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when o is irrational. From this we deduce a number of elementary bounds on the
growth and behaviour of C,(a, 7). In particular, we show that as m varies the
extent of the fluctuations in size can be determined almost entirely from the non-
homogeneous continued fraction expansion of y with respect to «. These sums are
closely related to the discrepancy of the sequence ({na}); we state a related explicit
formula that yields similar bounds for the discrepancy. Sums of this form also occur
in a lattice point problem of Hardy and Littlewood. = © 1997 Academic Press

1. INTRODUCTION

In a recent paper, Brown and Shiue [3] use the continued fraction
expansion of a to obtain an explicit formula for the sum

Cum)= % ({ka} —3)

I1<k<m

and to give simple proofs of results of Lerch [12], Hardy and Littlewood
[8;9, “Problem B”], Ostrowski [ 14], and So6s [ 20]. In particular, in addi-
tion to producing explicit upper and lower bounds for |C,(m)|, they show
that if the partial quotients of « are bounded by A4 then, for some explicit
constant d,, both C,(m)>d,logm and C, m)< —d, logm hold for
infinitely many m.
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We show here that a surprisingly similar formula holds in the non-
homogeneous case,

Cola,y)= Y  ({ka+y}—3)

1<k<m

leading to comparable upper and lower bounds for the absolute value of
this quantity. There is at least one major difference though; it is no longer
true that bounded quotients are sufficient to cause the sizeable positive—
negative swings that occur when y =0. For example (as we shall show in
a subsequent paper), if oc=ﬂ one-sidedly bounded sums Cm(ﬁ, >0
occur when y=1/2. However, such a gamma should be thought of as
exceptional. We show that the extent or absence of these fluctuations is (in
some asymptotic sense) determined by the non-homogeneous continued
fraction expansion of y with respect to a.

Sums of the form C,, ,(x, —a(m/w)) were studied in detail by Hardy and
Littlewood [8; 9, “Problem A”] in connection with the problem of
approximating the number of lattice points in a right-angled triangle. Most
of their bounds follow straightforwardly from ours. The sums C, (a, y) are
also closely related to the discrepancy of the sequence ({na}); in particular,
our formula yields expressions reminiscent of the “explicit formulae” of Sos
and Dupain [5-7, 21-23] and could be used to duplicate many of their
results. Similar formulae and estimates appear in the work of Schoissengeier
[1, 16-19].

In the next section we introduce the various notations and give the
machinery and basic properties of the regular and non-homogeneous con-
tinued fraction expansions; we postpone the proof of those propositions
until the end of Section 5. In Section 3 we state the main results; we give
the proofs in Section 5. In Section 4 we state without proof the corre-
sponding formula and results for the discrepancy function.

2. BASIC NOTATION
For any irrational real a, real y and integer m > 1, we write

Cula,7):= Y, ({ka+y} —3)

1<k<m

where as usual {x} =x—[x] denotes the fractional part of x.
We shall suppose throughout that « is irrational and has the continued
fraction expansion

o= [a()a a, ds, ];
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where

T P R (1)

n a’n

and shall use p,/q; to denote the ith convergent to «,

pn+1::an+1pn+pn—la P_15=1, p_2:=0,
9n1 =0y 190t q0_15 q71:=0, q,2:=1,
with
8.’:q_(x_p_:(_71)i
l I D i T %

denoting the closeness of such an approximation.
Following Brown-Shiue, we shall make frequent use of the unique
decomposition of an m < g, as

m=z,q, 1+ - +z22q41+21qo

(the so called “Zeckendorff Representation” of m), where

(1) O<21<a1_19

(i) 0<z;<a;, 2<i<t,

(i) ifz;=a,then z, ;=0 (2<i<1),
and use m;, 1 < j<t, to denote the corresponding subsums

m;=zyqo+ - +2;4; 1.
Note that for all j
m;+m;_+1<gq;. (2)

We shall also need some new gamma dependent parameters

{vq,_1} if n is even,
e A A ()
and
u,,=un(oc,y):=min{keN:[koc—i—y];é{kp"l—i—y]}. (4)
Qn—l

The following proposition enables us to explicitly compute the u;:
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ProrosITION 1.

unzﬁnqn_i_(in_i_ﬁn#rl) qn—1

where

1 _{1 iJ[anﬁn>ﬂn+l(Oro‘nﬁn:ﬁnJrlif‘niseven)’
70 i B< B (ora,B, =B, if nisodd).

We shall also need to consider the non-homogeneous continued fraction
expansion of y with respect to a (see Borwein—Borwein [2] for more
details). Suppose that the continued fraction for « produces a sequence of
a, and «, as above, then we generate an accompanying sequence of non-
homogeneous partial quotients ¢, and remainders y, by setting

Cn+1:={:(n]s Vn+1:={3:’}s V03={V}- (5)

n n

Noting the relation
{y}zz C; |8i71|+yn |8r171| (6)

i=1

the ¢, give us an expansion of y in terms of o:

ProOPOSITION 2. For 0<y <1,

cileql,
1

y:

M8

where the c¢; produced by (5) have the following properties:
(1) 0<¢;<a;
(ii) ifc;=a; then ¢; ., =0
(1) ¢;#a; for infinitely many odd and infinitely many even i.

