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1 Introduction

The linear multiplet! plays an important role in the context of matter-coupled supergravity
theories with eight supercharges in four, five and six dimensions. There are two reasons
for the significance of this representation of supersymmetry that can be attributed to its
possible realizations as: (i) a dynamical multiplet; or (ii) a composite multiplet. In the first
realization, the linear multiplet without central charge [22] (nowadays, often called the O(2)
multiplet [23, 24]) provides a dual off-shell formulation for the massless hypermultiplet,
in which one of the four physical scalars of the hypermultiplet is dualized into a gauge
(d — 2)-form in d dimensions. In the d = 4 case, the O(2) multiplet describes the field
strength of the massless NV = 2 tensor multiplet [8, 25]. In the second realization, which
is most relevant for this paper, the linear multiplet takes on the role of a Lagrangian for
a locally supersymmetric action [4, 5]. This action principle turns out to be universal
in the sense that it supports general off-shell supergravity-matter theories.? Different

'In four-dimensional A = 2 Poincaré supersymmetry, the linear multiplet was introduced by Sohnius (1]
as a superfield Lagrangian for the matter hypermultiplet [2] coupled to the Yang-Mills vector multiplet [3].
The linear multiplet action was generalized to N' = 2 supergravity by Breitenlohner and Sohnius [4], and
then reformulated by de Wit, van Holten and Van Proeyen [5] within the N' = 2 superconfomal tensor
calculus [6-8], see [9] for a recent review. The linear multiplet actions, and their use, in five-dimensional
N =1 and six-dimensional V' = (1,0) supergravity theories were described in [10-17] and [18] respectively.
It should be mentioned that in five dimensions different authors use different notations, N’ =1 or N' = 2,
for supersymmetric theories with eight supercharges. The notation A/ = 1 is used, e.g., in refs. [19-21].
The rationale for its use is that the case of eight supercharges corresponds to simple supersymmetry. The
alternative notation N' = 2 is used in [10-17]. The rationale for this choice is that dimensional reduction
of five-dimensional theories with eight supercharges leads to N' = 2 theories in four dimensions. Here we
follow the conventions of [19-21].

2Tts universality may be readily justified in the case of 4D N = 2 supergravity. Within the off-shell
formulation for supergravity-matter systems given in [26-28], any dynamical system can be described using
the curved projective superspace action. This action can be recast as a chiral action with specially chosen
Lagrangian [29]. The latter may equivalently be rewritten, using a simple transformation, as a linear
multiplet action.



theories correspond to different composite linear multiplets. In this paper we present
three-dimensional (3D) analogues of the linear multiplet action.

The linear multiplet action actually involves two building blocks: an Abelian vector
multiplet and a linear multiplet, the latter with or without central charge (no central charge
is possible in six dimensions). The vector multiplet is dynamical and model-independent.
The linear multiplet is composite and contains all the information about the dynami-
cal system under consideration. Within the superconformal tensor calculus, the action
is formulated in terms of the component fields [5], which is useful for many applications.
However, this component approach obscures a geometric origin of the action. On the other
hand, the action acquires a simple geometric interpretation as a supersymmetric BF' term
when formulated in curved 4D A = 2 harmonic superspace [30] (as an extension of the
rigid supersymmetric construction given in [31]) or, in the case of the linear multiplet
without central charge, in curved 4D N = 2, 5D N = 1 and 6D N = (1,0) projective
superspaces [19-21, 26-28, 32].> From the viewpoint of z-space practitioners, a disad-
vantage of these superspace approaches is that some work is required in order to reduce
the action to components. Recently, there has appeared a new formulation for the 4D
N = 2 linear multiplet action [38] that combines the advantages of both the superconfor-
mal tensor calculus and the powerful superspace techniques. It made use of 4D N = 2
conformal superspace [39] in conjunction with the superform approach to the construction
of supersymmetric invariants [40-43].

The superform formulation given in [38], and its extension to describe 3D N =1 con-
formal supergravity [44], has recently been applied to derive off-shell N-extended conformal
supergravity actions in three dimensions for the cases ' < 6 [45, 46].* In the past, the
off-shell actions were known only for N' =1 [48] (see also [44]) and N = 2 [49] conformal
supergravities. Refs. [45, 46] made use of the novel off-shell formulation for 3D N-extended
conformal supergravity [50] called conformal superspace.® Within the superspace setting
of [50], conformal supergravity is simply a gauge theory of the N-extended superconformal
group. Conceptually, this supergravity formulation is very similar to that for N-extended
Yang-Mills multiplets in superspace. Here we use this analogy to develop a superform re-
alization, in conformal superspace, for N-extended supersymmetric Chern-Simons actions,
with 1 < N < 4. Using different techniques, the supersymmetric Chern-Simons actions
were originally constructed in [53, 54] for the case N' = 1, in [55, 56] for N = 2.6 in [57]
for N'= 3. The N = 4 supersymmetric BF term was first constructed in components [58],
then in /' = 2 superspace [59], N' = 4 harmonic superspace [60, 61] and also in N' = 3
harmonic superspace [62]. The N/ = 4 case is actually very special, since a non-Abelian
N = 4 Chern-Simons action does not exist. This will be discussed in more detail in the
main body of our paper.

3The harmonic [33, 34] and projective [35-37] superspaces are powerful approaches to engineer off-shell
supersymmetric theories with eight supercharges.

4The off-shell action for 3D N = 6 conformal supergravity was independently constructed in [47].

®The conventional off-shell formulation for 3D N -extended conformal supergravity [51, 52], also known
as SO(N) superspace, is obtained from conformal superspace by gauge fixing some of the local symmetries,
see [50] for more details. Within the SO(N') superspace setting, the most general off-shell supergravity-
matter couplings were constructed in [52] for the cases 1 <N < 4.

®The Abelian N = 2 Chern-Simons action was first constructed by Siegel [53].



Using the superform realization of the Chern-Simons actions given, it becomes trivial
to construct linear multiplet actions for the cases N' = 2, 3, 4; the relevant constructions
are given in the main body of our paper. We demonstrate that these actions are actually
universal for ' = 3 and N/ = 4 in the sense that the most general off-shell N' = 3
and N = 4 supergravity-matter systems presented in [52] may be described using the
appropriate linear multiplet action. This simplifies the problem of constructing component
actions for N'= 3 and N = 4 off-shell supergravity-matter systems. We should emphasize
that our statement of universality concerns the off-shell locally supersymmetric theories.
The on-shell locally supersymmetric nonlinear sigma models in three dimensions have been
described, e.g., in [63-67].

