On Sums of Fractional Parts $\{n \alpha+v\}$

Christopher Pinner*
Centre for Experimental and Constructive Mathematics, Simon Fraser University,
Burnaby, British Columbia V5A 1S6, Canada; and
Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada

Communicated by V. T. Sós
Received May 5, 1995; revised April 29, 1996

View metadata, citation and similar papers at core.ac.uk
$\mathrm{C}_{m}(\alpha, \gamma)=\sum_{1 \leqslant k \leqslant m}\left(\{k \alpha+\gamma\}-\frac{1}{2}\right)$
when α is irrational. From this we deduce a number of elementary bounds on the growth and behaviour of $C_{m}(\alpha, \gamma)$. In particular, we show that as m varies the extent of the fluctuations in size can be determined almost entirely from the nonhomogeneous continued fraction expansion of γ with respect to α. These sums are closely related to the discrepancy of the sequence $(\{n \alpha\})$; we state a related explicit formula that yields similar bounds for the discrepancy. Sums of this form also occur in a lattice point problem of Hardy and Littlewood. © 1997 Academic Press

1. INTRODUCTION

In a recent paper, Brown and Shiue [3] use the continued fraction expansion of α to obtain an explicit formula for the sum

$$
C_{\alpha}(m)=\sum_{1 \leqslant k \leqslant m}\left(\{k \alpha\}-\frac{1}{2}\right)
$$

and to give simple proofs of results of Lerch [12], Hardy and Littlewood [8; 9, "Problem B"], Ostrowski [14], and Sós [20]. In particular, in addition to producing explicit upper and lower bounds for $\left|C_{\alpha}(m)\right|$, they show that if the partial quotients of α are bounded by A then, for some explicit constant d_{A}, both $C_{\alpha}(m)>d_{A} \log m$ and $C_{\alpha}(m)<-d_{A} \log m$ hold for infinitely many m.

[^0]We show here that a surprisingly similar formula holds in the nonhomogeneous case,

$$
C_{m}(\alpha, \gamma)=\sum_{1 \leqslant k \leqslant m}\left(\{k \alpha+\gamma\}-\frac{1}{2}\right),
$$

leading to comparable upper and lower bounds for the absolute value of this quantity. There is at least one major difference though; it is no longer true that bounded quotients are sufficient to cause the sizeable positivenegative swings that occur when $\gamma=0$. For example (as we shall show in a subsequent paper), if $\alpha=\sqrt{2}$ one-sidedly bounded sums $C_{m}\left(\sqrt{2}, \frac{1}{2}\right)>0$ occur when $\gamma=1 / 2$. However, such a gamma should be thought of as exceptional. We show that the extent or absence of these fluctuations is (in some asymptotic sense) determined by the non-homogeneous continued fraction expansion of γ with respect to α.

Sums of the form $C_{m / \omega}(\alpha,-\alpha(m / \omega))$ were studied in detail by Hardy and Littlewood [8; 9, "Problem A"] in connection with the problem of approximating the number of lattice points in a right-angled triangle. Most of their bounds follow straightforwardly from ours. The sums $C_{m}(\alpha, \gamma)$ are also closely related to the discrepancy of the sequence ($\{n \alpha\}$); in particular, our formula yields expressions reminiscent of the "explicit formulae" of Sós and Dupain [5-7, 21-23] and could be used to duplicate many of their results. Similar formulae and estimates appear in the work of Schoissengeier [1, 16-19].

In the next section we introduce the various notations and give the machinery and basic properties of the regular and non-homogeneous continued fraction expansions; we postpone the proof of those propositions until the end of Section 5. In Section 3 we state the main results; we give the proofs in Section 5. In Section 4 we state without proof the corresponding formula and results for the discrepancy function.

2. BASIC NOTATION

For any irrational real α, real γ and integer $m \geqslant 1$, we write

$$
C_{m}(\alpha, \gamma):=\sum_{1 \leqslant k \leqslant m}\left(\{k \alpha+\gamma\}-\frac{1}{2}\right)
$$

where as usual $\{x\}=x-[x]$ denotes the fractional part of x.
We shall suppose throughout that α is irrational and has the continued fraction expansion

$$
\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right],
$$

where

$$
\begin{equation*}
a_{n+1}:=\left[\frac{1}{\alpha_{n}}\right], \quad \alpha_{n+1}:=\left\{\frac{1}{\alpha_{n}}\right\}, \quad \alpha_{0}:=\{\alpha\} \tag{1}
\end{equation*}
$$

and shall use p_{i} / q_{i} to denote the i th convergent to α,

$$
\begin{array}{ll}
p_{n+1}:=a_{n+1} p_{n}+p_{n-1}, & p_{-1}:=1, \quad p_{-2}:=0 \\
q_{n+1}:=a_{n+1} q_{n}+q_{n-1}, & q_{-1}:=0, \quad q_{-2}:=1
\end{array}
$$

with

$$
\varepsilon_{i}:=q_{i} \alpha-p_{i}=\frac{(-1)^{i}}{q_{i+1}+\alpha_{i+1} q_{i}}
$$

denoting the closeness of such an approximation.
Following Brown-Shiue, we shall make frequent use of the unique decomposition of an $m<q_{t}$ as

$$
m=z_{t} q_{t-1}+\cdots+z_{2} q_{1}+z_{1} q_{0}
$$

(the so called "Zeckendorff Representation" of m), where
(i) $0 \leqslant z_{1} \leqslant a_{1}-1$,
(ii) $0 \leqslant z_{i} \leqslant a_{i}, 2 \leqslant i \leqslant t$,
(iii) if $z_{i}=a_{i}$ then $z_{i-1}=0(2 \leqslant i \leqslant t)$,
and use $m_{j}, 1 \leqslant j \leqslant t$, to denote the corresponding subsums

$$
m_{j}=z_{1} q_{0}+\cdots+z_{j} q_{j-1}
$$

Note that for all j

$$
\begin{equation*}
m_{j}+m_{j-1}+1 \leqslant q_{j} \tag{2}
\end{equation*}
$$

We shall also need some new gamma dependent parameters

$$
\beta_{n}=\beta_{n}(\alpha, \gamma):= \begin{cases}\left\{\gamma q_{n-1}\right\} & \text { if } n \text { is even }, \tag{3}\\ 1-\left\{\gamma q_{n-1}\right\} & \text { if } n \text { is odd }\end{cases}
$$

and

$$
\begin{equation*}
u_{n}=u_{n}(\alpha, \gamma):=\min \left\{k \in N:[k \alpha+\gamma] \neq\left[k \frac{p_{n-1}}{q_{n-1}}+\gamma\right]\right\} . \tag{4}
\end{equation*}
$$

The following proposition enables us to explicitly compute the u_{i} :

Proposition 1.

$$
u_{n}=\beta_{n} q_{n}+\left(\lambda_{n}+\beta_{n+1}\right) q_{n-1}
$$

where

$$
\lambda_{n}:= \begin{cases}1 & \text { if } \alpha_{n} \beta_{n}>\beta_{n+1}\left(\text { or } \alpha_{n} \beta_{n}=\beta_{n+1} \text { if } n \text { is even }\right), \\ 0 & \text { if } \alpha_{n} \beta_{n}<\beta_{n+1}\left(\text { or } \alpha_{n} \beta_{n}=\beta_{n+1} \text { if } n \text { is odd }\right) .\end{cases}
$$

We shall also need to consider the non-homogeneous continued fraction expansion of γ with respect to α (see Borwein-Borwein [2] for more details). Suppose that the continued fraction for α produces a sequence of a_{n} and α_{n} as above, then we generate an accompanying sequence of nonhomogeneous partial quotients c_{n} and remainders γ_{n} by setting

$$
\begin{equation*}
c_{n+1}:=\left[\frac{\gamma_{n}}{\alpha_{n}}\right], \quad \gamma_{n+1}:=\left\{\frac{\gamma_{n}}{\alpha_{n}}\right\}, \quad \gamma_{0}:=\{\gamma\} . \tag{5}
\end{equation*}
$$

Noting the relation

$$
\begin{equation*}
\{\gamma\}=\sum_{i=1}^{n} c_{i}\left|\varepsilon_{i-1}\right|+\gamma_{n}\left|\varepsilon_{n-1}\right| \tag{6}
\end{equation*}
$$

the c_{i} give us an expansion of γ in terms of α :

Proposition 2. For $0 \leqslant \gamma<1$,

$$
\gamma=\sum_{i=1}^{\infty} c_{i}\left|\varepsilon_{i-1}\right|,
$$

where the c_{i} produced by (5) have the following properties:
(i) $0 \leqslant c_{i} \leqslant a_{i}$
(ii) if $c_{i}=a_{i}$ then $c_{i+1}=0$
(iii) $c_{i} \neq a_{i}$ for infinitely many odd and infinitely many even i.

Moreover, such an expansion is unique (i.e. if $\gamma=\sum_{i=1}^{\infty} b_{i}\left|\varepsilon_{i-1}\right|$ with integers b_{i} satisfying (i), (ii), and (iii) then $b_{i}=c_{i}$ for all i).

Note that this expansion is distinct from that employed by Sós and Dupain [5,21-23] (attributed by them to Lesca [13] and Descombes [4]) where ε_{i-1} replace the $\left|\varepsilon_{i-1}\right|$.

We set v_{n} to be the sums

$$
v_{n}:=\sum_{i=1}^{n}(-1)^{n-i} c_{i} q_{i-1}
$$

and observe that one can express the β_{n} and u_{n} in terms the v_{i} and γ_{i}.