Moreover, such an expansion is unique (i.e. if y=272, b, |¢;_ | with integers
b; satisfying (1), (ii), and (iii) then b,= c, for all i).

Note that this expansion is distinct from that employed by Sés and
Dupain [5,21-23] (attributed by them to Lesca [13] and Descombes
[4]) where ¢, _, replace the |¢;_,|.
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We set v, to be the sums

v, = Z (_1)niiciqi71

i=1

and observe that one can express the f, and u, in terms the v; and y,.

PROPOSITION 3.
ﬁnzln—i_(_l)n(vn—i_ynqnfl) |8n71|
un:lnqn+(1n+l+)Ln)qn71+(_1)ﬂvn
where
l _{1 !‘f‘(_l)n(vn+ynqn71)<0 (OV =ifniS0dd)’
B 0 lf(_l)n(vn—i_ynqnfl)>0 (0}" =lfniseven),

) _{1 lfanln—i_(_l)nyn>ln+l (OV =lfniseven),
L0 ifa,l, 4+ (=1)"y,<l,., (or =ifnisodd).

The parameters v, appear in Borwein—Borwein [2] disguised as ¢, ;=
q,+q,_1+(—1)"v,. We note the elementary bounds

—q4n-1 <l);'tgqu'

Proposition 3 is perhaps more digestible in its expanded form:
When 7 is odd,

qn+qn71_vn lf Cn;éo(orcnzoaynanl)Unfl)andcn+1:03
Uy,=89,— Uy if Cn?éo(orcn:()ﬂynqn—lzvn—l)andcn+l7507

U, if ¢,=0andy,q,_;<v

n—1»

and when n is even,

qn71+vn lf cn7é0(Orcnzosynqn71>vn71)’
u,= qn+qn71_vn71 lf anoandynqn71<vn71and(x}1+yn<1>
Qn+2Qn71_Un71 if Cn:()andynqnfl<U}1flandan+yn>1'

In several of the proofs we shall make use of the parameters
5n:5n((xa y)::{yqnfl}a dn:dn(aa V)IZ[anfl]- (7)
We also recall the common notations

x* =max(x, 0), x~ =min(x, 0)
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and | x|, the distance from x to the nearest integer. Finally, we define a

useful variant of the integer part

[x]*:{[x] if x¢z,

x—1 if xeZ.

3. OUR MAIN RESULTS

(8)

With f,, u; and [x], defined in (3), (4) and (8) above, we show the

following simple, explicit, formula for the sum C, (a, y):

THEOREM 1. If m=z,qy+ ---z,q,_, is the Zeckendorff representation

of m=1, then

Cm(a'9 y): Z (_1)1 Mi’

I<i<t

where

1 1 —m,
M;= _Ezi l&; 1] (mi+mil+1)+<ﬂi_2> Z,—+<Zf_{ulmll

qi—1

Note that when y =0,
= 0 ifiiseven, (g if i is even,
TV ifiisodd, T \g.+q,, ifiisodd,

giving (for z;< a;)

< {u,-—m,-_l]+>+ {z,- if i is even,
Z,—| ———— =
’ 41 s 0  ifiisodd,
and we immediately recover Brown—Shiue [ 3, Theorem 1(c)],
t
Cplo, 0)= ) (1) 371 =g, | (m+m,_ +1)).

i=1

Rough estimation readily gives us a rough upper bound:

COROLLARY 1. With m as above

t

t
|Cm(an y)' s% Z Zi’ max |Cm(a9 y)' <% Z ai'

1 ]gm<q[ i=1
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With a bit more effort one can show more precisely how the partial
quotients a; of a and the non-homogeneous partial quotients ¢; of y with

respect to a (as defined in (5) above), affect the growth of C, (a, y):

COROLLARY 2. (i) If we fix o and y and vary m then, for any t =1,

max Cm(oc,y)zé zt: Cli<1_> + Z < >261,-+E1(f),

l<sm<gq, i=1 i=1 4
iodd ieven
1 & oo ¢; 1 & /1 ¢)\?
: i i i
min Cm(ar y): Z —| 1= a;—= Z ~N ai_E2(l)9
l<m<g, 2 i—1 a, a[ 2 i—1 2 a[
ieven iodd

where |E;(1)| <3(51+1).
(1) If we fix « and m=z,qy+ --- +z,q,_, and vary y, then

Z; Z;
sup Cm(as 7): ;’ <1 al> ai+F1([)>
14 i

N =
i -

ye€[0,1) i

inf  C,(a, 7) 1i2<1 >a Fy(1)
m\ s = -5 - - - s

7€[0.1) 2.5 a a; ?

where |F,(t)| <351+ 1).