This paper is organized as follows. In section 2 we describe the N-extended non-
Abelian vector multiplet in conformal superspace. In section 3 our method to construct
supersymmetric Chern-Simons actions is briefly described. In section 4 we derive the cur-
vature induced three-forms for N” < 4. The component expressions for the supersymmetric
Chern-Simons actions with N’ < 4 are given in section 5. Section 6 is devoted to the
N = 2 linear multiplet action. In section 7 we work out the N' = 3 linear multiplet action
and apply this construction to the cases of (2,1) anti-de Sitter supergravity and N/ = 3
topologically massive supergravity. In section 8 we work out two N = 4 linear multiplet
actions and make use of these actions to study (2,2) anti-de Sitter supergravity and N' = 4
topologically massive supergravity. Some implications of our results and open problems
are briefly discussed in section 9.

We have included a couple of technical appendices. Appendix A includes some salient
facts about the conformal superspace of [50]. In appendix B we give the supersymme-
try transformations for vector multiplets with N’ < 4. In appendix C we briefly review
covariant projective AN/ = 3 supermultiplets and demonstrate universality of the AV = 3
linear multiplet action. In appendix D we sketch the structure of left and right covariant
projective N' = 4 supermultiplets and demonstrate universality of the two A/ = 4 linear
multiplet actions.

2 Vector multiplets in conformal superspace

In this section we show how to describe Yang-Mills multiplets within the superspace formu-
lation of [50], known as conformal superspace. Conformal superspace is based on gauging
the entire superconformal algebra. Its essential aspects are summarized in appendix A.

To describe a Yang-Mills multiplet in the 3D N-extended conformal superspace
MBIV of [50], parametrized by coordinates z = (2™, 6), we introduce gauge covariant
derivatives

V=EAV,, Vi:=V,4—-iVy, (2.1)

with E4 = E4M 0y the inverse vielbein, V 4 the superspace covariant derivatives obeying
the (anti-)commutation relations (A.4) and V = EA4V, the gauge connection taking its
values in the Lie algebra of the Yang-Mills gauge group Gynm. The generators of Gy



commutes with all the generators of the superconformal algebra (A.3). The Yang-Mills
gauge transformation acts on the gauge covariant derivatives as

Vai—e™Vae ™ =1, (2.2)

where the gauge parameter 7(z) takes its values in the Lie algebra of Gy.
The gauge covariant derivative algebra is

1 1
[V, Vit =-Tap"Ve — S RIM) ap*Mea — S R(N) 45" Npg — R(D) 45D
— R(S)aB] S — R(K)ap°K. —iFag (2.3)

where the torsion and curvatures are those of conformal superspace but with Fp corre-
sponding to the gauge covariant field strength F' = %EB ANEAF,p. The field strength Fap
satisfies the Bianchi identity

VF=0, VuFpoy+Tag” Fipey =0 (24)

and must be subject to covariant constraints to describe an irreducible vector multiplet.
The structure of the constraints and their consequence is different for N’ = 1 and for NV > 1.
Below we describe the various cases.

2.1 The N =1 case

In the A/ =1 case, one imposes the covariant constraint [53, 54]
Fog=0. (2.5)

Then one derives from the Bianchi identities the remaining components

1

Fop = 5(%)5”%, (2.6a)
i
Fp = —zsabc('yc)wvng, (2.6b)

together with the dimension-2 differential constraint on the spinor field strength
VG, =0. (2.7)

Furthermore, the Jacobi identities require G, to be primary and of dimension-3/2:

SﬁGa =0, KyGo,=0, DG,= gGa . (2.8)

2.2 The N > 1 case

For N/ > 1 one imposes the following dimension-1 covariant constraint [55, 57, 68]
Fl} = —2ie,pG" (2.9)
where G!7 is antisymmetric, primary and of dimension-1

GV =-¢', sl¢'% =0, K.,GY=0, DG =c. (2.10)



These constraints are a natural generalization of the NV > 1 constraints in four dimen-
sions [3, 69]. The Bianchi identities then give the remaining field strength components:

1
Faé = (N_ 1) (’YG)QBV,BJGJJ’ (211&)
i
Fop = —mfabcﬁc)aﬁ[vf,vé]Gl{L . (2.11b)
The N = 2 case is special because G!” becomes proportional to the antisymmetric
tensor £/

Gl =@ . (2.12)

The components of F'4p then become

Faé _ EJK(’Ya)BWV'yKGa (2.13b)
i
Fab = _Zgabc(ﬁyc)’yéEKLV'yKvéLG . (213C)

The Bianchi identities imply a constraint on G at dimension-2
1
InoJ IJ K
VIVLG = 5(5 V}<V7 G . (2.14)
Unlike for N’ = 2, in the case N/ > 2 the field strength G’ is constrained by the
dimension-3/2 Bianchi identity

2
N -1

This constraint may be shown to define an off-shell supermultiplet, see e.g. [50, 70].

viGTE = vkl - sV, G (2.15)

3 Chern-Simons and curvature induced three-forms

In this section our method to construct supersymmetric Chern-Simons actions is outlined.
This method heavily builds on the superform formalism for the construction of supersym-
metric invariants [40-43]. First of all, we sketch its salient points in the framework of 3D
N-extended conformal superspace. The formalism makes use of a closed three-form
1
3:§E0AEB/\EA3ABC, dy=0. (3.1)
Under an infinitesimal coordinate transformation generated by a vector field &€ = M9y, =
E€AE 4, the three-form varies as

03 = LeJ = i¢d] + digd = diJ . (3:2)

We note that 6¢J = Ogctd, Where dgc stands for the general coordinate transformation
associated with £. As discussed in appendix A, the gauge group of conformal supergravity,



G, is generated by two types of transformations: (i) covariant general coordinate transfor-
mations, degct, associated with a parameter ¢4, and (ii) standard superconformal trans-
formations, d;, associated with a parameter A% The covariant diffeomorphism d¢get(§) is
related to the ordinary one dg4¢(£) by the rule [50]

Seget (E1) = Sgot (EAEA™M) — 63(£%wa?) . (3.3)

The closed three-form J is required to transform by an exact three-form under the
standard superconformal transformations,

533 = dO(AY) . (3.4)

If we assume the components &M and A% vanish at spacetime infinity, then we have the
supersymmetric invariant

S=[ 7. (3.5)
MS

Here M? denotes the bosonic body of the curved superspace MB3RN and i : M3 — MBIV
is the inclusion map.