Proposition 3.

$$
\begin{aligned}
& \beta_{n}=l_{n}+(-1)^{n}\left(v_{n}+\gamma_{n} q_{n-1}\right)\left|\varepsilon_{n-1}\right| \\
& u_{n}=l_{n} q_{n}+\left(l_{n+1}+\lambda_{n}\right) q_{n-1}+(-1)^{n} v_{n}
\end{aligned}
$$

where

$$
\begin{aligned}
& l_{n}:=\left\{\begin{array}{lll}
1 & \text { if }(-1)^{n}\left(v_{n}+\gamma_{n} q_{n-1}\right)<0 & (\text { or }=\text { if } n \text { is odd }), \\
0 & \text { if }(-1)^{n}\left(v_{n}+\gamma_{n} q_{n-1}\right)>0 & (\text { or }=\text { if } n \text { is even }),
\end{array}\right. \\
& \lambda_{n}:=\left\{\begin{array}{lll}
1 & \text { if } \alpha_{n} l_{n}+(-1)^{n} \gamma_{n}>l_{n+1} & (\text { or }=\text { if } n \text { is even }), \\
0 & \text { if } \alpha_{n} l_{n}+(-1)^{n} \gamma_{n}<l_{n+1} & (\text { or }=\text { if } n \text { is odd }) .
\end{array}\right.
\end{aligned}
$$

The parameters v_{n} appear in Borwein-Borwein [2] disguised as $t_{n-1}=$ $q_{n}+q_{n-1}+(-1)^{n} v_{n}$. We note the elementary bounds

$$
-q_{n-1} \leqslant v_{n} \leqslant q_{n} .
$$

Proposition 3 is perhaps more digestible in its expanded form:
When n is odd,

$$
u_{n}= \begin{cases}q_{n}+q_{n-1}-v_{n} & \text { if } \quad c_{n} \neq 0\left(\text { or } c_{n}=0, \gamma_{n} q_{n-1} \geqslant v_{n-1}\right) \text { and } c_{n+1}=0, \\ q_{n}-v_{n} & \text { if } \quad c_{n} \neq 0\left(\text { or } c_{n}=0, \gamma_{n} q_{n-1} \geqslant v_{n-1}\right) \text { and } c_{n+1} \neq 0, \\ v_{n-1} & \text { if } \quad c_{n}=0 \text { and } \gamma_{n} q_{n-1}<v_{n-1},\end{cases}
$$

and when n is even,

$$
u_{n}= \begin{cases}q_{n-1}+v_{n} & \text { if } \quad c_{n} \neq 0\left(\text { or } c_{n}=0, \gamma_{n} q_{n-1} \geqslant v_{n-1}\right), \\ q_{n}+q_{n-1}-v_{n-1} & \text { if } \quad c_{n}=0 \text { and } \gamma_{n} q_{n-1}<v_{n-1} \text { and } \alpha_{n}+\gamma_{n}<1, \\ q_{n}+2 q_{n-1}-v_{n-1} & \text { if } c_{n}=0 \text { and } \gamma_{n} q_{n-1}<v_{n-1} \text { and } \alpha_{n}+\gamma_{n} \geqslant 1 .\end{cases}
$$

In several of the proofs we shall make use of the parameters

$$
\begin{equation*}
\delta_{n}=\delta_{n}(\alpha, \gamma):=\left\{\gamma q_{n-1}\right\}, \quad d_{n}=d_{n}(\alpha, \gamma):=\left[\gamma q_{n-1}\right] . \tag{7}
\end{equation*}
$$

We also recall the common notations

$$
x^{+}=\max (x, 0), \quad x^{-}=\min (x, 0)
$$

and $\|x\|$, the distance from x to the nearest integer. Finally, we define a useful variant of the integer part

$$
[x]_{*}=\left\{\begin{array}{lll}
{[x]} & \text { if } & x \notin \mathbb{Z}, \tag{8}\\
x-1 & \text { if } & x \in \mathbb{Z} .
\end{array}\right.
$$

3. OUR MAIN RESULTS

With β_{i}, u_{i} and $[x]_{*}$ defined in (3), (4) and (8) above, we show the following simple, explicit, formula for the sum $C_{m}(\alpha, \gamma)$:

Theorem 1. If $m=z_{1} q_{0}+\cdots z_{t} q_{t-1}$ is the Zeckendorff representation of $m \geqslant 1$, then

$$
C_{m}(\alpha, \gamma)=\sum_{1 \leqslant i \leqslant t}(-1)^{i} M_{i},
$$

where

$$
M_{i}=-\frac{1}{2} z_{i}\left|\varepsilon_{i-1}\right|\left(m_{i}+m_{i-1}+1\right)+\left(\beta_{i}-\frac{1}{2}\right) z_{i}+\left(z_{i}-\left[\frac{u_{i}-m_{i-1}}{q_{i-1}}\right]_{*}^{+}\right)^{+} .
$$

Note that when $\gamma=0$,

$$
\beta_{i}=\left\{\begin{array}{ll}
0 & \text { if } i \text { is even, } \\
1 & \text { if } i \text { is odd, }
\end{array} \quad u_{i}= \begin{cases}q_{i-1} & \text { if } i \text { is even }, \\
q_{i}+q_{i-1} & \text { if } i \text { is odd }\end{cases}\right.
$$

giving (for $z_{i} \leqslant a_{i}$)

$$
\left(z_{i}-\left[\frac{u_{i}-m_{i-1}}{q_{i-1}}\right]_{*}^{+}\right)^{+}=\left\{\begin{array}{cl}
z_{i} & \text { if } i \text { is even, } \\
0 & \text { if } i \text { is odd },
\end{array}\right.
$$

and we immediately recover Brown-Shiue [3, Theorem 1(c)],

$$
\begin{equation*}
C_{m}(\alpha, 0)=\sum_{i=1}^{t}(-1)^{i} \frac{1}{2} z_{i}\left(1-\left|\varepsilon_{i-1}\right|\left(m_{i}+m_{i-1}+1\right)\right) . \tag{9}
\end{equation*}
$$

Rough estimation readily gives us a rough upper bound:
Corollary 1. With m as above

$$
\left|C_{m}(\alpha, \gamma)\right| \leqslant \frac{3}{2} \sum_{i=1}^{t} z_{i}, \quad \max _{1 \leqslant m<q_{t}}\left|C_{m}(\alpha, \gamma)\right|<\frac{3}{2} \sum_{i=1}^{t} a_{i} .
$$

With a bit more effort one can show more precisely how the partial quotients a_{i} of α and the non-homogeneous partial quotients c_{i} of γ with respect to α (as defined in (5) above), affect the growth of $C_{m}(\alpha, \gamma)$:

Corollary 2. (i) If we fix α and γ and vary m then, for any $t \geqslant 1$,

$$
\begin{aligned}
& \max _{1 \leqslant m<q_{t}} C_{m}(\alpha, \gamma)=\frac{1}{2} \sum_{\substack{i=1 \\
i \text { odd }}}^{t} \frac{c_{i}}{a_{i}}\left(1-\frac{c_{i}}{a_{i}}\right) a_{i}+\frac{1}{2} \sum_{\substack{i=1 \\
i \text { ven }}}^{t}\left(\frac{1}{2}-\frac{c_{i}}{a_{i}}\right)^{2} a_{i}+E_{1}(t), \\
& \min _{1 \leqslant m<q_{t}} C_{m}(\alpha, \gamma)=-\frac{1}{2} \sum_{\substack{i=1 \\
i \text { even }}}^{t} \frac{c_{i}}{a_{i}}\left(1-\frac{c_{i}}{a_{i}}\right) a_{i}-\frac{1}{2} \sum_{\substack{i=1 \\
i \text { odd }}}^{t}\left(\frac{1}{2}-\frac{c_{i}}{a_{i}}\right)^{2} a_{i}-E_{2}(t),
\end{aligned}
$$

where $\left|E_{i}(t)\right| \leqslant \frac{1}{2}(5 t+1)$.
(ii) If we fix α and $m=z_{1} q_{0}+\cdots+z_{t} q_{t-1}$ and vary γ, then

$$
\begin{aligned}
\sup _{\gamma \in[0,1)} C_{m}(\alpha, \gamma) & =\frac{1}{2} \sum_{i=1}^{t} \frac{z_{i}}{a_{i}}\left(1-\frac{z_{i}}{a_{i}}\right) a_{i}+F_{1}(t), \\
\inf _{\gamma \in[0,1)} C_{m}(\alpha, \gamma) & =-\frac{1}{2} \sum_{i=1}^{t} \frac{z_{i}}{a_{i}}\left(1-\frac{z_{i}}{a_{i}}\right) a_{i}-F_{2}(t),
\end{aligned}
$$

where $\left|F_{i}(t)\right| \leqslant \frac{1}{2}(5 t+1)$.
Similarly, if we vary both m and γ,

$$
\begin{aligned}
& \sup _{\gamma \in[0,1)} \max _{1 \leqslant m<q_{t}} C_{m}(\alpha, \gamma)=\frac{1}{8} \sum_{i=1}^{t} a_{i}+G_{1}(t), \\
& \inf _{\gamma \in[0,1)} \min _{1 \leqslant m<q_{t}} C_{m}(\alpha, \gamma)=-\frac{1}{8} \sum_{i=1}^{t} a_{i}-G_{2}(t),
\end{aligned}
$$

with $\left|G_{i}(t)\right| \leqslant \frac{1}{2}(5 t+1)$.
We observe that the right-hand sides of the expressions in (i) are attained for the choice $m_{\gamma}^{\prime}:=\sum z_{i}^{\prime} q_{i-1}$ and $m_{\gamma}^{\prime \prime}:=\sum z_{i}^{\prime \prime} q_{i-1}$ respectively, where

$$
z_{i}^{\prime}:=\left\{\begin{array}{ll}
{\left[c_{i} \pm \frac{1}{2} a_{i}\right]} & \text { if } i \text { is even }, \\
a_{i}-c_{i} & i \text { odd, } c_{i} \neq 0, \\
0 & i \text { odd, } c_{i}=0,
\end{array} \quad z_{i}^{\prime \prime}:= \begin{cases}{\left[\left(a_{i}-c_{i}\right) \pm \frac{1}{2} a_{i}\right]} & \text { if } i \text { is odd }, \\
c_{i} & i \text { even, } c_{i} \neq a_{i} \\
0 & i \text { even, } c_{i}=a_{i}\end{cases}\right.
$$

with the \pm sign chosen such that $0 \leqslant z_{i}^{\prime}, z_{i}^{\prime \prime}<a_{i}$. Similarly, the right-hand sides in (ii) are achieved when

$$
\begin{equation*}
\gamma_{m}^{\prime}:=1-\sum_{\substack{i=1 \\ i \text { odd }}}^{t} z_{i}\left|\varepsilon_{i-1}\right|, \quad \gamma_{m}^{\prime \prime}:=\sum_{\substack{i=1 \\ i \text { even }}}^{t} z_{i}\left|\varepsilon_{i-1}\right| \tag{10}
\end{equation*}
$$