Similarly, if we vary both m and y,
t

sup max C,(ap)=% ) a,+G(1),

yefo.n <sm<gq i=1
t
inf  min C,(o,7)=—% Y a,—Gy(1)
ye[0,1) 1<sm<gq, i=1
with |G,(¢)| <3(5t1+1).
We observe that the right-hand sides of the expressions in (i) are attained
for the choice m),:=3"z; ¢, ,and m] :=3 z/q, , respectively, where

[c;,+3a,;] ifiiseven, [(a;—c,)+1a,] ifiis odd,
zii=<a,—c¢; iodd, ¢;#0, z! =< ¢ ieven, ¢;#a;,
0 iodd, ¢;=0, 0 ieven, ¢;=a;,

with the + sign chosen such that 0 <z}, z! <a,. Similarly, the right-hand
sides in (ii) are achieved when

t t

V== zileial, = zilel. (10)
=1 =1
;odd ileven
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Using m" to denote the sum of the odd indexed, Y, .qq Z;¢;_1, OF €ven
indexed, Y ,..enZ:¢i_1, terms of the Zeckendorff representation of
m=Yz,q;_,, as jis odd or even respectively, we note that y,, = { —m'Va}
and y;,={—m'%}. In particular C,(a, y) can in these cases be rewritten
as a sum of wholly positive or wholly negative terms;

C a ym —_{an}+z Zi(1_|8i71|(mi'l—)—i_ms'ill—‘rl))!
! (11)
(a ym)_ _{ym} - Z %Zi(l - |8i71| (mi'i) +mslll + 1))’
i=1
via the simple relation C,,  (a, —na)=C,,(a, 0) — C,(a, 0) — { —na}.

We remark that for general y it is no longer true that bounded partial
quotients are sufficient to cause C,,(«, y) to take arbitrarily large positive
and negative values (recall, Hardy & Littlewood [8, Theorem B4], that if
the a;< A4 then C,(a,0)>c, logm and C,(a, 0) < —c,logm must both
hold for infinitely many m). We note the values y,:=>7, [a5/2] |&2_1]
and p,:=>7", [ds_1/2] |es;_»| for which the sums are particularly one-
sided (notice that if the a, are all even then y,= 3 and y, =3{a})

max C,(a, 7o) =% Z a;+O0(t), min C,(a, y,)=O(t),

I<sm<g i—1 l<m<g,

, (12)
max Cm(aa yl) = O(Z)» min Cm(O(, yl) = _% Z a[+ O(I)»
I<m<g, l<m<g, _

i

and y,:=>7", (%iﬁ/4) a;] |e;_;| for which the positive-negative
swings are the most symmetric

t
max C,(a, 75) =%Za+0 1), min C,(a y,)= %Za—i—O(l

l<sm<g, i—1 l<sm<g,

(13)

For y =0 the corollary gives (similar to Schoissengeier [ 18])

t t

max C,(x,0)=% Y a,+0(1), min C,(,0)=—% > a,+ O(1).
l<sm<g, i=1 l<sm<gq, i—1

ieven iodd

In contrast, the difference between the largest and smallest value is little
affected by the choice of y:

max C,(a,7)— min C,(a,7)= Za—i-O f).

l<m<g, l<m<gq, i—1
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Using the parameters f5; of (3) rather than the ¢;, we can similarly obtain
the less discrete but perhaps more straightforward variant of (i),

t
max =t Y BO-Brats Y () at E),
<m<qt _ =

odii ieveln

t
min  C,( Z pi(1—=p Z (3P a;— Eq(1),
l<m<yg, i=1 _
where — 4(112+ 1)< E, (1) <1(5¢+1). The connection becomes clear on

observing that {yq; _,} =¢,;/a;+ O(1/a;) if ¢, #0, with {yq,_,} = O(1/a;) or
—0(1/a;) if ¢,=0.
As an easy consequence of Corollary 2 we have the following upper and
lower bounds on the growth rate of |C,(a, y)|:

COROLLARY 3. Fort>=1,

(a,—40)* < max |C,(a, )| <3

1 l<m<g,

(a,+24).

L
16

I =
£M~

i i

In view of (12) and (13) the constants 1/8 and 1/16 are plainly optimal.
Using Corollary 3, a number of well known properties of C, («, 0) extend
immediately to our more general sums C, (a, 7). We should remark that
similar upper bounds (although without our explicit constants) could be
alternatively obtained from known results for the discrepancy via the rela-
tions (14) and (15) below.

ProPERTY 1. (a) If 3°!_, a;< At for all +>1, then
|Coular, )| < 3(4 +24) log(3m)

for all y and m>1.
(b) If ¥¢_,a,=(B+40)¢ for infinitely many # then, for any fixed y,

1 B
— = ]
oo > 76 5y 07 102

for infinitely many m.