Suitable actions must also be gauge invariant for any additional gauge symmetries of
the theory under consideration. If the closed three-form J transforms by an exact three-
form under the gauge transformations,

53 =de, (3.6)

then the functional (3.5) is a suitable candidate for an action.

Our method to construct Chern-Simons actions is analogous to the one used in [45, 46]
to derive the conformal supergravity actions for N/ < 6. In the super Yang-Mills case,
following [45], we will construct a closed three-form J by finding two solutions to the
superform equation

dS = (F?) :=tr{F AF} . (3.7)

The first of these solutions is the Chern-Simons three-form Ycg,
ECS:U‘{V/\F—;V/\V/\V}. (3.8)
It changes by an exact three-form under the Yang-Mills gauge transformation (2.2),
6:Ycsg =dtr{idr AV} . (3.9)
It is invariant under the standard superconformal transformations,
onXcs =0. (3.10)

The other solution, the so-called curvature induced form Xy, is defined to be such that its
components are constructed in terms of the field strength F4p and its covariant derivatives.



This three-form is required to be invariant under the Yang-Mills gauge transformations (2.2)
and under the the standard superconformal ones,

0:%p =0, (3.11a)
oyXp =0. (3.11b)

The existence of X is not guaranteed for arbitrary N and crucially depends on the explicit
structure of the constraints obeyed by the field strength. If Xy exists, the properties of
Ycs and X imply that their difference

JzECS—ER:tr{V/\F—;V/\V/\V}—ER (3.12)

is an appropriate closed three-form that constitutes a supersymmetric action.

We would like to emphasize that the three-form Xy is required to be conformally
invariant, eq. (3.11b). Actually, it turns out that the only non-trivial invariance condition
on X is with respect to the special conformal generators K 4. It is equivalent to the
condition [45]

I,—n . Ip—n
Sﬁjzal"‘anill o 'a];—n = ln(’v[a1)6’yzi02“'an]éll o ‘appfn * (313)

The above scheme is an example of a known construction where an invariant derived
from a closed super d-form can be generated from a closed, gauge-invariant super (d + 1)-
form provided that the latter is Weil trivial, i.e. exact in invariant cohomology (a concept
introduced by Bonora, Pasti and Tonin [71] in the context of anomalies in supersymmetric
theories). Examples of this include higher-order invariants in other supersymmetric theories
which were studied, e.g., in [72, 73].

4 Non-Abelian curvature induced three-form

We introduce the curvature induced form X = %EC A EB AN EAY opc as the covariant
solution to the superform equation”

dXr =tr{F A F}, 4V[AZBCD} + GT[ABEE|E‘CD} = (tr{F AN F})aBcD - (4.1)

By covariant we mean that the components 3 4o are directly expressible in terms of Fap
and their covariant derivatives. It should be emphasized that the curvature induced form
can only exist if the field strength F' is constrained in a such a way that eq. (4.1) can be
satisfied.

To see this, consider the A/ > 1 case where one finds at the lowest dimension the
condition

Eg/\E?{/\Eg/\E}X<—245a5575tr{G”GKL} —AVERLIE 119i(1) 056" S §) =0. (42)

"When referring to the components of the curvature induced form we will use ¥ instead of £x to avoid
awkward notation.



On dimensional grounds, the most general ansatz to take for Y is®

SLIK— 0, SudK = i(ya)pytr{A67KGP2Gpg + BG'LGR 1} . (4.3)

It will turn out that the curvature induced three-form, based on the ansatz (4.3), can only
be found for N < 4. It is in these cases that we have

B B
tr{ G/ GELY = AsKU 5714 {GPRGpg ) + §5K[Itr{G‘]]PGLp} - EéL[Itr{GJ]PGKp} (4.4)

for some A and B.
Below we give the solution to eq. (4.1) on a case by case basis.

4.1 The N =1 case

Since F is constrained by eq. (2.5), solving (4.1) is straightforward. One finds’
Eagfy = Eag,y = Eaby = 0, (4.58,)
Sape = —isabctr{Gva} . (4.5b)

Since the only non-zero component of this three-form is primary, 3 is indeed conformally
invariant by virtue of equation (3.11b).

4.2 The N =2 case

In the A = 2 case, we can replace G!7 with its Hodge-dual:

1
G = 55”67”, all =Va . (4.6)
Then we have
tr{GI/GELY = 261K 5L (G2} = 6KU 5140 {GT PG pg ) (4.7)

Using the constraint (2.14) one finds the solution

ik =o, (4.8a)

Z%’v 2i(va) g0 K tr{G?}, (4.8b)

Saby = —€ane(Y)str{V° K G?}, (4.8¢)
i

Sabe = = 5Canetr {2V GV G + GV VIG} (4.8d)

The curvature induced three-form can be shown to obey equation (3.11b).
It is often advantageous to make use of the complex basis for the NV = 2 covariant
derivatives, see [50, 52] for details. In this basis, the field strength is given by

_ _ _ 1
F=EPNE*“F,5+ E° NE*F,5+ E° NE*F,5 + 5E” N E°Fy,, (4.9)

8This is analogous to the ansatz taken for conformal supergravity [45].
9Keep in mind that eq. (4.1) is identically satisfied once it is solved up to and including the level of the
highest dimension component, see [74].



where its components are

Fag = —2€Q5G,
Faﬁ = i(va)ﬁryv'yGa
Fa,B = _i(’Ya)ﬁrvaGa

i _
Fab = _gsabc(’yc),ﬂs[v'ya V&]G .