Using $m^{(j)}$ to denote the sum of the odd indexed, $\sum_{i \text { odd }} z_{i} q_{i-1}$, or even indexed, $\sum_{i \text { even }} z_{i} q_{i-1}$, terms of the Zeckendorff representation of $m=\sum z_{i} q_{i-1}$, as j is odd or even respectively, we note that $\gamma_{m}^{\prime}=\left\{-m^{(1)} \alpha\right\}$ and $\gamma_{m}^{\prime \prime}=\left\{-m^{(0)} \alpha\right\}$. In particular $C_{m}(\alpha, \gamma)$ can in these cases be rewritten as a sum of wholly positive or wholly negative terms;

$$
\begin{align*}
& C_{m}\left(\alpha, \gamma_{m}^{\prime}\right)=-\left\{\gamma_{m}^{\prime}\right\}+\sum_{i=1}^{t} \frac{1}{2} z_{i}\left(1-\left|\varepsilon_{i-1}\right|\left(m_{i}^{(i)}+m_{i-1}^{(i)}+1\right)\right), \tag{11}\\
& C_{m}\left(\alpha, \gamma_{m}^{\prime \prime}\right)=-\left\{\gamma_{m}^{\prime \prime}\right\}-\sum_{i=1}^{t} \frac{1}{2} z_{i}\left(1-\left|\varepsilon_{i-1}\right|\left(m_{i}^{(i)}+m_{i-1}^{(i)}+1\right)\right),
\end{align*}
$$

via the simple relation $C_{m+n}(\alpha,-n \alpha)=C_{m}(\alpha, 0)-C_{n}(\alpha, 0)-\{-n \alpha\}$.
We remark that for general γ it is no longer true that bounded partial quotients are sufficient to cause $C_{m}(\alpha, \gamma)$ to take arbitrarily large positive and negative values (recall, Hardy \& Littlewood [8, Theorem B4], that if the $a_{i} \leqslant A$ then $C_{m}(\alpha, 0)>c_{A} \log m$ and $C_{m}(\alpha, 0)<-c_{A} \log m$ must both hold for infinitely many m). We note the values $\gamma_{0}:=\sum_{i=1}^{\infty}\left[a_{2 i} / 2\right]\left|\varepsilon_{2 i-1}\right|$ and $\gamma_{1}:=\sum_{i=1}^{\infty}\left[a_{2 i-1} / 2\right]\left|\varepsilon_{2 i-2}\right|$ for which the sums are particularly onesided (notice that if the a_{i} are all even then $\gamma_{0}=\frac{1}{2}$ and $\gamma_{1}=\frac{1}{2}\{\alpha\}$)
$\max _{1 \leqslant m<q_{t}} C_{m}\left(\alpha, \gamma_{0}\right)=\frac{1}{8} \sum_{i=1}^{t} a_{i}+O(t), \quad \min _{1 \leqslant m<q_{t}} C_{m}\left(\alpha, \gamma_{0}\right)=O(t)$,
$\max _{1 \leqslant m<q_{t}} C_{m}\left(\alpha, \gamma_{1}\right)=O(t), \quad \min _{1 \leqslant m<q_{t}} C_{m}\left(\alpha, \gamma_{1}\right)=-\frac{1}{8} \sum_{i=1}^{t} a_{i}+O(t)$,
and $\gamma_{2}:=\sum_{i=1}^{\infty}\left[\left(\frac{1}{2} \pm \sqrt{2} / 4\right) a_{i}\right]\left|\varepsilon_{i-1}\right|$ for which the positive-negative swings are the most symmetric

$$
\begin{equation*}
\max _{1 \leqslant m<q_{t}} C_{m}\left(\alpha, \gamma_{2}\right)=\frac{1}{16} \sum_{i=1}^{t} a_{i}+O(t), \min _{1 \leqslant m<q_{t}} C_{m}\left(\alpha, \gamma_{2}\right)=-\frac{1}{16} \sum_{i=1}^{t} a_{i}+O(t) . \tag{13}
\end{equation*}
$$

For $\gamma=0$ the corollary gives (similar to Schoissengeier [18])

$$
\max _{1 \leqslant m<q_{t}} C_{m}(\alpha, 0)=\frac{1}{8} \sum_{\substack{i=1 \\ i \text { even }}}^{t} a_{i}+O(t), \quad \min _{1 \leqslant m<q_{t}} C_{m}(\alpha, 0)=-\frac{1}{8} \sum_{\substack{i=1 \\ i \text { odd }}}^{t} a_{i}+O(t) .
$$

In contrast, the difference between the largest and smallest value is little affected by the choice of γ :

$$
\max _{1 \leqslant m<q_{t}} C_{m}(\alpha, \gamma)-\min _{1 \leqslant m<q_{t}} C_{m}(\alpha, \gamma)=\frac{1}{8} \sum_{i=1}^{t} a_{i}+O(t) .
$$

Using the parameters β_{i} of (3) rather than the c_{i}, we can similarly obtain the less discrete but perhaps more straightforward variant of (i),

$$
\begin{aligned}
& \max _{1 \leqslant m<q_{t}} C_{m}(\alpha, \gamma)=\frac{1}{2} \sum_{\substack{i=1 \\
i \text { odd }}}^{t} \beta_{i}\left(1-\beta_{i}\right) a_{i}+\frac{1}{2} \sum_{\substack{i=1 \\
i \text { ven }}}^{t}\left(\frac{1}{2}-\beta_{i}\right)^{2} a_{i}+E_{3}(t), \\
& \min _{1 \leqslant m<q_{t}} C_{m}(\alpha, \gamma)=-\frac{1}{2} \sum_{\substack{i=1 \\
i \text { even }}}^{t} \beta_{i}\left(1-\beta_{i}\right) a_{i}-\frac{1}{2} \sum_{\substack{i=1 \\
i \text { odd }}}^{t}\left(\frac{1}{2}-\beta_{i}\right)^{2} a_{i}-E_{4}(t),
\end{aligned}
$$

where $-\frac{1}{4}(11 t+1) \leqslant E_{i}(t) \leqslant \frac{1}{2}(5 t+1)$. The connection becomes clear on observing that $\left\{\gamma q_{i-1}\right\}=c_{i} / a_{i}+O\left(1 / a_{i}\right)$ if $c_{i} \neq 0$, with $\left\{\gamma q_{i-1}\right\}=O\left(1 / a_{i}\right)$ or $1-O\left(1 / a_{i}\right)$ if $c_{i}=0$.

As an easy consequence of Corollary 2 we have the following upper and lower bounds on the growth rate of $\left|C_{m}(\alpha, \gamma)\right|$:

Corollary 3. For $t \geqslant 1$,

$$
\frac{1}{16} \sum_{i=1}^{t}\left(a_{i}-40\right)^{+} \leqslant \max _{1 \leqslant m<q_{t}}\left|C_{m}(\alpha, \gamma)\right| \leqslant \frac{1}{8} \sum_{i=1}^{t}\left(a_{i}+24\right) .
$$

In view of (12) and (13) the constants $1 / 8$ and $1 / 16$ are plainly optimal. Using Corollary 3 , a number of well known properties of $C_{m}(\alpha, 0)$ extend immediately to our more general sums $C_{m}(\alpha, \gamma)$. We should remark that similar upper bounds (although without our explicit constants) could be alternatively obtained from known results for the discrepancy via the relations (14) and (15) below.

Property 1. (a) If $\sum_{i=1}^{t} a_{i} \leqslant A t$ for all $t \geqslant 1$, then

$$
\left|C_{m}(\alpha, \gamma)\right|<\frac{1}{3}(A+24) \log (3 m)
$$

for all γ and $m \geqslant 1$.
(b) If $\sum_{i=1}^{t} a_{i} \geqslant(B+40) t$ for infinitely many t then, for any fixed γ,

$$
\left|C_{m}(\alpha, \gamma)\right|>\frac{1}{16} \frac{B}{(B+40)} \log m
$$

for infinitely many m.
Under the stronger hypothesis $a_{i} \leqslant A$ for all i in (a), or $a_{i} \geqslant B$ for all i in (b), one can replace the corresponding bound by

$$
\left|C_{m}(\alpha, \gamma)\right| \leqslant \frac{1}{8}\left(\frac{A}{\log A}+55\right) \log (3 m), \quad\left|C_{m}(\alpha, \gamma)\right| \geqslant \frac{1}{16} \frac{(B-9)}{\log (B+1)} \log m
$$

respectively (a bound which is then asymptotically sharp in terms of A or B).
More generally, for a fixed α the sums $\left|C_{m}(\alpha, \gamma)\right|$ are $o(m)$ as $m \rightarrow \infty$ (uniformly in γ) but are not $o(m)$ uniformly in α :

Property 2. (a) For any fixed α and all γ

$$
\left|C_{m}(\alpha, \gamma)\right| \leqslant 3 \frac{m}{\max \left\{q_{s}<\sqrt{m}\right\}}=o_{\alpha}(m)
$$

as $m \rightarrow \infty$.
(b) For any $t \geqslant 1$

$$
\max _{m<q_{t}}\left|C_{m}(\alpha, \gamma)\right| \geqslant \frac{1}{16}\left(\frac{q_{t}}{q_{t-1}}-41\right) .
$$

In particular, given any function $f(n)=o(n)$, there are infinitely many α such that, for any fixed γ,

$$
\limsup _{n \rightarrow \infty}\left|\frac{C_{n}(\alpha, \gamma)}{f(n)}\right|=\infty
$$

In general a precise knowledge of the growth of the partial quotients of α (equivalently the quality of rational approximations to α) leads to accurate bounds on the growth of $\left|C_{m}(\alpha, \gamma)\right|$. We give the following primarily to show that most of the results of Hardy-Littlewood [9, Theorems 2, 3] do still hold for these more general sums (similar theorems occur in Ostrowski [14, pp. 80-81]).

Property 3. (a) For any $r \geqslant 0$ and non-decreasing function f, such that $q^{1+r} f(q)\|q \alpha\|>1$ for all $q \in \mathbb{N}$,

$$
\left|C_{m}(\alpha, \gamma)\right|<4 m^{r / 1+r} f(m)^{1 / 1+r} \log (3 m)
$$

for all γ and $m \geqslant 1$.
(b) If, for some fixed $r>0, q^{1+r}\|q \alpha\|<1$ for infinitely many $q \in \mathbb{N}$ then, for any fixed γ,

$$
\left|C_{m}(\alpha, \gamma)\right|>\frac{1}{64} m^{r / 1+r}
$$

for infinitely many m.
Notice from (a) that if α is algebraic then, by Roth's Theorem [15], for any $\varepsilon>0$ there is a constant $c_{1}(\alpha, \varepsilon)$ such that $\left|C_{m}(\alpha, \gamma)\right|<c_{1}(\alpha, \varepsilon) m^{\varepsilon}$.