Under the stronger hypothesis a,< A for all i in (a), or a,> B for all i
in (b), one can replace the corresponding bound by

1 A 1 ( _9)
<=(—+ S
|C,,.(, )] <3 < og 55> log(3m), |C, (o, p)| = T ogl 0 log m,
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respectively (a bound which is then asymptotically sharp in terms of 4 or B).
More generally, for a fixed a the sums |C,,(«, )| are o(m) as m— oo
(uniformly in y) but are not o(m) uniformly in o

ProPERTY 2. (a) For any fixed « and all y

|Cl, 7)< 3 = 0,(m)

m
max{q, <./m}
as m— 0.

(b) Forany:t>1

1
max |C, (o, 1) =— (L= —41).
m<gq, 16

In particular, given any function f(n)=o0(n), there are infinitely many «
such that, for any fixed y,

n— oo

limsup ‘C}(((:)y)‘ =00

In general a precise knowledge of the growth of the partial quotients of
o (equivalently the quality of rational approximations to a«) leads to
accurate bounds on the growth of |C,(«, y)|. We give the following
primarily to show that most of the results of Hardy-Littlewood [9,
Theorems 2, 37 do still hold for these more general sums (similar theorems
occur in Ostrowski [ 14, pp. 80-811]).

PropPerRTY 3. (a) For any r >0 and non-decreasing function f, such that
q' " f(q) llg] > 1 for all ge N,

|Conlots )l <4m™ " f(m)"1 " log(3m)

for all y and m > 1.

(b) If, for some fixed r>0, ¢' " ||gx|| <1 for infinitely many ge N
then, for any fixed 7,

|Colot, p)| > ggm™

for infinitely many m.

Notice from (a) that if a is algebraic then, by Roth’s Theorem [ 15], for
any ¢ >0 there is a constant ¢,(a, ¢) such that |C, (o, y)| < c¢;(a, &) m®.
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4. THE DISCREPANCY OF THE SEQUENCE ({na})

For a sequence ¥ = (b,), b,€ [0, 1) one measures how close the subinter-
val I of [0, 1) comes to receving its “fair share” of points by means of the
function:

AN, F) = Z (/b)) — 1),
i=1

where y,(x) denotes the characteristic function of I and |I| the length of L
We recall the definition of the discrepancy D (%) :=sup, |Ay(I, &)| of &
and its variant, the extreme discrepancy D%(%) of &, that we shall use
here

Di() 7= sup |45 (L0, B), ).

0
n=1

For the sequences & = ({na});_, we use the abbreviations

An(B, ) :=AN([0, B), ({no}),; ), DF(a) :=(({nr}),/2 )

Since for 0 <y <1

{na+y} = {na} +X[0,17y)({na})_(l =)

we observe the following simple relation between the C,(a,y) and

An(B, 0);

Col, 7) = Ct, 0) +4,,,(1 —p, ). (14)
Lesca [3] has shown further that

Colo, 0)= —34,,({(m—1) a}, ), (15)

so that the discrepancy formulae of Sos et al. could presumably be con-
versely used to obtain a related formula for C,(a,y). From (14) and
Theorem 1 we obtain at once the following explicit formula for the dis-
crepancy:

COROLLARY 4. If m=z,qy+ -+ +2z,q,_, is the Zeckendorff representa-
tion of m=1 and 0<y<1, then

t

Am(l_% 0(): z (_1)1H1

i=1
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where
L X +\ +
H= = (1= )z (= - =] )
qif 1 %
We immediately obtain the rough bounds

t t
Di(a)< ). z,, max Di(a)< ) a.

l<m<g, i—1

Corresponding to Corollary2 we observe the asymptotically precise
bounds

COROLLARY 5. (i) If we fix a and y and vary m then, for any t > 1,

t
max 4,(1—pa)=Y c"(l—”") a,+E (1),

l<m<q[ i=1 ai i
iodd
min A4,(1 -y, a)=— Z A —E5(1),
l<m<g, 171 al

ieven

where —(t+1)<E;<3(5t+1).
(ii) If we fix « and m=z,qy+ --- +z,q,_, and vary y then

Loz; z;
sup Am(l_ysa)z Z - l_g ai+F1(t)’

ye[0.1) i—1 i i
iodd
oz z.
inf 4,(1-n00= = 3 2(1-2)a- £,
ye[0,1) i=1 a; a;

where —(t+1)<F,<3(5t+1).

It is perhaps worth recalling here the theorem of Kesten [10]; namely
that if the partial quotients of a are bounded, then 4,,(1 —y, «) is bounded
if and only if y={na} for some integer n (equivalently ¢,=0 for all but
finitely many ). Notice that, varying both m and 7y,

t
Sup max Am(ys O():% Z ai+Gl(t)a
yefo.n) 1<sm<gq i=1
i odd

inf  min 4,,(y,« Z a;— G(1)
yel[0,1) I1<sm<g, i=1
ieven
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where — 3(1+1)< G, (1) <35+ 1). Expressions similar to this and (ii)
appear in Schoissengeier and Baxa [1, 16, 17, 19]. The right-hand sides
in (i) are in this case attained for i, :=3%, 4q(a;—¢;)q; , and
M) =3 even C:q; 1 respectively, those in (ii) are again achieved for the y;,
and y), of (10).