The corresponding curvature induced form (4.8) may be expressed as

Y =E"AEPANE*Sap5, + %EV A E° A E°S o, + %EW A E° A By,
+ éE ANEY A E®S e
where the components have the explicit form
Yagy = _Qi(Va)B'ytr{Ga}a
Saby = —Eabe(Y)1str{ V’G*},

c =0
E0Lb'y = _5abc('7 )75tr{v GQ},
Yabe = ieabctr{2V7G@7G + G@VVVG} .
4.3 The N = 3 case
In the N = 3 case we define the Hodge-dual of G/ as

1
G = §5IJKGJK7 G =Gy,

which implies

tr{ G Gy = 265U /1t { G G p} — 265t { G GT} + 26" tr{GT I GE Y .

Furthermore, the Bianchi identity (2.15) gives
1
I~J _ ol d IIo K
vic! =vla }+§5 vEGy,
V’YJV,Y[(]G” = QV%]V%]G] — 8€[JK[GJ, GK] s
viviG, = —g&-aﬁv;vicf + 31V o G! + 9e0pe’ K [G 5, G
Using the above identities one finds the solution

I1JK
Zapy =0,

Sa X = 2i(v0) g, 00{67KGT Gy — 267 GK Y
1
Eab,]y( = 2€abc(’}/c)’yétr{v([$KGI]Gl _ gngIGK} 7
i 2
Pabe = 25“170“{9(V”KGK)(V€GL) — (V] G)(ViaH)
—2(VLVEGHGL + 86UKG1GJGK} _

Conformal invariance follows since ¥ obeys equation (3.11b).

(4.15a)
(4.15b)
(4.15¢)

(4.16a)
(4.16D)

(4.16¢)

(4.16d)



4.4 The special case of N =4

In the previous subsections, we found that our approach struck an obstacle at the N' = 4
case. In particular, eq. (4.4) no longer holds. Actually, the N' = 4 case requires some
additional consideration. It is well known that the constraint (2.15) does not define an
irreducible off-shell supermultiplet for " = 4. In this case, the Hodge-dual of G/,

- 1
Gt = 55”KLGKL, (4.17)

obeys the same constraint as G'7 does,
viGTE = vig/K - %W Vv, GKIE (4.18)
VIGH = UG 2y GRn (4.18b)
As a result, one may constrain the field strength G'7 to be self-dual,
Gl =gl (4.19a)
or anti-self-dual,
Gl =-g" . (4.19b)

These choices correspond to two different off-shell N = 4 vector multiplets, the left and
right ones, see [52] for more details.

Now, if we consider an irreducible N' = 4 vector multiplet obeying either (4.19a)
or (4.19b), it may be seen that eq. (4.4) still does not hold. A possible way out is to
consider two vector multiplets and a generalization of eq. (3.7) of the form d¥ = tr{F 1AFy }
However, this poses a problem for non-Abelian vector multiplets, since the two-form field
strengths F; and F, are not gauge invariant; instead, they transform covariantly under
the two different gauge groups.'® In this section, we therefore restrict ourselves to Abelian
vector multiplets.

We will consider the general case of two Abelian vector multiplets G{F] and G’ with the
two-form field strengths F'y and F_ respectively. In this case the superform equation (3.7)
is replaced by

dX=F NF_, 4V[A2BCD}+6T[ABEE|E|CD} = (F+ ANF_)aBcD - (4.20)
The Chern-Simons solution Xcg to the above is
Yos = Fy ANV =V AF_ + closed form, (4.21)

where Vi are gauge one-forms associated with the two-form field strengths, Fy = dV. .

10Tt should be mentioned that there is an alternative approach to the problem of constructing the ' = 4
Chern-Simons action [75]. It is based on dualizing two scalars in the vector multiplet into vector fields and
constructing a theory involving three different vectors! However, as mentioned in [58], such an approach is
on-shell and cannot be used to construct matter couplings.

,10,



The curvature induced three-form X is the covariant solution to the superform equa-
tion (4.20) (when it exists). For N/ = 4 one finds at the lowest dimension of (4.20) the

condition

E} NE} N Ej A B (—24e05e,sGY GEE — AVESTIR 1 12i(v) 05678, E) =0 . (4.22)

The most general ansatz to take for Xp is

. L(J ~K
SIIE — 0, S = i(7)8, (A8 KGEG _po — BGEYGM) 1), (4.23)

which will lead to a solution if
B B
GG = ASKUSTIEGERG by + 55KUG£PG£P - 55L[[G;]r]PGf{ P (4.24)

It is easy to see that if we let both G4/ be (anti-)self-dual then we cannot satisfy
eq. (4.24) for any A and B. However, imposing opposite duality conditions gives us a way
out. Taking Gi‘] to be self-dual and G/ to be anti-self-dual,

1
§€IJKLGiKL = :EG{E] (4.25)

gives!!
G GEL — sKIGIPGL , — sHIGPTPGE (4.26)

Using the Bianchi identity (2.15) and the (anti-)self-duality conditions (4.25), one finds
the curvature induced form to be

ik =o, (4.27a)

Safl = =2i(1a)5, G GE (4.27b)
1

St = —§€abc(’yc)75(vafoG—JK + Vs1GY G4 ), (4.27c)

. 1 1 1
Sabe = iabe <24V7,V§GHKGI_< T4 5 VIVaGk G + SVIGY VG JK) . (4.27d)

One can check that eq. (3.13) holds.

As is known, the group isomorphism SO(4) = (SU(2), x SU(2)r)/Zs allows us to
convert each SO(4) vector index into a pair of SU(2) spinor ones, for instance VL — V¥,
see [52] for more details. It is instructive to look at some of the above results in the
isospinor notation. The SO(4) bivector G/ = —G/! is equivalently described by two
symmetric second-rank isospinors, G% and G , which are defined as

Gl - G =G -G G =@, GT =G (4.28)

and transform under the local groups SU(2)r, and SU(2)g, respectively. For the Hodge-dual
SO(4) bivector G! defined by (4.17), we get

Gl Gitgi — i _ Sigia (4.29)

"1t is clear that G/ G_r; = 0.
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The Bianchi identity (4.18a) is equivalent to the two analyticity constraints [52]

VG = o, (4.30a)
viight = | (4.30Db)

Thus the field strengths G¥ and G¥ are independent of each other. The (anti-)self-duality
conditions (4.25) are equivalent to

Gl G = UG, G =G
4.30a
4.30b

In accordance with [52], a symmetric isospinor superfield G¥ under the constraint

is called a left linear multiplet or, equivalently, a left O(2) multiplet. Similarly, eq.
defines a right linear multiplet or, equivalently, a right O(2) multiplet.