4. THE DISCREPANCY OF THE SEQUENCE ($\{n \alpha\}$)

For a sequence $\mathscr{S}=\left(b_{i}\right), b_{i} \in[0,1)$ one measures how close the subinterval I of $[0,1)$ comes to receving its "fair share" of points by means of the function:

$$
\Delta_{N}(I, \mathscr{S}):=\sum_{i=1}^{N}\left(\chi_{I}\left(b_{i}\right)-|I|\right),
$$

where $\chi_{I}(x)$ denotes the characteristic function of I and $|I|$ the length of I. We recall the definition of the discrepancy $D_{N}(\mathscr{S}):=\sup _{I}\left|\Delta_{N}(I, \mathscr{S})\right|$ of \mathscr{S} and its variant, the extreme discrepancy $D_{N}^{*}(\mathscr{S})$ of \mathscr{S}, that we shall use here

$$
D_{N}^{*}(\mathscr{S}):=\sup _{\beta}\left|\Delta_{N}([0, \beta), \mathscr{S})\right| .
$$

For the sequences $\mathscr{S}=(\{n \alpha\})_{n=1}^{\infty}$ we use the abbreviations

$$
\Delta_{N}(\beta, \alpha):=\Delta_{N}\left([0, \beta),(\{n \alpha\})_{n=1}^{\infty}\right), \quad D_{N}^{*}(\alpha):=\left((\{n \alpha\})_{n=1}^{\infty}\right) .
$$

Since for $0 \leqslant \gamma<1$

$$
\{n \alpha+\gamma\}=\{n \alpha\}+\chi_{[0,1-\gamma)}(\{n \alpha\})-(1-\gamma)
$$

we observe the following simple relation between the $C_{m}(\alpha, \gamma)$ and $\Delta_{N}(\beta, \alpha) ;$

$$
\begin{equation*}
C_{m}(\alpha, \gamma)=C_{m}(\alpha, 0)+\Delta_{m}(1-\gamma, \alpha) . \tag{14}
\end{equation*}
$$

Lesca [3] has shown further that

$$
\begin{equation*}
C_{m}(\alpha, 0)=-\frac{1}{2} \Delta_{m}(\{(m-1) \alpha\}, \alpha), \tag{15}
\end{equation*}
$$

so that the discrepancy formulae of Sós et al. could presumably be conversely used to obtain a related formula for $C_{m}(\alpha, \gamma)$. From (14) and Theorem 1 we obtain at once the following explicit formula for the discrepancy:

Corollary 4. If $m=z_{1} q_{0}+\cdots+z_{t} q_{t-1}$ is the Zeckendorff representation of $m \geqslant 1$ and $0 \leqslant \gamma<1$, then

$$
\Delta_{m}(1-\gamma, \alpha)=\sum_{i=1}^{t}(-1)^{i} H_{i}
$$

where

$$
H_{i}=-\left(1-\beta_{i}\right) z_{i}+\left(z_{i}-\left[\frac{u_{i}-m_{i-1}}{q_{i-1}}\right]_{*}^{+}\right)^{+}
$$

We immediately obtain the rough bounds

$$
D_{m}^{*}(\alpha) \leqslant \sum_{i=1}^{t} z_{i}, \quad \max _{1 \leqslant m<q_{t}} D_{m}^{*}(\alpha)<\sum_{i=1}^{t} a_{i}
$$

Corresponding to Corollary 2 we observe the asymptotically precise bounds

Corollary 5. (i) If we fix α and γ and vary m then, for any $t \geqslant 1$,

$$
\begin{aligned}
& \max _{1 \leqslant m<q_{t}} \Delta_{m}(1-\gamma, \alpha)=\sum_{\substack{i=1 \\
i \text { odd }}}^{t} \frac{c_{i}}{a_{i}}\left(1-\frac{c_{i}}{a_{i}}\right) a_{i}+E_{1}(t), \\
& \min _{1 \leqslant m<q_{t}} \Delta_{m}(1-\gamma, \alpha)=-\sum_{\substack{i=1 \\
i \text { even }}}^{t} \frac{c_{i}}{a_{i}}\left(1-\frac{c_{i}}{a_{i}}\right) a_{i}-E_{2}(t),
\end{aligned}
$$

where $-(t+1) \leqslant E_{i} \leqslant \frac{1}{2}(5 t+1)$.
(ii) If we fix α and $m=z_{1} q_{0}+\cdots+z_{t} q_{t-1}$ and vary γ then

$$
\begin{aligned}
& \sup _{\gamma \in[0,1)} A_{m}(1-\gamma, \alpha)=\sum_{\substack{i=1 \\
i \text { odd }}}^{t} \frac{z_{i}}{a_{i}}\left(1-\frac{z_{i}}{a_{i}}\right) a_{i}+F_{1}(t), \\
& \inf _{\gamma \in[0,1)} A_{m}(1-\gamma, \alpha)=-\sum_{\substack{i=1 \\
i \text { even }}}^{t} \frac{z_{i}}{a_{i}}\left(1-\frac{z_{i}}{a_{i}}\right) a_{i}-F_{2}(t),
\end{aligned}
$$

where $-(t+1) \leqslant F_{i} \leqslant \frac{1}{2}(5 t+1)$.
It is perhaps worth recalling here the theorem of Kesten [10]; namely that if the partial quotients of α are bounded, then $\Delta_{m}(1-\gamma, \alpha)$ is bounded if and only if $\gamma=\{n \alpha\}$ for some integer n (equivalently $c_{i}=0$ for all but finitely many i. Notice that, varying both m and γ,

$$
\begin{aligned}
& \sup _{\gamma \in[0,1)} \max _{1 \leqslant m<q_{t}} \Delta_{m}(\gamma, \alpha)=\frac{1}{4} \sum_{\substack{i=1 \\
i \text { odd }}}^{t} a_{i}+G_{1}(t), \\
& \inf _{\gamma \in[0,1)} \min _{1 \leqslant m<q_{t}} \Delta_{m}(\gamma, \alpha)=-\frac{1}{4} \sum_{\substack{i=1 \\
i \text { even }}}^{t} a_{i}-G_{2}(t),
\end{aligned}
$$

where $-\frac{9}{8}(t+1) \leqslant G_{i}(t) \leqslant \frac{1}{2}(5 t+1)$. Expressions similar to this and (ii) appear in Schoissengeier and Baxa [1, 16, 17, 19]. The right-hand sides in (i) are in this case attained for $\tilde{m}_{\gamma}^{\prime}:=\sum_{i \text { odd }}\left(a_{i}-c_{i}\right) q_{i-1}$ and $\tilde{m}_{\gamma}^{\prime \prime}:=\sum_{i \text { even }} c_{i} q_{i-1}$ respectively, those in (ii) are again achieved for the γ_{m}^{\prime} and $\gamma_{m}^{\prime \prime}$ of (10).

Plainly there is a Corollary-3-type inequality

$$
\frac{1}{8} \sum_{i=1}^{t}\left(a_{i}-9\right)^{+} \leqslant \max _{1 \leqslant m<q_{t}} D_{m}^{*}(\alpha) \leqslant \frac{1}{4} \sum_{i=1}^{t}\left(a_{i}+12\right) .
$$

The various properties given for $C_{m}(\alpha, \gamma)$ likewise hold for $D_{m}^{*}(\alpha)$ after appropriate adjustments to the precise constants. Many similar results on the discrepancy can be found in Kuipers-Niederreiter [11, Chapter 3] and Sós [22, 23].

Finally we show very simply that when the partial quotients are (on average) bounded, and γ allowed to vary, $\Delta_{m}(\gamma, \alpha)$ must take logarithmically large and small values:

Corollary 6. If $\sum_{i=1}^{t} a_{i} \leqslant$ At for infinitely many t then

$$
\sup _{\gamma} \Delta_{m}(\gamma, \alpha)>c_{A} \log m, \quad \inf _{\gamma} \Delta_{m}(\gamma, \alpha)<-c_{A} \log m
$$

each hold for infinitely many m, where we may take $c_{A}=1 / 90 A^{2}$.

5. THE PROOFS

We shall need the following simple, yet crucial, lemma:
Lemma 1. For $1 \leqslant n \leqslant q_{i}$,

$$
[n \alpha+\gamma] \neq\left[n \frac{p_{i-1}}{q_{i-1}}+\gamma\right]
$$

if and only if $n=u_{i}(\alpha, \gamma)+l q_{i-1}$ for some integer $l \geqslant 0$. Moreover, the difference is at most 1 .

Proof. Let

$$
S_{i}=\left\{n_{1}:\left[n_{1} \frac{p_{i-1}}{q_{i-1}}+\gamma\right] \neq\left[n_{1} \alpha+\gamma\right]\right\} .
$$

Then if $n_{1} \in S_{i}$,

$$
\left[n_{1} \alpha+\gamma\right]<\left[n_{1} \frac{p_{i-1}}{q_{i-1}}+\gamma\right] i \text { even, } \quad\left[n_{1} \alpha+\gamma\right]>\left[n_{1} \frac{p_{i-1}}{q_{i-1}}+\gamma\right] i \text { odd. }
$$