Plainly there is a Corollary-3-type inequality

t

) (a;,—9)" < max Di(a)<j ) (a;+12).
im1 l<m<g,

I~

i=1

The various properties given for C,(a, y) likewise hold for D*(«) after
appropriate adjustments to the precise constants. Many similar results on
the discrepancy can be found in Kuipers—Niederreiter [ 11, Chapter 3] and
Sos [22, 23].

Finally we show very simply that when the partial quotients are (on
average) bounded, and y allowed to vary, 4,,(y, o) must take logarithmi-
cally large and small values:

COROLLARY 6. If >!_ | a,< At for infinitely many t then

sup Am(ya OC) > Cy log m, ianm(y’ O() < —Cy log m
7 7
each hold for infinitely many m, where we may take ¢ ,=1/90A4.

5. THE PROOFS

We shall need the following simple, yet crucial, lemma:

LemMmA 1. For 1<n<gq,,
[noc+y]¢{np”+y}
i—1

if and only if n=u;(o, y)+1lg,_, for some integer [ =0. Moreover, the dif-
ference is at most 1.

Proof. Let

S,:{nl: {nl ?H—y} ;é[nloc—i-y]}.
i—1

Then if n, € §;,

Di—

i—1

Pi—1

i—1

[nloc+y]<[n1 +y}ieven, [nloH—y]>{n1 —Hi i odd.
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Hence for any n,=n, +1lq;,_,, =1 we have

{nzpil‘i‘?’} =[n1{;”‘+y} +ip

i—1 i—1

[nyo+yl=[(nyo+7)+ (=1 "e, [1+1p
giving

Pi—1

i—1

[n2a+y]<[nloc+y]+lp,-_l<{n2 —|—y] if i is even,

[nzot—i—y]z[nlot—i—y]—i—lpi1>{n2i])il+y] if i is odd,

i—1

and n, € S,. In particular ne S, for any n of the form u;+1lq;, _,, [=0.
Conversely, suppose n,, n, are both in S; with n,, n, < ¢,. Then for some
integers m,, m,,

i1 i—1
nloc<mlfy<n1p’— nloczml—y>n1p’
qi—1 qi—1
or
Pi—1 Pi—1
Moo <My — Y KNy — Mo =My — ) >Ny ——,
qi—1 qi—1

as i is even or odd respectively. Subtracting and multiplying by ¢,_, then
gives

|(my —my) q; 1 —(n;—n,) p; | <max(ny, ny) |e;_|.
Now if both 7, and n,<g,;<|¢;, | ", integrality forces
(my—my) q; 1= (ny—ny)p;

and, by the coprimeness of p;_; and ¢,_,,

ny=n, (mod ¢, _,).
In particular, any n < g, in S, would have to be the form u,+ lg; _,, where
u; is the smallest element of S;.

Since

(noc+y)—<npil+y>‘=n|8il|< n ’
qi—1 qdi—1 49—

the difference is plainly at most 1 for all 1 <n<gq;q,_,. |
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Proof of Theorem 1. We first analyse the related sum

S(m)=S(o, y,m):= Y [na+7y]

I<n<m

and note that for any j and m <gq,,, we can (by the above lemma) replace
the a by its approximation p;/q;,

S,(m) = S,(a, 7, m) := {n”+4,

1<n< q;

at the price of a simple additional term

S(m)—S,(m)=(—=1) #{l<n<m:n=u; , +lq;, >0}

=(—1)-"[m_u-’“+lr.
4;
Hence if m=bq;+1<q;,, with 0</<q;,

S(m) = S,(bg,) + Y {npj}y}—i-(—l)i{m_”fﬂ-i-lyr

bq/<n$hqj+l J q/

—u, +
:S/‘(b‘l,/)+lbpj+Sj(Z)+(—1)f{mq“1+1+1}
J

— . + . +
= 5)tbg) +1op,+ )+ (— 1y (| P | [ ],
J J

In particular, if we write m=z,q0+z,q,+ -+ +z,q,_, (with m; denot-
ing the ith subsum), and repeatedly apply the above with b=z;,, and
[=m; for j=t—1 to 0, we obtain

t
S(m) = Z (Sifl(ZiQifl) +m;_z;p;i o+ ( _1)i71 I,(m)),

i=1

where



SUMS OF FRACTIONAL PARTS

Now the S)(bg;) are not difficult to evaluate. Indeed,

1 , _
Si(b‘lf)zib‘b(b%"‘1)%+bqﬂ— > {np"+y}

J lSnqui

1 _
=5 blbg,+1) p,+bajp—b 3] {np"+y}

1<)1<qj

where, with d; and ¢, as defined in (7),

¥ {n;aj_i_y}: » {npj+dj+1+5j+l}

l<n<g J lI<n<g; q;
_ z {a+§i+1}: Z a+5j+l
0<as<gq;—1 q; 0<a<gq—1 q;
1
:E(Qi*1)+‘5f+1-
So
Si_(z:q:-1) = %Zipifl(ziqifl +1) +Zi(%_5i) +z:q:_1(y— %)
and

t
S(m)= Y, 32D (zigi  + 1+2m, )