5 Component actions

In the previous sections we have given a complete superspace description of the Chern-
Simons actions for non-Abelian vector multiplets with A < 4 and of the BF action for
Abelian vector multiplets in the AV = 4 case. In this section we will derive the corresponding
component action. To do so we will need to elaborate on the component structure of the
theory. For a complete description of the component fields of the Weyl multiplet including
their supersymmetry transformations we refer the reader to [45]. Here we outline some of
the salient details.

The Weyl multiplet contains a set of gauge one-forms which appear explicitly in the
actions. These include the vielbein e,,?, the gravitino ¥,,%, the SO(N) gauge field V,,,//
and the dilatation gauge field b,, defined as

en” =B,  Ynf =2E.%, V' =0, by =B, (5.1)

where the bar-projection [54, 76, 77] of a superfield V(z) = V(x,0) is defined by the

standard rule V| := V(x,0)|p—o. The remaining gauge fields are the spin connection w,,,

the special conformal and S-supersymmetry connections f,,* and ¢,,’, defined as
wmab = Qmab’ ) f’ma = gma‘ ’ ¢mé = 23777»&‘ : (52)

These connections turn out to be composite and their expressions are given in [45].
The Weyl multiplet also contains some auxiliary fields for N' > 2. In the A/ = 3 case,
there is a single fermionic auxiliary field defined by

we = Wy . (5.3)
In the N' = 4 case, the Weyl multiplet contains both bosonic and fermionic auxiliary fields,
w=W|, y= —iv?ng\ . wh= —%vgm, (5.4)

where W denotes the Hodge-dual of W!/KL,
WIJKL _ €IJKLW . (55)
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5.1 Vector multiplets in components

The component fields of vector multiplets may be extracted from the field strength G'7.
For A/ > 1, we define the matter fields as follows'?

g"" =G, (5.6a)
2
A= ——V,GY .6b
« N — 1V JG | ) (5 6 )
1J . _ ; y[I JIK
W= e VIV G (5.6¢)
Xo-wo 42 = L)V I Gl Tl (5.6d)

where

{i, n=1,2 (mod 4) (57)

1, n=3,4(mod4) .

A final component field vy, is given by the bar-projection of the corresponding superspace
connection,

Vo = €q" Vs U i= Vin| . (5.8)

The covariant field strength may be constructed from the bar-projection of the two-
form F' = %EB A EAF . Making use of the identity

Fyn = En E,BFap(—1)4%8 (5.9)

and performing a component projection, we find

. 1 i
Fop := Fop| = fap + 5(1/1[11[{%])\1() - §¢a7K¢b$9KL ; (5.10)

where
fav =e€a"" e fn s fran = an‘ = 2(a[m‘/n] - IVY[mVn]” = 2(8[mvn] - lv[mvn]) . (511)

The component fields of the vector multiplet form a tower [70], see figure 1.13

The coefficients chosen in eq. (5.6) allow for a straightforward truncation of higher A/
cases to the lower A ones via a procedure analogous to the one described in [45]. For the
N =1 case we have to switch off all matter fields except

M=, =Gal, (5.12)

with the field strength G, defined in (2.6a).

The N = 4 case is special, since it allows for two inequivalent off-shell vector multiplets
with field strengths Gi‘] and G’ obeying the self-duality condition (4.19a) and the anti-
self-duality condition (4.19b) respectively. In this case we define the the component fields

12The coefficients are chosen so that the A" = 1 case may be derived via the higher A/ cases.
13The tower is analogous to the one for the A'-extended super Cotton tensor [45, 70].

,13,



1J

g
Xa[JK )\al
XCMlcQIl.UI4 yIJ Falaz

%

L1
Xag-ap_o 1N

Figure 1. Component fields of the N-extended vector multiplet.

of the vector multiplets as

gt = al/|, (5.13a)
2
Aa =3 VasGEl, (5.13b)
Py = %V”“VwKGi]K\ : (5.13¢)
X(i)almanhmhw — I(n)VEﬁl .. .Vg;)GilﬂImzH , n=12, (5.13d)
where g.!7 is (anti-)self-dual
1
§€IJKL9iKL = +g:"7 . (5.14)
The component one-forms are given by
U)a = € Vdym  V()m = Viml|, (5.15)

where V4 is the gauge one-form associated with the field strength G17.
The (anti-)self-duality property of G4/, eq. (4.25), reduces the degrees of freedom for
each vector multiplet by half. To see this, it is useful to replace h(i)I 7 by the fields

1 -
hi'’ = §(h(¢)u +he'’)

i
=iy F 2095 F 119+ 9], (5.16)

which prove to be (anti-)self-dual

%€]JKLiliKL == :E;Lﬁ:‘] . (5.17&)
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The other implications of (anti-)self-duality are

i
xal 7K = F 2K N (5.17b)
XiQBIJKL _ :F&.IJKLFiaﬁ . (5.17¢)
Diagrammatically, this means that the components on the left hand side of figure 1 are

related to those on the right hand side via (anti-)self-duality. One can see that each vector
multiplet constitutes 8+8 degrees of freedom.

5.2 Off-shell component actions

Now we have all the ingredients to construct the component actions corresponding to the
closed forms
J=3cs — Xr (5.18)

found in the previous sections. To do so we just need to apply the action principle (3.5),

1
S = /d?’xe*fs!g_o, 3= gem”pﬁmm, e = det(e,?), (5.19)

and make use of the formula

1 1
ggmnpxmnp’ — ?EmanchnBEmAzABC’
1 3 3
- ggabc (Zabc| + 5%?251)& + Zwbgwa?ziéA
1
+ g¥ek Uy bad SHAY ) : (5.20)

Here we present the resulting actions on a case by case basis.
Although all our actions are automatically supersymmetric, we give the supersymmetry
transformations of the component fields in appendix B.
5.2.1 The non-Abelian N =1 case
The action is constructed using egs. (3.8) and (4.5). From eq. (5.20) we find

1 .. i
" Syl = Zr{AA} (5.21)

Combining this with the contribution coming from the Chern-Simons form (3.8) gives

1 o .
S == /d?’xetr{sabc <vafbc + lvavbvc> ! )\7)\7} . (5.22)
2 3 2
5.2.2 The non-Abelian N = 2 case
Using egs. (5.20) and (4.8) we find