Hence for any $n_{2}=n_{1}+l q_{i-1}, l \geqslant 1$ we have

$$
\begin{aligned}
{\left[n_{2} \frac{p_{i-1}}{q_{i-1}}+\gamma\right] } & =\left[n_{1} \frac{p_{i-1}}{q_{i-1}}+\gamma\right]+l p_{i-1} \\
{\left[n_{2} \alpha+\gamma\right] } & =\left[\left(n_{1} \alpha+\gamma\right)+(-1)^{i-1} l\left|\varepsilon_{i-1}\right|\right]+l p_{i-1}
\end{aligned}
$$

giving

$$
\begin{array}{ll}
{\left[n_{2} \alpha+\gamma\right] \leqslant\left[n_{1} \alpha+\gamma\right]+l p_{i-1}<\left[n_{2} \frac{p_{i-1}}{q_{i-1}}+\gamma\right]} & \text { if } i \text { is even, } \\
{\left[n_{2} \alpha+\gamma\right] \geqslant\left[n_{1} \alpha+\gamma\right]+l p_{i-1}>\left[n_{2} \frac{p_{i-1}}{q_{i-1}}+\gamma\right]} & \text { if } i \text { is odd, }
\end{array}
$$

and $n_{2} \in S_{i}$. In particular $n \in S_{i}$ for any n of the form $u_{i}+l q_{i-1}, l \geqslant 0$.
Conversely, suppose n_{1}, n_{2} are both in S_{i} with $n_{1}, n_{2} \leqslant q_{i}$. Then for some integers m_{1}, m_{2},

$$
\begin{array}{lll}
n_{1} \alpha<m_{1}-\gamma \leqslant n_{1} \frac{p_{i-1}}{q_{i-1}} & \text { or } & n_{1} \alpha \geqslant m_{1}-\gamma>n_{1} \frac{p_{i-1}}{q_{i-1}} \\
n_{2} \alpha<m_{2}-\gamma \leqslant n_{2} \frac{p_{i-1}}{q_{i-1}} & n_{2} \alpha \geqslant m_{2}-\gamma>n_{2} \frac{p_{i-1}}{q_{i-1}},
\end{array}
$$

as i is even or odd respectively. Subtracting and multiplying by q_{i-1} then gives

$$
\left|\left(m_{1}-m_{2}\right) q_{i-1}-\left(n_{1}-n_{2}\right) p_{i-1}\right|<\max \left(n_{1}, n_{2}\right)\left|\varepsilon_{i-1}\right| .
$$

Now if both n_{1} and $n_{2} \leqslant q_{i}<\left|\varepsilon_{i-1}\right|^{-1}$, integrality forces

$$
\left(m_{1}-m_{2}\right) q_{i-1}=\left(n_{1}-n_{2}\right) p_{i-1}
$$

and, by the coprimeness of p_{i-1} and q_{i-1},

$$
n_{1} \equiv n_{2} \quad\left(\bmod q_{i-1}\right) .
$$

In particular, any $n \leqslant q_{i}$ in S_{i} would have to be the form $u_{i}+l q_{i-1}$, where u_{i} is the smallest element of S_{i}.

Since

$$
\left|(n \alpha+\gamma)-\left(n \frac{p_{i-1}}{q_{i-1}}+\gamma\right)\right|=n \frac{\left|\varepsilon_{i-1}\right|}{q_{i-1}}<\frac{n}{q_{i} q_{i-1}},
$$

the difference is plainly at most 1 for all $1 \leqslant n \leqslant q_{i} q_{i-1}$.

Proof of Theorem 1. We first analyse the related sum

$$
S(m)=S(\alpha, \gamma, m):=\sum_{1 \leqslant n \leqslant m}[n \alpha+\gamma]
$$

and note that for any j and $m \leqslant q_{j+1}$ we can (by the above lemma) replace the α by its approximation p_{j} / q_{j},

$$
S_{j}(m)=S_{j}(\alpha, \gamma, m):=\sum_{1 \leqslant n \leqslant m}\left[n \frac{p_{j}}{q_{j}}+\gamma\right],
$$

at the price of a simple additional term

$$
\begin{aligned}
S(m)-S_{j}(m) & =(-1)^{j} \#\left\{1 \leqslant n \leqslant m: n=u_{j+1}+l q_{j}, l \geqslant 0\right\} \\
& =(-1)^{j}\left[\frac{m-u_{j+1}}{q_{j}}+1\right]^{+} .
\end{aligned}
$$

Hence if $m=b q_{j}+l<q_{j+1}$ with $0 \leqslant l<q_{j}$,

$$
\begin{aligned}
S(m) & =S_{j}\left(b q_{j}\right)+\sum_{b q_{j}<n \leqslant b q_{j}+l}\left[n \frac{p_{j}}{q_{j}}+\gamma\right]+(-1)^{j}\left[\frac{m-u_{j+1}}{q_{j}}+1\right]^{+} \\
& =S_{j}\left(b q_{j}\right)+l b p_{j}+S_{j}(l)+(-1)^{j}\left[\frac{m-u_{j+1}}{q_{j}}+1\right]^{+} \\
& =S_{j}\left(b q_{j}\right)+l b p_{j}+S(l)+(-1)^{j}\left(\left[\frac{m-u_{j+1}}{q_{j}}+1\right]^{+}-\left[\frac{l-u_{j+1}}{q_{j}}+1\right]^{+}\right) .
\end{aligned}
$$

In particular, if we write $m=z_{1} q_{0}+z_{2} q_{1}+\cdots+z_{t} q_{t-1}$ (with m_{i} denoting the i th subsum), and repeatedly apply the above with $b=z_{j+1}$ and $l=m_{j}$ for $j=t-1$ to 0 , we obtain

$$
S(m)=\sum_{i=1}^{t}\left(S_{i-1}\left(z_{i} q_{i-1}\right)+m_{i-1} z_{i} p_{i-1}+(-1)^{i-1} I_{i}(m)\right),
$$

where

$$
\begin{aligned}
& I_{i}\left(m_{i}\right)=I_{i}\left(m_{i}, \alpha, \gamma\right): \\
&=\left[\frac{m_{i}-u_{i}}{q_{i-1}}+1\right]^{+}-\left[\frac{m_{i-1}-u_{i}}{q_{i-1}}+1\right]^{+} \\
&=\left(z_{i}-\left[\frac{u_{i}-m_{i-1}}{q_{i-1}}\right]_{*}^{+}\right)^{+}
\end{aligned}
$$

Now the $S_{j}\left(b q_{j}\right)$ are not difficult to evaluate. Indeed,

$$
\begin{aligned}
S_{j}\left(b q_{j}\right) & =\frac{1}{2} b q_{j}\left(b q_{j}+1\right) \frac{p_{j}}{q_{j}}+b q_{j} \gamma-\sum_{1 \leqslant n \leqslant b q_{j}}\left\{n \frac{p_{j}}{q_{j}}+\gamma\right\} \\
& =\frac{1}{2} b\left(b q_{j}+1\right) p_{j}+b q_{j} \gamma-b \sum_{1 \leqslant n \leqslant q_{j}}\left\{n \frac{p_{j}}{q_{j}}+\gamma\right\}
\end{aligned}
$$

where, with d_{i} and δ_{i} as defined in (7),

$$
\begin{aligned}
\sum_{1 \leqslant n \leqslant q_{j}}\left\{n \frac{p_{j}}{q_{j}}+\gamma\right\} & =\sum_{1 \leqslant n \leqslant q_{j}}\left\{\frac{n p_{j}+d_{j+1}+\delta_{j+1}}{q_{j}}\right\} \\
& =\sum_{0 \leqslant a \leqslant q_{j}-1}\left\{\frac{a+\delta_{j+1}}{q_{j}}\right\}=\sum_{0 \leqslant a \leqslant q_{j}-1} \frac{a+\delta_{j+1}}{q_{j}} \\
& =\frac{1}{2}\left(q_{j}-1\right)+\delta_{j+1} .
\end{aligned}
$$

So

$$
S_{i-1}\left(z_{i} q_{i-1}\right)=\frac{1}{2} z_{i} p_{i-1}\left(z_{i} q_{i-1}+1\right)+z_{i}\left(\frac{1}{2}-\delta_{i}\right)+z_{i} q_{i-1}\left(\gamma-\frac{1}{2}\right)
$$

and

$$
\begin{aligned}
S(m)= & \sum_{i=1}^{t} \frac{1}{2} z_{i} p_{i-1}\left(z_{i} q_{i-1}+1+2 m_{i-1}\right) \\
& +\sum_{i=1}^{t}\left(z_{i}\left(\frac{1}{2}-\delta_{i}\right)-(-1)^{i} I_{i}(m)\right)+\left(\gamma-\frac{1}{2}\right) m .
\end{aligned}
$$

Now the first sum may be rewritten in terms of α rather than p_{i-1} :

$$
\begin{aligned}
& =\sum_{i=1}^{t} \frac{1}{2} z_{i}\left(q_{i-1} \alpha-\varepsilon_{i-1}\right)\left(z_{i} q_{i-1}+1+2 m_{i-1}\right) \\
& =\frac{1}{2} \alpha\left(\sum_{i=1}^{t}\left(z_{i} q_{i-1}\right)^{2}+2 \sum_{i=1}^{t} \sum_{j=1}^{i-1} z_{i} q_{i-1} z_{j} q_{j-1}\right)+\frac{1}{2} m \alpha \\
& \quad-\frac{1}{2} \sum_{i=1}^{t} z_{i} \varepsilon_{i-1}\left(z_{i} q_{i-1}+1+2 m_{i-1}\right) \\
& = \\
& \frac{1}{2} m(m+1) \alpha-\frac{1}{2} \sum_{i=1}^{t} z_{i} \varepsilon_{i-1}\left(z_{i} q_{i-1}+1+2 m_{i-1}\right) .
\end{aligned}
$$

Hence, finally

$$
\begin{aligned}
C_{m}(\alpha, \gamma) & =\sum_{1 \leqslant n \leqslant m}\left((n \alpha+\gamma)-[n \alpha+\gamma]-\frac{1}{2}\right) \\
& =\frac{1}{2} m(m+1) \alpha+\gamma m-S(m)-\frac{1}{2} m \\
& =\sum_{i=1}^{t}\left(\frac{1}{2} z_{i} \varepsilon_{i-1}\left(z_{i} q_{i-1}+1+2 m_{i-1}\right)-z_{i}\left(\frac{1}{2}-\delta_{i}\right)+(-1)^{i} I_{i}(m)\right) .
\end{aligned}
$$

Proof of Corollary 1. Immediate from the trivial bounds

$$
0 \leqslant\left(z_{i}-\left[\frac{u_{i}-m_{i-1}}{q_{i-1}}\right]_{*}^{+}\right)^{+} \leqslant z_{i}, \quad-\frac{1}{2} z_{i} \leqslant z_{i}\left(\beta_{i}-\frac{1}{2}\right) \leqslant \frac{1}{2} z_{i}
$$

and, recalling (2), the rough estimation

$$
0 \leqslant \frac{1}{2} z_{i}\left|\varepsilon_{i-1}\right|\left(m_{i}+m_{i-1}+1\right)<\frac{1}{2} z_{i} .
$$