+ Z (Zi(%*‘si)*(*1)1-11‘(’”))"‘(3’*%) m.

i=1

Now the first sum may be rewritten in terms of « rather than p,_,:

22i(qi—oe—e;_)(z:qi 1+ 14 2m;_y)

I
M-

t t i—1
zéoc(Z (Ziqz'—l)2+2 Z Z Ziqi—lzjqj—l>+;ma

1 i=1 j=1

t
=32 g (zq, + 14 2m, )

1
=smm+1a—3 Y ze (2,9, +1+2m; ).

63
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Hence, finally

Cola, 7) = Z ((not+V)—[n0t+V]—%)
m(m

N\'— —_

+ 1) a+ym—S(m)—im

Z l 1712q171+1+2m171) Z(%_61)+(_1)111(m)) I

Proof of Corollary 1. Immediate from the trivial bounds

—m. +\ +
0<<_{M} > <z, _lzigzi@,_l)glzi
qdi—1 * 2 2 2

and, recalling (2), the rough estimation
0<%Zi le; 1| (m;+m,;_, + 1)<%Zi' |

Proof of Corollary 2. We first use the expansions of Proposition 3 to
approximate M, by the more predictable function

1 b, 1
F - 2 _n_ _ _ +
==t (23 )2t G
where
b — C, if n is even,
" la,—c, if nis odd.

Since (with the notations of Proposition 3) for 0 <z, <a,

1 1
F,= —zi+<ln+<—1>"c”—)zn+<zn—<lnan+<—1)"c,,))ﬂ
2a a, 2

n

we can write
Mn:Fn+A1 +A2+A3

where

1 z,
Al_<2 Zn (_l)ncn> (qi172+anqnfl)7|8n71|a
a

n

1
A2:<(_l)n(ynin_Unl)_mnl _2> Zn |8n71|n

A3:(Z}1_(lnan+(_1)ncn+ U)+)+_(Zn_(lnan+(_l)n Cn))+7
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with

U:|:ann2+(/1n+ln+l)qnl _(_1)nvn7] _mn]:|
qnfl *

We shall show that

1 1
— ——— <M, —F <(2——|.
<3 2an> s < 2an>

The proof is rather tedious and could be shortened at the cost of less
precise constants.

We note the elementary estimates

a

2
—a,q,_ >+, q,,_1) &, _ gi"glifa—l’
(4n—2 Gn-1) | i @ +2 3

| |<7<1—71 1
a,q, >1&,_ 1|1 < < a, .
ndn—2 1 +1 2

We first suppose that n is even.

If/,=1 then ¢,=0, yq,_,—v,_,<0,1,,,+24,=1 or 2 and the bounds
follow from the rough estimates 0< 4, <(1 —3a, "), —2<4,<0, 4;=0
or 1.

If [,=0 then /,, +/,=1 and, writing u :=(q,_1—0,_—m,_; —2)/q,_1,

the lower bound follows easily from the inequalities —1<u<2,
A2/—(1—u)+, A= —[u]t and, since (iz,—c,)z,>—13a2, A,>
—(1—=3a, M.

Now for z,<c, we have 4, <0, A, <ule,_i|z,9,_, and A;< —[u] ",
with —l<u<l+gq, ,/q, | gving A, +A,+As;<1+a,q, ,le, 1| <
(2—ta; ).

For z,>¢, we have 4, <(1—2a, "), A,<1+[u], A;< —[u] and the
upper bound is plain.

Next, suppose that » is odd.

If /,=0 then ¢,=0, 7,4,_1—v,_,<0 and 1,4/, ,=0. Hence
0<4,<(1—3a,"), —1<A4,<1, A;=0, and the bounds are clear.

When l,,—l, we have A4,>0. Set w:=[(q,_,+q,_1+v,_,—
m,_1—3)/q,_1]. Then —1<w<2, and the inequalities 4,> —(2—w)—
ZoGn_216,_1l, A3=—w, lead to the lower bound A,+A4,+A4;>

(3—50 1).

When z,<(a,—c,) we have 4, <(1—32a,"'). The inequalities A, <
((vyy—=my_1)/qu—1)" and A3< —[(q,_2+ 0,1 —m,_1)/q,_1]; readily
yield 4, + A5 <1 and thus the upper bound in this case.
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Clearly, —1 < U< 2. Hence when z,>(a,—c,+2), or z,=(a,—c,+1)
and U +#2, we have 4, < — U. Since /L,,+l,7+1 islorOasy,<a,ory,=>a,
we also have A, <14+U—(q,_>+%,¢4,_1)Z,l€,_1]. Plainly, A,<
3 Gu_rt%,qn_1)Z, €y, and so A+ A+ A3 <1+ (1 —3a, ") in these
cases too.