1 1 i<y 1 5 i
S T Qtr{zA}(Af - 2gh} + 5 (1 aovaltr{gX} = 26 (va)ssvn e tr{g?},

3l
(5.23)
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where we have defined

- 1 i
Aar = ey = =2VarGl,  hi=Zepsh! = —%V”*KVVKG\ . (5.24)

Using the above result and incorporating the Chern-Simons form (3.8) gives the action

1 2i 1oa -
S :5 d?’xetr{a (vafbc 3 Uavbvc> — 5)\}{/\5 + 2gh — <7a)75¢a}fg)\61

_|_

w\w\,

abc(’Ya)'y(ﬂZ)bvabcaK 2} ) (5.25)

Expressing the above action in terms of the complex basis gives
1 3 abc AT Y
Szi dxetr{s Vafoe +INTAy + 2gh

= (10079 + ()58 0N — 1™ ()st b g | (5.26)

where we have made use of the component fields in the complex basis:
Ao = —2V,oG|, Ao =-2V,G|, h=iV'V,G|. (5.27a)

5.2.3 The non-Abelian N = 3 case
Using egs. (5.20) and (4.16) we find

%Emnpzmnp‘ E— ;tr{ —2xX"xy — i/\”‘]/\vu — 2ih1g1 — 8€IJKg[ngK}
%('}/a)véwa}ytr{)\ﬂ g5 +2ix°¢"}
- ; e (Ya)ra et {6 L g  gp — 29" 9"}, (5.28)
where we have defined

g1 = %5IJKGJK| =G|, (5.29a)

Aol = el BN e = ZVL{G"H : (5.29b)

Xa 31, erirxa’t = iVI oGl (5.29¢)

hr = %EIJKhJK lyiy LGyl = =1V V. G| + 8ierrg’ g™ (5.29d)

Combining this with the contribution coming from the Chern-Simons form (3.8) gives

1 21 . i .
S:5 /d3xetr{ <vafbc + 3 vavbvc> — 2ix7xy — ZA””M[J +2¢'h; — 8! K grg 795
= (1)45va] (A g + 2ix°9")

e (Ya )yt i ey (65 g gp — 295 g* )} : (5.30)

N |

+
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As in [45], our choice of normalization for the component fields allows for a simple
truncation to the actions for lower values of A/. For example, from the above action one
can truncate the auxiliary fields to N' = 2 by taking (with I, J = 1,2)

g —0, A7

— 0, Xa — 0, hI—>O,
. (5.31)

P —ag, AN — AL B —h

For the fields of the Weyl multiplet one performs a similar truncation, which is given in [45].

5.2.4 The Abelian N = 4 case
Using egs. (5.20) and (4.27) we find

1 1. 1. i
3 Bmnp| = = ~htg 1y - *hI—JngIJ + *)\?i))\(_)al
1
+10 Y yota] Ny g—s" + A 9157)
_ i CLbC( ) 1/) L 5.392
1 Ya )~y wach-i- g— P - (5.32)
Combining this with the contribution coming from the Chern-Simons form (4.21) gives
1 1. 1. i
S =5 /dgl“ €< af(—)pe + Zh+”g+u + ZhJJQJJ - 5)‘?i)>‘(—)a1
1
- 5( )76¢a10‘(+ g- J + /\( )ngJI)
i
+5 9 abc(')’a)ﬂfﬁwawch-&-KPg—LP) . (5'33)

6 Matter-coupled N = 2 supergravity

The results of sections 4 and 5 may be used to generate locally supersymmetric actions.
This idea can be illustrated, in a simple and transparent way, by considering the N = 2
case which we discuss below. Unlike in section 5, here we use the complex basis for the
N = 2 covariant derivatives, see [52] for details.

Let us consider a locally supersymmetric BF' term described by the action

Spr = /d3fcd29d2§EVG, E~! =Ber(E,M) . (6.1)

Here V = V is the gauge prepotential of an Abelian vector multiplet, and G = G a
real linear superfield, V2G = V?G = 0."* The action (6.1) is invariant under gauge
transformations

V=4, Val =0, (6.2)

with the gauge parameter A being an arbitrary covariantly chiral dimensionless scalar.
Eq. (6.1) defines the /' = 2 linear multiplet action.

MThe constraints on G may be solved as G = iV*V QV for some V. In certain cases, V is not a
well-defined local operator.
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It turns out that the action (6.1) may be recast in terms of a closed three-form
J=VANF =%, dJ =0 (6.3)

that involves three building blocks. First of all, F' = %EB A EAF 45 is a closed two-form,
dF = 0, associated with G. Its components are defined as in eqs. (4.9) and (4.10) by

. . _ 1
F=E°NE“Fo5+E° NE“Fu5+ EP NEF o5 + 5E” ANEFy, (6.4)

and are explicitly given as follows:

F .3 = —2c,3G, (6.5a)

F.53=i(7.)3"V,G, (6.5b)

Fus = —i(0)57V, G, (6.5¢)
i _

Fab = *75abc(’yc)76[v’y’ vd]G . (65d)

8

The second building block, V = E4Vy, is the gauge one-form describing the vector multi-
plet associated with V. Modulo an exact one-form, we can choose the components of V' as
follows:

_ _ 1 _
Vo =iVaV, V,=—-iV,V, V,= —Z(%)“ﬁ[va,vﬁ}v . (6.6)

The corresponding gauge-invariant field strength F' = dV has the explicit structure given
by egs. (6.4) and (6.5) with F' and G replaced with F' and G respectively, where G denotes
the gauge-invariant field strength

G =iVeV,V (6.7)

associated with the prepotential V. Finally, the three-form 3 is chosen to obey the equation
dX=FANF. (6.8)
Its components are defined by
Y =E"ANEPAE*S, 5, + %EV A E° A E°S o, + %EV A E° A B4,
+ éEC A E° A EOS g, (6.9)

and have the following explicit form:

Zaﬁ’y = —Qi(’ya)ﬁfyGG, (6.10&)
Saby = —€abe(Y9)16(GV°G + GV°G) (6.10D)
Saby = —€abe(19)16(GVG + GV° Q) (6.10c)
Eabc = %gabc(élv’YGv'yG + G?’YVWG + G?VVVG) . (610(1)