Proof of Corollary 2. We first use the expansions of Proposition 3 to approximate M_{n} by the more predictable function

$$
F_{n}=-\frac{1}{2 a_{n}} z_{n}^{2}+\left(\frac{b_{n}}{a_{n}}-\frac{1}{2}\right) z_{n}+\left(z_{n}-b_{n}\right)^{+}
$$

where

$$
b_{n}= \begin{cases}c_{n} & \text { if } n \text { is even } \\ a_{n}-c_{n} & \text { if } n \text { is odd }\end{cases}
$$

Since (with the notations of Proposition 3) for $0 \leqslant z_{n} \leqslant a_{n}$

$$
F_{n} \equiv-\frac{1}{2 a_{n}} z_{n}^{2}+\left(l_{n}+(-1)^{n} \frac{c_{n}}{a_{n}}-\frac{1}{2}\right) z_{n}+\left(z_{n}-\left(l_{n} a_{n}+(-1)^{n} c_{n}\right)\right)^{+}
$$

we can write

$$
M_{n}=F_{n}+A_{1}+A_{2}+A_{3}
$$

where

$$
\begin{aligned}
& A_{1}=\left(\frac{1}{2} z_{n}-(-1)^{n} c_{n}\right)\left(q_{n-2}+\alpha_{n} q_{n-1}\right) \frac{z_{n}}{a_{n}}\left|\varepsilon_{n-1}\right| \\
& A_{2}=\left((-1)^{n}\left(\gamma_{n} q_{n-1}-v_{n-1}\right)-m_{n-1}-\frac{1}{2}\right) z_{n}\left|\varepsilon_{n-1}\right| \\
& A_{3}=\left(z_{n}-\left(l_{n} a_{n}+(-1)^{n} c_{n}+U\right)^{+}\right)^{+}-\left(z_{n}-\left(l_{n} a_{n}+(-1)^{n} c_{n}\right)\right)^{+}
\end{aligned}
$$

with

$$
U=\left[\frac{l_{n} q_{n-2}+\left(\lambda_{n}+l_{n+1}\right) q_{n-1}-(-1)^{n} v_{n-1}-m_{n-1}}{q_{n-1}}\right]_{*} .
$$

We shall show that

$$
-\left(3-\frac{1}{2 a_{n}}\right) \leqslant M_{n}-F_{n} \leqslant\left(2-\frac{1}{2 a_{n}}\right) .
$$

The proof is rather tedious and could be shortened at the cost of less precise constants.

We note the elementary estimates

$$
\begin{aligned}
& \frac{1}{2} a_{n}\left(q_{n-2}+\alpha_{n} q_{n-1}\right)\left|\varepsilon_{n-1}\right| \leqslant \frac{a_{n}}{a_{n}+2} \leqslant 1-\frac{2}{3} a_{n}^{-1}, \\
& a_{n} q_{n-2}\left|\varepsilon_{n-1}\right| \leqslant \frac{a_{n}}{a_{n}+1} \leqslant 1-\frac{1}{2} a_{n}^{-1} .
\end{aligned}
$$

We first suppose that n is even.
If $l_{n}=1$ then $c_{n}=0, \gamma q_{n-1}-v_{n-1}<0, l_{n+1}+\lambda_{n}=1$ or 2 and the bounds follow from the rough estimates $0 \leqslant A_{1} \leqslant\left(1-\frac{2}{3} a_{n}^{-1}\right),-2<A_{2}<0, A_{3}=0$ or 1.

If $l_{n}=0$ then $l_{n+1}+\lambda_{n}=1$ and, writing $u:=\left(q_{n-1}-v_{n-1}-m_{n-1}-\frac{1}{2}\right) / q_{n-1}$, the lower bound follows easily from the inequalities $-1<u<2$, $A_{2} \geqslant-(1-u)^{+}, \quad A_{3} \geqslant-[u]^{+}$and, since $\left(\frac{1}{2} z_{n}-c_{n}\right) z_{n} \geqslant-\frac{1}{2} a_{n}^{2}, A_{1} \geqslant$ $-\left(1-\frac{2}{3} a_{n}^{-1}\right)$.
Now for $z_{n} \leqslant c_{n}$ we have $A_{1} \leqslant 0, A_{2} \leqslant u\left|\varepsilon_{n-1}\right| z_{n} q_{n-1}$ and $A_{3} \leqslant-[u]^{-}$, with $-1<u<1+q_{n-2} / q_{n-1}$ giving $A_{1}+A_{2}+A_{3}<1+a_{n} q_{n-2}\left|\varepsilon_{n-1}\right| \leqslant$ (2- $\frac{1}{2} a_{n}^{-1}$).

For $z_{n}>c_{n}$ we have $A_{1}<\left(1-\frac{2}{3} a_{n}^{-1}\right), A_{2} \leqslant 1+[u], A_{3} \leqslant-[u]$ and the upper bound is plain.

Next, suppose that n is odd.
If $l_{n}=0$ then $c_{n}=0, \quad \gamma_{n} q_{n-1}-v_{n-1}<0$ and $\lambda_{n}+l_{n+1}=0$. Hence $0 \leqslant A_{1}<\left(1-\frac{2}{3} a_{n}^{-1}\right),-1<A_{2}<1, A_{3}=0$, and the bounds are clear.

When $l_{n}=1$, we have $A_{1} \geqslant 0$. Set $w:=\left[\left(q_{n-2}+q_{n-1}+v_{n-1}-\right.\right.$ $\left.\left.m_{n-1}-\frac{1}{2}\right) / q_{n-1}\right]$. Then $-1 \leqslant w \leqslant 2$, and the inequalities $A_{2} \geqslant-(2-w)-$ $z_{n} q_{n-2}\left|\varepsilon_{n-1}\right|, \quad A_{3} \geqslant-w$, lead to the lower bound $A_{1}+A_{2}+A_{3} \geqslant$ $-\left(3-\frac{1}{2} a_{n}^{-1}\right)$.

When $z_{n} \leqslant\left(a_{n}-c_{n}\right)$ we have $A_{1} \leqslant\left(1-\frac{2}{3} a_{n}^{-1}\right)$. The inequalities $A_{2} \leqslant$ $\left(\left(v_{n-1}-m_{n-1}\right) / q_{n-1}\right)^{+}$and $A_{3} \leqslant-\left[\left(q_{n-2}+v_{n-1}-m_{n-1}\right) / q_{n-1}\right]_{*}^{-}$readily yield $A_{2}+A_{3}<1$ and thus the upper bound in this case.

Clearly, $-1 \leqslant U \leqslant 2$. Hence when $z_{n} \geqslant\left(a_{n}-c_{n}+2\right)$, or $z_{n}=\left(a_{n}-c_{n}+1\right)$ and $U \neq 2$, we have $A_{3} \leqslant-U$. Since $\lambda_{n}+l_{n+1}$ is 1 or 0 as $\gamma_{n}<\alpha_{n}$ or $\gamma_{n} \geqslant \alpha_{n}$ we also have $A_{2} \leqslant 1+U-\left(q_{n-2}+\alpha_{n} q_{n-1}\right) z_{n}\left|\varepsilon_{n-1}\right|$. Plainly, $A_{1} \leqslant$ $\frac{3}{2}\left(q_{n-2}+\alpha_{n} q_{n-1}\right) z_{n}\left|\varepsilon_{n-1}\right|$, and so $A_{1}+A_{2}+A_{3} \leqslant 1+\left(1-\frac{2}{3} a_{n}^{-1}\right)$ in these cases too.

Finally, when $z_{n}=\left(a_{n}-c_{n}+1\right)$ and $U=2$ we have $A_{3}=-1, A_{2} \leqslant 1$, and the upper bound follows on observing that, since $c_{n} \geqslant 1, A_{1} \leqslant \frac{1}{2}\left(a_{n}+2\right)$ $\left(q_{n-2}+\alpha_{n} q_{n-1}\right)\left|\varepsilon_{n-1}\right| \leqslant 1$.

The first expressions in Corollary 2 then follow since (varying z_{n}, $0 \leqslant z_{n} \leqslant a_{n}$) F_{n} has minimum value

$$
-\frac{1}{2} \frac{b_{n}}{a_{n}}\left(1-\frac{b_{n}}{a_{n}}\right) a_{n}
$$

achieved at $z_{n}=b_{n}$ (or equivalently at $z_{n}=0$ if $b_{n}=a_{n}$) and maximum

$$
\frac{1}{2}\left(\frac{b_{n}}{a_{n}}-\frac{1}{2}\right)^{2} a_{n}-\frac{1}{2 a_{n}}\left\{\frac{a_{n}}{2}\right\}^{2}
$$

achieved at $z_{n}=\left[b_{n} \pm \frac{1}{2} a_{n}\right]$. Since we can take these extremal values with $z_{n}<a_{n}$ we can find m that maximise or minimise the $(-1)^{n} F_{n}$ simultaneously.

The second expresssions follow on observing that for varying b_{n} the function F_{n} has maximum and minimum value

$$
\frac{z_{i}}{a_{i}}\left(1-\frac{z_{i}}{a_{i}}\right) a_{i}, \quad-\frac{z_{i}}{a_{i}}\left(1-\frac{z_{i}}{a_{i}}\right) a_{i}
$$

achieved at $b_{n}=a_{n}$ or 0 and at $b_{n}=z_{n}$ (equivalently at $b_{n}=a_{n}$ or 0 if $z_{n}=a_{n}$ or 0) respectively.