Finally, when z,=(a,,—c¢,+ 1) and U=2 we have 4;=—1, 4,<1, and
the upper bound follows on observing that, since ¢,>1, 4,<3(a,+2)
(G2t 0uqu_1) e, <L

The first expressions in Corollary 2 then follow since (varying z,,
0<z,<a,) F, has minimum value

()
2a a, >

achieved at z,=>b, (or equivalently at z,=0 if b, =a,) and maximum

1/b, 1\? 1 (a,)?

il (et B TR

2\a, 2/ " 2a,l2
achieved at z,=[b, + 1a,]. Since we can take these extremal values with
z,<a, we can find m that maximise or minimise the (—1)"F,
simultaneously.

The second expresssions follow on observing that for varying b,, the func-
tion F, has maximum and minimum value

z, Z; z; Z;
Zif1-)a, _ S22 g,
a; a; a; a;

achieved at b,=a, or 0 and at b,=2z, (equivalently at b,=a, or 0 if
z,=a, or 0) respectively.

The bounds for the discrepancy in Corollary 5 arise by similarly showing
that —3< H,— f,, <2, where

fn: _<1 _bn> an+(zn_bn)+a
a,

with some gain from the trivial bound when z, =0 (the maximum of f,). ||

Proof of Corollary 3. Clearly for 0 <c¢;<a; we have
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Hence from Corollary 2

t

max [C,(a, 7)<z ), (a;+20)+5.

l<m<gq, i—1

From the proof of Corollary 2 we also have

2max |C,(x, 7)]

m<gq,

= max Cm((xi y) — min Cm(“’ y)

m<gq, m<gq,

! 1 /b, 1\? * 1b, b, N
>El{<z<a;z> “"‘3> ‘<‘zan(1‘an>“"“> }

Proof of Property 1(a). Suppose that m=z,q,+ --- +2z,4,_,, z,7#0.
Then, since the slowest growth in denominators occurs for the Fibonacci
numbers F,,

o <3+ﬁm>

1+f>’ 2

m>qt—1>Ft/<

1
(55
Hence if >/_ | a;< At then, from Corollary 3,

i A 424 345
ol )l < (4 +24)1 < ( le % log< +2fm>. I
810g<+2>

Proof of Property 1(b). By a lemma of Ostrowski [ 14, pp. 85-86] it
is certainly true that >!_,a,>loggq,. Hence, if >!_,a,=(B+40)¢,
Corollary 3 gives

1
max |Cm(aa y)l 1<

1
:—40) = — max(Bt, 1 ,—4
max I6, ( a;—40) 16mdx( t,logq 0t)

\|M~

>— B lo
16 B+40 &4
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The bounds stated when a; < A or a;> B arise similarly on noting that

(B—9)
log(B+1)

(a;+25)< log a; + 26, (a;—9)= log(a; +1)

A
log 4
together with the trivial bounds [];,_,a,<¢q,<I1l;<,(a;+1). 1

Proof of Property 2(a). For any convergent denominator ¢, Corollary 1
gives

3 3/ | I 3 m
|C (o, p) <5 Z Zi<<z Ziqi—+— Z Ziqdi 1 <<qs+
2[:1 2 i=1 Si=s+1 2 s
and the result follows on picking ¢, to be the largest convergent less than
ﬂ. Plainly for fixed, irrational «, such a bound is o(m) (since
max{qs<\/n;q} —oasm— 0). ||

Proof of Property 2(b). From Corollary 3 we have

1 1
max |C(m)| >(a,—40)><q’—41> (16)
m<gq, 16 q

and this is not o(m) uniformly in a. Specifically, given any f(n) =o0(n) we
can generate o with the desired behaviour by (iteratively) choosing the
partial quotients to satisfy

< ! forall m> " }
S R mz—r,,
32q,2()) 16

where g(j) can be any function such that g(j) —» oo as j — oo. From (16) we
know that there exists an m <g¢;,, with

a; ., >min {n >82q;:

f(m)‘
m

1 (4 1 dj+1
|C,(2, 7)] ><“—41>>J i
16 q; 32 gq;

J

where the trivial bounds 3m>|C,(a, y)| > 55a;,, ensure that m is suf-
ficiently large that (by the definition of a;, )

max
m<dq;,

>g(j)—> oo, as jooo. |

Cm(as V)’ >qu+l 32q1g(.})
flm) |~ 32 ¢,

Proof of Property 3(a). Observe that

1 1 g, 11 +r
r<qu'7 a| <—=gq,_ >< : > .
f(qf—l)qz!jl ! qi : f(g,-1)
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Hence if z;#0 then ¢,_, <m;<gq, and

) ) 1/1+r
2,< m, <m[<f(q11)> <m!V T f(my)
qi—1 qi

Thus, by Corollary 1,

t
|Conl, )] < Z z<gmTf(m)

5
3 log <3+2\/m>

l\)\w

m1/1+rf(m)1/1+r. I

| g<1+2ﬁ>

Proof of Property 3(b). Suppose that for a suitably large ¢ (large
enough that ¢”/' *">164) we have ¢'*" |ga| < 1. Then ¢ must be a con-
vergent (¢,_, say) with

1
7<Hq,,10CH< 1/1+r

;= q-1<2q,
2, a1 1
Hence by Corollary 4(b) there exists an m < ¢, with

4q:
qr—1

1 1
_ r/l+r> r/l+r
41> el m .