The components of ¥ are symmetric under the interchange G <+ G. When G = G we have
agreement with egs. (4.11) and (4.12) in the Abelian case.
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Associated with the closed three-form J, eq. (6.3), is the component action
1 3 abc i 3 i 3
S =3 d°ze | ey fre + §A7A7 + 5)\7)\7 + gh + gh
1, ., 1, . = =5 -
— 5 (1)t (92" + gX°) + 5 (1")5a%a (94" + gX°)
i )50 09 ). (6.11)

where the component fields are defined as in section 5 (in the complex basis):

g=G|, Aa=-2V,G|, A=-2V,G|, h=iV'V,G|, (6.12a)
g=G|, Ao=-2V,G|, A,=-2V,G|, h=iV'V,G|, (6.12b)
Vg = eame| s (6120)

o 1 .-
Fab = Fapl = Ua" Fujsl — 0" Fujgl — 501" 00 Fag
1

= i i- - _
= _ggabc(’yc)’ya[v’)/v VCS]G‘ + iw[aﬁ(ﬂ%]),@’y)\’)’ - iw[aﬁ(’}/b])ﬁ,y)‘V + w[aawb}ag : (612d)

Eq. (6.11) is exactly the component form of the action (6.1).
Let us recall that the most general NV = 2 supergravity-matter system (see [52, 78] for
more details) is described by an action of the form

S = /d3xd29d2§Eﬁ+/d3xd20€£C + /d3xd2§8£C, (6.13)

for some real scalar £ and covariantly chiral scalar £. Lagrangians, VL. = 0. Here &
denotes the chiral density.!> We assume that the dynamical supermultiplets include an
Abelian vector multiplet described by prepotential }V with nowhere vanishing field strength
G = iV2V,V. This is the case for Type II minimal supergravity [52, 78]. Then, the first
term in (6.13) may be represented in the BF-form (6.1), specifically:

~ _ - L
/d3xd29d20Eﬁ = /d3xd29d29 EVG, G:= ivavaa : (6.14)
We see that the linear multiplet action (6.1) allows us to describe a broad class of locally
supersymmetric models. However, this action principle is not universal for, in general, it
cannot be used to describe the chiral term in (6.13) and its conjugated antichiral one. On
the other hand, the (anti)chiral action is truly universal in N/ = 2 supersymmetry, due to

the identity [52]
_ o . 1
/d3xd29d20Eﬁ = /d3xd205£c, Loi==3VVaL . (6.15)

As demonstrated in [80], this action can equivalently be described in terms of a closed
three-form =, d= = 0, such that its components

1 1 1
E= BN EPNE*E.5, + SE7A EPNE“Zq, + GEA EP N E*Egpe (6.16)

5The explicit expression for € in terms of the supergravity prepotentials is given in [79)].
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are expressed via L. as follows:

Eaﬁ'y = 4('7(1)67£Cv (617&)

Eab’y = _isabd('Yd)vév(SﬁCy (6.17b)
1 o

Eabc = Zgabcvévaﬁc . (617C)

In summary, the N' = 2 linear multiplet action (6.1) is useful but not universal. As will be
shown in the next section, the situation in A/ = 3 supersymmetry is conceptually different.

7 Matter-coupled N = 3 supergravity

General off-shell matter couplings in A/ = 3 supergravity were constructed in [52]. Given a
supergravity-matter system, its dynamics can be described by a Lagrangian £(2) (v) which

t,16 with v’ the homogeneous coordinates for

is a real weight-two projective supermultiple
CP!. The corresponding action is given by eq. (C.14). We assume that the dynamical
supermultiplets include an Abelian vector multiplet such that its gauge invariant field
strength G¥ is nowhere vanishing, that is G := VGYG;j # 0. As shown in appendix C,

the action functional (C.14) can be rewritten as a BF term

1
Stm = 5 7{ (v, dv) / Bzd9ECYa® | (7.1a)
Y

where V(v) is the tropical prepotential for the vector multiplet, V(O?)V =0, and
G (v) = Gijv'7 VOGP =0 — vWugh =9 (7.1b)

is a composite real O(2) or linear multiplet. The explicit expression for G?(v) in terms
of the superfield Lagrangian £?) is given by eq. (C.20b). Different theories correspond to
different choices of the composite linear multiplet G;;. The action (7.1a) is invariant under
gauge transformations

SV=XA+X, V@rx=o0, (7.2)

«

where the gauge parameter )\ is an arbitrary weight-0 arctic multiplet, and \ its smile-
conjugate, see [52] for more details. Eq. (7.1a) defines the N’ = 3 linear multiplet action.

Instead of dealing with the symmetric spinors G and G, we can equivalently work
with the isovectors

Gh=xNy6", &= (2h);6Y, (7.3)
where the sigma-matrices are defined by

(X1)ij = (L,io1,i03) = (31)ji - (7.4)

1%Tn what follows, we do not indicate explicitly the z-dependence of N' = 3 and N = 4 superfields.
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7.1 Linear multiplet action

It turns out that the action (7.1a) may be recast in terms of a closed three-form:
J=VANF-%, dJ =0, (7.5)

where F is the two-form field strength associated with G! and V = EAV} is the gauge
one-form associated with the prepotential V. The three-form > = %EC AN EB AN EAY 45c
is given by

2%5 —0, (7.6a)
Sapd = 2i(va) gy tr{0’*G'Gr - G'GF - GTGKY} (7.6b

1 1
Sl = 5abc('yc)75tr{v([5KGl] cr+viala - 5 ViGIGN — 3V§G1GK} ., (7.6c)
i
Eabc - _2€abctr{(vz(v5GL)GL + (V}/(V,IY(GL)GL + (VFKGL]MVF[)/KGL])
2
- Q(WKGK)(ngL)} . (7.6d)

The component action generated by J is

1 . i
Sim =3 / dre <€abcvafbc = 27Xy = PN A+ g hr + g

1 . .
- 5(7")%%?0\“ Tg,+ X1 g5 +ix0g" +ix°g")
i
+ 56““(%)75%}(%%(5“9’3 ap —29"g" )) : (7.7)

where the component fields are defined as in section 5. They are explicitly given by

gr=Cil. N7 =2V1G, xa=3ViGH, b =—iVV,G, (7:82)

g, =G, M1 =2vlGY, x,= %vgal\  hp=—iV"V.,,G, (7.8b)
1

Vg = €™ V| = Va| + 5wa%vcﬂ : (7.8¢)

1 i
Fav = Fap| — §(¢[aK7b] AK) + 5%7[(%591@
i . 1 i
= —E&zbc(’y )BT V5G| — Z€IJK(¢[aI’Yb])\JK) + §€IJK¢a?¢bngK- (7.8d)

To prove that the A = 3 linear multiplet action (7.1a) has the component form (7.7),
it suffices to redo, in a 3D setting, the 4D N = 2 analysis given in [81].

