>$n |=n&1| &1]

=([#qn+:n ;n]+1) qn&1&dnqn

=(dn+1+*n+1) qn&1&dnqn

=;nqn+(;n+1+*n) qn&1. K

Proof of Proposition 2. Expression (6) is a straightforward exercise in
induction. Property (i) is immediate from the definition of the ci , and
property (ii) amounts to the inequality

#n

:n
=

#n&1&:n&1 cn

1&:n&1an
<1

if an=cn .
Property (iii) holds since ck+2i=ak+2i , ck+2i+1=0 for all i�0 would

(by (6)) imply that

|=k&2|>#k&1 |=k&2|= :
�

i=k

ci |=i&1|=|=k&2|.

To see the uniqueness, suppose that we have two representations

:
�

i=1

bi |=i&1|=#= :
�

i=1

bi$ |=i&1|

where the bi and bi$ both satisfy (i), (ii) and (iii) with bk>b$k and bj=b$j ,
j<k. By (iii) there must exist an I�0 such that b$k+2I+1{ak+2I+1 and
bk+2i&1=ak+2i&1 , bk+2i=0 for all 1�i�I and (since bj$<aj for infinitely
many succeeding j ) we obtain the false inequality:

|=k&1|� :
i>k

(bi$&bi) |=i&1|

< :
I

i=1

ak+2i&1 |=k+2i&2|+ :
�

j=1

ak+2I+ j |=k+2I+ j&1|&|=k+2I|

=|=k&1|. K
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Proof of Proposition 3. The first relation follows from the observation
that

[#qn&1]=[[(&1)n&1vn:+#n |=n&1|] qn&1]

=[(vn+#nqn&1) |=n&1|].

where &1<(vn+#n qn&1) |=n&1|<1 since

&qn&1�(vn+#nqn&1)�qn&(an&cn&#n) qn&1<qn+:nqn&1.

The expression for un then comes from merely substituting this in Proposi-
tion 1 and observing that qn(#n �:n&#n+1)=cn+1qn=(vn+1+vn). K
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