1
|cm<a,y>|>16< =

Since the bound grows with ¢, we clearly generate infinitely many distinct
m in this way. ||

Proof of Corollary 6. Suppose that > ,a;<At for some ¢>
(31684 + 1152). Then there are certainly at least [#/4] partial quotients
a, <44, 2j<t From these we can select a subsequence of at least
N=[1t/8] with a,, <44 and n;,, —n;>2 for each 1 <i<N.

Taking m=q,,, 2+ ¢z, >+ -+ +¢q2,,_»<q, we observe that

Mo+ My, s+ 1=, >+2my, s+ 1<qs,_>+qs,_3
and

|52n,-—2| = Goni—1F 0oy 1Gop—2 = (‘I2n,-—2+ LI2;1,-—3)(1 + %“2n,-—1)
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where

1 1
> .
A+, 44+ 1

aZn,‘f 1=

Hence, since plainly 4 > 1, (9), (11), and (14) give

[#/8]
Am(l _y,a a_): - {Vl} + Z (1 - |82n172| (m2n,'71 +m2n,~72+ 1))
i=1
t 1 !
> —1 = > )
+{8} 1144+ 1) 18444+ 1) ; 4

i

1
STV IVERTRSLE

The lower bound follows on reversing the roles of odd and even. ||

Proof of Proposition 1.  With d; and J; as in (7), writing

|:kpn1+y:| :|:kpn1+dn+5n:| :|:kpnl+dn:|

[/ qn-1 4n—1
and
k
[kpnﬁdn:;(éﬁ |8n1|)} itnis odd,
[ka+7y]= PN
{kl’nl"‘dﬂ"'((sn_k'g”")} if n is even.
qnfl

it is not hard to see that,

u,=min{keN:5,+k|e,_,|>land kp,_,+d,+1=0 (mod g, _,)}
if n 1s odd, and

u,=min{keN:0,—k|e,_,| <0 and kp,_,+d,=0 (mod ¢q,_,)}.
if n is even.

Hence, recalling the familiar identity ¢,p,_i—¢,_i1p,=(—1)", we
readily see that, when n is odd
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u,=min{q,(d,+1)—sq, 1:(q,(d,+1)=5¢, )= (1-6,) e, 1| '}
=q,(d,+1)—q, \[7q,—x,pB,]
=q,(d,+1)—q, (d, 1 —2,)
=Budnt Buii+20) @

Similarly, when #n is even

u, =min{tq,  —d,q,: (14, —d,q,)>0, e, 11"}
=([vg+o, 1+ 1) q, 1 —d,q,
=(d, 1 +4,+1)q, 1 —d,q,
=B+ Buiit i) dn - 1

Proof of Proposition 2. Expression (6) is a straightforward exercise in
induction. Property (i) is immediate from the definition of the ¢;, and
property (ii) amounts to the inequality

&_ynfl_(xnflcn

<1
o l—a, ,a,

ifa,=c,.
Property (iii) holds since ¢, »;=a; 2 Cpi2+1 =0 for all i=0 would
(by (6)) imply that

oo}

lex ol >yi_1 lex_ol = Z cilei |l =lex_sl.
i—k

To see the uniqueness, suppose that we have two representations

Z bile; |l =7= Z bile; |

i=1 i=1
where the b; and b; both satisfy (i), (ii) and (iii) with b, > b} and b, = b},
Jj<k. By (iii) there must exist an />0 such that b} _ ,,,, #a;, ., and
by yoi1 =0y 121, by ;=0 forall 1 <i<[Iand (since b; <a; for infinitely
many succeeding j) we obtain the false inequality:

&g 1] < Z (bj—b;) le; ]

i>k
s ee]
< z Aoy |€xy2i ol + Z pors | vors j— 1l — ek 124l

i=1 j=1

=lee 4l 1
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th

Proof of Proposition 3. The first relation follows from the observation
at

{yqnfl} = {{(_1)71710"0(_‘_ yn |6n7]|} qnfl}
= {(Un+ynqn71) |8n71|}'

where —1 < (v, +7,9,-1) l€,—1| <1 since

—qn-1 <(vn—'—ynq;z—l)<qni(anicniyn) qn—1 <qn+a’nqn—l'

The expression for u, then comes from merely substituting this in Proposi-
tion 1 and ObserVing that qn(yn/an - yn+ 1) = Cn+ lqn = (Un +1 + Un)' I
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