The bounds for the discrepancy in Corollary 5 arise by similarly showing that $-3<H_{n}-f_{n}<2$, where

$$
f_{n}=-\left(1-\frac{b_{n}}{a_{n}}\right) a_{n}+\left(z_{n}-b_{n}\right)^{+}
$$

with some gain from the trivial bound when $z_{n}=0$ (the maximum of f_{n}).
Proof of Corollary 3. Clearly for $0 \leqslant c_{i} \leqslant a_{i}$ we have

$$
\left(\frac{c_{i}}{a_{i}}-\frac{1}{2}\right)^{2} \leqslant \frac{1}{4}, \quad \frac{c_{i}}{a_{i}}\left(1-\frac{c_{i}}{a_{i}}\right) \leqslant \frac{1}{4} .
$$

Hence from Corollary 2

$$
\max _{1 \leqslant m<q_{t}}\left|C_{m}(\alpha, \gamma)\right| \leqslant \frac{1}{8} \sum_{i=1}^{t}\left(a_{i}+20\right)+\frac{1}{2} .
$$

From the proof of Corollary 2 we also have

$$
\begin{aligned}
& 2 \max _{m<q_{t}}\left|C_{m}(\alpha, \gamma)\right| \\
& \quad \geqslant \max _{m<q_{t}} C_{m}(\alpha, \gamma)-\min _{m<q_{t}} C_{m}(\alpha, \gamma) \\
& \quad \geqslant \sum_{n=1}^{t}\left\{\left(\frac{1}{2}\left(\frac{b_{n}}{a_{n}}-\frac{1}{2}\right)^{2} a_{n}-3\right)^{+}-\left(-\frac{1}{2} \frac{b_{n}}{a_{n}}\left(1-\frac{b_{n}}{a_{n}}\right) a_{n}+2\right)^{-}\right\} \\
& \quad \geqslant \sum_{n=1}^{t}\left(\frac{1}{8} a_{n}-5\right)^{+} .
\end{aligned}
$$

Proof of Property 1(a). Suppose that $m=z_{1} q_{0}+\cdots+z_{t} q_{t-1}, z_{t} \neq 0$. Then, since the slowest growth in denominators occurs for the Fibonacci numbers F_{n},

$$
m \geqslant q_{t-1} \geqslant F_{t} \geqslant\left(\frac{1+\sqrt{5}}{2}\right)^{t-2} \Rightarrow t \leqslant \frac{\log \left(\frac{3+\sqrt{5}}{2} m\right)}{\log \left(\frac{1+\sqrt{5}}{2}\right)}
$$

Hence if $\sum_{i=1}^{t} a_{i} \leqslant A t$ then, from Corollary 3,

$$
\left|C_{m}(\alpha, \gamma)\right| \leqslant \frac{1}{8}(A+24) t \leqslant \frac{(A+24)}{8 \log \left(\frac{1+\sqrt{5}}{2}\right)} \log \left(\frac{3+\sqrt{5}}{2} m\right)
$$

Proof of Property 1(b). By a lemma of Ostrowski [14, pp. 85-86] it is certainly true that $\sum_{i=1}^{t} a_{i}>\log q_{t}$. Hence, if $\sum_{i=1}^{t} a_{i} \geqslant(B+40) t$, Corollary 3 gives

$$
\begin{aligned}
\max _{m<q_{t}}\left|C_{m}(\alpha, \gamma)\right| & \geqslant \frac{1}{16} \sum_{i=1}^{t}\left(a_{i}-40\right) \geqslant \frac{1}{16} \max \left(B t, \log q_{t}-40 t\right) \\
& \geqslant \frac{1}{16} \frac{B}{B+40} \log q_{t} .
\end{aligned}
$$

The bounds stated when $a_{i} \leqslant A$ or $a_{i} \geqslant B$ arise similarly on noting that

$$
\left(a_{i}+25\right) \leqslant \frac{A}{\log A} \log a_{i}+26, \quad\left(a_{i}-9\right) \geqslant \frac{(B-9)}{\log (B+1)} \log \left(a_{i}+1\right)
$$

together with the trivial bounds $\prod_{i \leqslant t} a_{i} \leqslant q_{t} \leqslant \prod_{i \leqslant t}\left(a_{i}+1\right)$.
Proof of Property 2(a). For any convergent denominator q_{s} Corollary 1 gives

$$
\left|C_{m}(\alpha, \gamma)\right| \leqslant \frac{3}{2} \sum_{i=1}^{t} z_{i} \leqslant \frac{3}{2}\left(\sum_{i=1}^{s} z_{i} q_{i-1}+\frac{1}{q_{s}} \sum_{i=s+1}^{t} z_{i} q_{i-1}\right) \leqslant \frac{3}{2}\left(q_{s}+\frac{m}{q_{s}}\right)
$$

and the result follows on picking q_{s} to be the largest convergent less than \sqrt{m}. Plainly for fixed, irrational α, such a bound is $o(m)$ (since $\max \left\{q_{s}<\sqrt{m}\right\} \rightarrow \infty$ as $\left.m \rightarrow \infty\right)$.

Proof of Property 2(b). From Corollary 3 we have

$$
\begin{equation*}
\max _{m \leqslant q_{t}}|C(m)| \geqslant \frac{1}{16}\left(a_{t}-40\right) \geqslant \frac{1}{16}\left(\frac{q_{t}}{q_{t-1}}-41\right) \tag{16}
\end{equation*}
$$

and this is not $o(m)$ uniformly in α. Specifically, given any $f(n)=o(n)$ we can generate α with the desired behaviour by (iteratively) choosing the partial quotients to satisfy

$$
a_{j+1} \geqslant \min \left\{n \geqslant 82 q_{j}:\left|\frac{f(m)}{m}\right| \leqslant \frac{1}{32 q_{j} g(j)} \text { for all } m \geqslant \frac{n}{16}\right\},
$$

where $g(j)$ can be any function such that $g(j) \rightarrow \infty$ as $j \rightarrow \infty$. From (16) we know that there exists an $m<q_{j+1}$ with

$$
\left|C_{m}(\alpha, \gamma)\right| \geqslant \frac{1}{16}\left(\frac{q_{j+1}}{q_{j}}-41\right) \geqslant \frac{1}{32} \frac{q_{j+1}}{q_{j}}
$$

where the trivial bounds $\frac{1}{2} m \geqslant\left|C_{m}(\alpha, \gamma)\right| \geqslant \frac{1}{32} a_{j+1}$ ensure that m is sufficiently large that (by the definition of a_{j+1})

$$
\max _{m<q_{j+1}}\left|\frac{C_{m}(\alpha, \gamma)}{f(m)}\right| \geqslant \frac{1}{32} \frac{q_{j+1}}{q_{j}} \frac{32 q_{j} g(j)}{m}>g(j) \rightarrow \infty, \quad \text { as } \quad j \rightarrow \infty
$$

Proof of Property 3(a). Observe that

$$
\frac{1}{f\left(q_{i-1}\right) q_{i-1}^{1+r}}<\left\|q_{i-1} \alpha\right\|<\frac{1}{q_{i}} \Rightarrow q_{i-1}>\left(\frac{q_{i}}{f\left(q_{i-1}\right)}\right)^{1 / 1+r}
$$

Hence if $z_{i} \neq 0$ then $q_{i-1} \leqslant m_{i}<q_{i}$ and

$$
z_{i} \leqslant \frac{m_{i}}{q_{i-1}}<m_{i}\left(\frac{f\left(q_{i-1}\right)}{q_{i}}\right)^{1 / 1+r}<m_{i}^{r / 1+r} f\left(m_{i}\right)^{1 / 1+r} .
$$

Thus, by Corollary 1,

$$
\begin{aligned}
\left|C_{m}(\alpha, \gamma)\right| & \leqslant \frac{3}{2} \sum_{i=1}^{t} z_{i} \leqslant \frac{3}{2} m^{1 / 1+r} f(m)^{1 / 1+r} t \\
& \leqslant \frac{3 \log \left(\frac{3+\sqrt{5}}{2} m\right)}{2 \log \left(\frac{1+\sqrt{5}}{2}\right)} m^{1 / 1+r} f(m)^{1 / 1+r} .
\end{aligned}
$$

Proof of Property 3(b). Suppose that for a suitably large q (large enough that $q^{r / 1+r} \geqslant 164$) we have $q^{1+r}\|q \alpha\| \leqslant 1$. Then q must be a convergent (q_{t-1} say) with

$$
\frac{1}{2 q_{t}}<\left\|q_{t-1} \alpha\right\|<\frac{1}{q_{t-1}^{1+r}} \Rightarrow q_{i-1}<2 q_{t}^{1 / 1+r} .
$$

Hence by Corollary 4(b) there exists an $m<q_{t}$ with

$$
\left|C_{m}(\alpha, \gamma)\right| \geqslant \frac{1}{16}\left(\frac{q_{t}}{q_{t-1}}-41\right) \geqslant \frac{1}{64} q_{t}^{r / 1+r} \geqslant \frac{1}{64} m^{r / 1+r} .
$$

Since the bound grows with q_{t} we clearly generate infinitely many distinct m in this way.

Proof of Corollary 6. Suppose that $\sum_{i=1}^{t} a_{i} \leqslant A t$ for some $t \geqslant$ $(3168 A+1152)$. Then there are certainly at least $[t / 4]$ partial quotients $a_{2 j} \leqslant 4 A, 2 j \leqslant t$. From these we can select a subsequence of at least $N=[t / 8]$ with $a_{2 n_{i}} \leqslant 4 A$ and $n_{i+1}-n_{i} \geqslant 2$ for each $1 \leqslant i \leqslant N$.

Taking $m=q_{2 n_{1}-2}+q_{2 n_{2}-2}+\cdots+q_{2 n_{N}-2}<q_{t}$ we observe that

$$
m_{2 n_{i}-1}+m_{2 n_{i}-2}+1=q_{2 n_{i}-2}+2 m_{2 n_{i}-5}+1 \leqslant q_{2 n_{i}-2}+q_{2 n_{i}-3}
$$

and

$$
\left|\varepsilon_{2 n_{i}-2}\right|^{-1}=q_{2 n_{i}-1}+\alpha_{2 n_{i}-1} q_{2 n_{i}-2} \geqslant\left(q_{2 n_{i}-2}+q_{2 n_{i}-3}\right)\left(1+\frac{1}{2} \alpha_{2 n_{i}-1}\right)
$$

where

$$
\alpha_{2 n_{i}-1}=\frac{1}{a_{2 n_{i}}+\alpha_{2 n_{i}}}>\frac{1}{4 A+1} .
$$

Hence, since plainly $A \geqslant 1$, (9), (11), and (14) give

$$
\begin{aligned}
\Delta_{m}\left(1-\gamma^{\prime}, \alpha\right) & =-\left\{\gamma^{\prime}\right\}+\sum_{i=1}^{[t / 8]}\left(1-\left|\varepsilon_{2 n_{i}-2}\right|\left(m_{2 n_{i}-1}+m_{2 n_{i}-2}+1\right)\right) \\
& \geqslant-1+\left[\frac{t}{8}\right] \frac{5}{11(4 A+1)} \geqslant \frac{1}{18 A(4 A+1)} \sum_{i=1}^{t} a_{i} \\
& >\frac{1}{18 A(4 A+1)} \log q_{t} .
\end{aligned}
$$

The lower bound follows on reversing the roles of odd and even.
Proof of Proposition 1. With d_{i} and δ_{i} as in (7), writing

$$
\left[k \frac{p_{n-1}}{q_{n-1}}+\gamma\right]=\left[\frac{k p_{n-1}+d_{n}+\delta_{n}}{q_{n-1}}\right]=\left[\frac{k p_{n-1}+d_{n}}{q_{n-1}}\right]
$$

and

$$
[k \alpha+\gamma]= \begin{cases}{\left[\frac{k p_{n-1}+d_{n}+\left(\delta_{n}+k\left|\varepsilon_{n-1}\right|\right)}{q_{n-1}}\right]} & \text { if } n \text { is odd } \\ {\left[\frac{k p_{n-1}+d_{n}+\left(\delta_{n}-k\left|\varepsilon_{n-1}\right|\right)}{q_{n-1}}\right]} & \text { if } n \text { is even. }\end{cases}
$$

it is not hard to see that,

$$
u_{n}=\min \left\{k \in \mathbb{N}: \delta_{n}+k\left|\varepsilon_{n-1}\right| \geqslant 1 \text { and } k p_{n-1}+d_{n}+1 \equiv 0\left(\bmod q_{n-1}\right)\right\}
$$

if n is odd, and

$$
u_{n}=\min \left\{k \in \mathbb{N}: \delta_{n}-k\left|\varepsilon_{n-1}\right|<0 \text { and } k p_{n-1}+d_{n} \equiv 0\left(\bmod q_{n-1}\right)\right\} .
$$

if n is even.
Hence, recalling the familiar identity $q_{n} p_{n-1}-q_{n-1} p_{n}=(-1)^{n}$, we readily see that, when n is odd

$$
\begin{aligned}
u_{n} & =\min \left\{q_{n}\left(d_{n}+1\right)-s q_{n-1}:\left(q_{n}\left(d_{n}+1\right)-s q_{n-1}\right) \geqslant\left(1-\delta_{n}\right)\left|\varepsilon_{n-1}\right|^{-1}\right\} \\
& =q_{n}\left(d_{n}+1\right)-q_{n-1}\left[\gamma q_{n}-\alpha_{n} \beta_{n}\right] \\
& =q_{n}\left(d_{n}+1\right)-q_{n-1}\left(d_{n+1}-\lambda_{n}\right) \\
& =\beta_{n} q_{n}+\left(\beta_{n+1}+\lambda_{n}\right) q_{n-1} .
\end{aligned}
$$

Similarly, when n is even

$$
\begin{aligned}
u_{n} & =\min \left\{t q_{n-1}-d_{n} q_{n}:\left(t q_{n-1}-d_{n} q_{n}\right)>\delta_{n}\left|\varepsilon_{n-1}\right|^{-1}\right\} \\
& =\left(\left[\gamma q_{n}+\alpha_{n} \beta_{n}\right]+1\right) q_{n-1}-d_{n} q_{n} \\
& =\left(d_{n+1}+\lambda_{n}+1\right) q_{n-1}-d_{n} q_{n} \\
& =\beta_{n} q_{n}+\left(\beta_{n+1}+\lambda_{n}\right) q_{n-1} .
\end{aligned}
$$

Proof of Proposition 2. Expression (6) is a straightforward exercise in induction. Property (i) is immediate from the definition of the c_{i}, and property (ii) amounts to the inequality

$$
\frac{\gamma_{n}}{\alpha_{n}}=\frac{\gamma_{n-1}-\alpha_{n-1} c_{n}}{1-\alpha_{n-1} a_{n}}<1
$$

if $a_{n}=c_{n}$.
Property (iii) holds since $c_{k+2 i}=a_{k+2 i}, c_{k+2 i+1}=0$ for all $i \geqslant 0$ would (by (6)) imply that

$$
\left|\varepsilon_{k-2}\right|>\gamma_{k-1}\left|\varepsilon_{k-2}\right|=\sum_{i=k}^{\infty} c_{i}\left|\varepsilon_{i-1}\right|=\left|\varepsilon_{k-2}\right| .
$$

To see the uniqueness, suppose that we have two representations

$$
\sum_{i=1}^{\infty} b_{i}\left|\varepsilon_{i-1}\right|=\gamma=\sum_{i=1}^{\infty} b_{i}^{\prime}\left|\varepsilon_{i-1}\right|
$$

where the b_{i} and b_{i}^{\prime} both satisfy (i), (ii) and (iii) with $b_{k}>b_{k}^{\prime}$ and $b_{j}=b_{j}^{\prime}$, $j<k$. By (iii) there must exist an $I \geqslant 0$ such that $b_{k+2 I+1}^{\prime} \neq a_{k+2 I+1}$ and $b_{k+2 i-1}=a_{k+2 i-1}, b_{k+2 i}=0$ for all $1 \leqslant i \leqslant I$ and (since $b_{j}^{\prime}<a_{j}$ for infinitely many succeeding j) we obtain the false inequality:

$$
\begin{aligned}
\left|\varepsilon_{k-1}\right| & \leqslant \sum_{i>k}\left(b_{i}^{\prime}-b_{i}\right)\left|\varepsilon_{i-1}\right| \\
& <\sum_{i=1}^{I} a_{k+2 i-1}\left|\varepsilon_{k+2 i-2}\right|+\sum_{j=1}^{\infty} a_{k+2 I+j}\left|\varepsilon_{k+2 I+j-1}\right|-\left|\varepsilon_{k+2 I}\right| \\
& =\left|\varepsilon_{k-1}\right| .
\end{aligned}
$$

Proof of Proposition 3. The first relation follows from the observation that

$$
\begin{aligned}
\left\{\gamma q_{n-1}\right\} & =\left\{\left\{(-1)^{n-1} v_{n} \alpha+\gamma_{n}\left|\varepsilon_{n-1}\right|\right\} q_{n-1}\right\} \\
& =\left\{\left(v_{n}+\gamma_{n} q_{n-1}\right)\left|\varepsilon_{n-1}\right|\right\} .
\end{aligned}
$$

where $-1<\left(v_{n}+\gamma_{n} q_{n-1}\right)\left|\varepsilon_{n-1}\right|<1$ since

$$
-q_{n-1} \leqslant\left(v_{n}+\gamma_{n} q_{n-1}\right) \leqslant q_{n}-\left(a_{n}-c_{n}-\gamma_{n}\right) q_{n-1}<q_{n}+\alpha_{n} q_{n-1} .
$$

The expression for u_{n} then comes from merely substituting this in Proposition 1 and observing that $q_{n}\left(\gamma_{n} / \alpha_{n}-\gamma_{n+1}\right)=c_{n+1} q_{n}=\left(v_{n+1}+v_{n}\right)$.

ACKNOWLEDGMENTS

The author is particularly grateful to Jonathan Borwein for pointing out the potential in this problem and for a number of useful discussions, and to Peter Borwein and David Boyd for their support.

REFERENCES

1. C. Baxa and J. Schoissengeier, Minimum and maximum order of magnitude of the discrepancy of ($n \alpha$), Acta Arith. (3) 68 (1994), 281-290.
2. J. M. Borwein and P. B. Borwein, On the generating function of the integer part: $[n \alpha+\gamma]$, J. Number Theory 43 (1993), 293-318.
3. T. C. Brown and P. J. Shiue, Sums of fractional parts of integer multiples of an irrational, J. Number Theory 50 (1995), 181-192.
4. I. R. Descombes, Sur la répartition des somments d'une ligne polygonale régulière nonfermée, Ann. Sci. École Norm. Sup. 75 (1956), 284-355.
5. Y. Dupain, Intervalles a restes majorés pour la suite $\{n \alpha\}$, Acta. Math. Sci. Hungar. 29 (1977), 289-303.
6. Y. Dupain and V. T. Sós, On the one-sided boundedness of discrepancy-function of the sequence $\{n \alpha\}$, Acta Arith. 37 (1980), 363-374.
7. Y. Dupain and V. T. Sós, On the discrepancy of the sequence $\{n \alpha\}$, Coll. Math. Soc. J. Bolyai 34 (1981), 355-387.
8. G. H. Hardy and J. E. Littlewood, Some problems of diophantine approximation; the lattice points of a right-angled triangle, Proc. London Math. Soc. 20 (1922), 15-36.
9. G. H. Hardy and J. E. Littlewood, Some problems of diophantine approximation; the lattice points of a right-angled triangle, Abh. Math. Sem. Univ. Hamburg 1 (1922), 212-249.
10. H. Kesten, On a conjecture of Erdős and Szüsz related to uniform distribution mod 1, Acta. Arith. 12 (1966), 193-212.
11. L. Kuipers and H. Niederreiter, "Uniform Distribution of Sequences," Wiley, New York, 1974.
12. M. Lerch, Question 1547, l'intermédiate des Mathématiciens 11 (1904), 145-146.
13. J. Lesca, Sur la repartition modulo 1 de la suite $n \alpha$, Acta Arith. 20 (1972), 345-352.
14. A. Ostrowski, Bemerkungen zur Theorie der diophantischen Approximation, Abh. Math. Sem. Univ. Hamburg 1 (1922), 77-98.
15. K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20, 168.
16. J. Schoissengeier, On the discrepancy of ($n \alpha$), Acta Arith. 44 (1984), 241-279.
17. J. Schoissengeier, On the discrepancy of ($n \alpha$), II, J. Number Theory 24 (1986), 54-64.
18. J. Schoissengeier, Abschätzungen für $\sum_{n \leqslant N} B_{1}(n \alpha)$, Mh. Math. 102 (1986), 59-77.
19. J. Schoissengeier, The discrepancy of $(n \alpha)_{n \geqslant 1}$, Math. Ann. 296 (1993), 529-545.
20. V. T. Sós, On the theory of Diophantine approximations, I, Acta Mathematica 8 (1957), 461-472.
21. V. T. Sós, On the theory of Diophantine approximations, II, Acta Math. Acad. Sci. Hungar. 9 (1958), 229-241.
22. V. T. Sós, On the discrepancy of the sequence $\{n \alpha\}$, Coll. Math. Soc. J. Bolyai 13 (1976), 359-367.
23. V. T. Sós, On strong irregularities of the distribution of $\{n \alpha\}$ sequences, in "Studies in Pure Mathematics, Dedicated to the Memory of Paul Turán," pp. 685-699, Birkhäuser, Basel, 1983.

[^0]: * E-mail: pinner@cecm.sfu.ca.