7.2 Composite O(2) multiplet

We now present a special example of the composite O(2) multiplet defined by (C.20b). We
consider a vector multiplet Lagrangian of the form

(2)
L% o5 G 1n - ¢ (7.9)

iTOY®”’
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where Y (v) is a weight-1 arctic multiplet and Y™ (v) its smile-conjugated antarctic
multiplet. The superfields Y and T are pure gauge degrees of freedom [52]. In the rigid
supersymmetric limit, the Lagrangian (7.9) describes a superconformal vector multiplet,
which is the 3D A/ = 3 analogue of the 4D N = 2 improved tensor multiplet [82, 83].17

With the Lagrangian (7.9), the contour integral in (C.20b) can be evaluated using the
techniques of [85]. Alternatively, one may look for a dimension-1 primary superfield that
obeys the Bianchi identity (4.15a). The resulting composite O(2) multiplet is

iGogetugng N CAvE e

I _
¢ e 4G3

IgayJoK
18G3GV “GIVEGK,  (7.10)

where

1 .
G?=GlG; = §G”GU = GGy (7.11)

is required to be nowhere vanishing. The O(2) multiplet may be expressed in terms of
SU(2) indices as follows

i le i, i « ) a
GV =i gV VG - G — GV GV, .Gy GIVYHGHVEIG,, . (7.12)

L 18G3
7.3 Supercurrent

Before turning to a consideration of specific supergravity models, it is worth giving a few
remarks concerning matter couplings to N/ = 3 conformal supergravity (see also [46, 50]).
In general, matter-coupled conformal supergravity is described by an action of the form

1
S = ESCSG + Smatter . (713)

Here Scsg denotes the NV = 3 conformal supergravity action [45] and Spatter the matter
action. The equation of motion for the Weyl multiplet is'®

1
WatTa =0, (7.14)

where T, is the matter supercurrent. As a result the supercurrent 7, must have the same
properties as the super Cotton tensor W,. Specifically, T, must be a primary superfield of
dimension 3/2,

3
S§T. =0, DT, = §Ta, (7.15)

and obey the conservation equation
VT, =0. (7.16)

The latter holds provided the matter equations of motion are satisfied.

"The 4D N = 1 improved tensor multiplet was introduced in [84]. The N = 2 construction of [82, 83]
is a natural extension of the one given in [84].
8The coupling constants 7 and p differ from each other by some numerical coefficient.
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Matter-coupled Poincaré or anti-de Sitter supergravities can also be described by ac-
tions of the type (7.13) with 1/ = 0. The matter supermultiplets have to include a
conformal compensator. In what follows, the latter is assumed to be the vector multiplet
described by the field strength G'. The supergravity equation of motion is

TI=0. (7.17)

As an example, consider N' = 3 AdS supergravity. It can be described by the La-
grangian [52]

1 G® 1
r? _ 2] a@; _ ~eva®? 7.18
with x and £ the gravitational and cosmological constants respectively. The cosmological
term is a U(1) Chern-Simons term. The choice £ = 0 corresponds to Poincaré supergravity.
The corresponding supercurrent is

KTa = é&IJKG[VQJGK . (7.19)

One can show that if G! satisfies the equation of motion for V, GI + ¢G! = 0, the super-
current does obey eq. (7.16).

7.4 (2,1) anti-de Sitter supergravity

It was discovered by Achticarro and Townsend [86] that three-dimensional N-extended anti-
de Sitter (AdS) supergravity exists in [N/2] + 1 different versions, with [N'/2] the integer
part of AN//2. These were called the (p,q) supergravity theories where the non-negative
integers p > ¢ are such that N'=p + q.

We wish to demonstrate that the Lagrangian (7.18) describes (2,1) AdS supergravity.
To see this we will degauge, following the procedure described in [50], the corresponding
equations of motion,

G +¢a! =0, (7.20a)

KTy = éa”KGIVaJGK ~0, (7.20b)

to SO(3) superspace [51, 52]. As in [50], the covariant derivatives of SO(3) superspace are
denoted Dy = (D,, D).
Using the results of [50] we can degauge our expression for G!, eq. (7.10), to

G i
I _.UJ a1 ol I o] AK
G = IE(D ( Da) — 4IS )G - TGBG D [ G }DQ[JGK]
- @G%g@pg G . (7.21)

The covariant derivatives D4 no longer contain the dilatation and special conformal gen-

erators,

1 1
Da=EsM0y — 5QAC“’Mab — 5<1>APQJ\I,;>Q . (7.22)
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The original local dilatation symmetry is now realized in terms of the super-Weyl transfor-
mations. In SO(3) superspace, there are two dimension-1 real torsion tensors, S7/ = §71
and C,!Y = —C,”!. The super Cotton tensor W, becomes a descendant of C,'”,

i

Wa:ﬁ

€[JK'DBICa5JK . (7.23)

We refer the reader to [50] for more details about the degauging procedure.
Using the super-Weyl transformation of G [52],

G' =¢e’G, (7.24)

we can impose the gauge condition
G=1. (7.25)

Taking a spinor derivative of G then gives
1
GxDIGK + §G~’D§ Gk =0, (7.26)

which requires

pEGr =0, aplc!=0. (7.27)
Note that the Bianchi identity now simplifies to
plg’ =plg’l (7.28)
Since the supercurrent vanishes, eq. (7.20b), we must also have
GDasGr =0 . (7.29)

On the other hand, using eq. (7.26) we find

2 2
GrDasGr = GDaGr) + 5G1DasGr — 3G Dar)G1
2 2
= gGIDaJGK — gG[JDaK]G[ . (7.30)
Contracting the above with G! and implementing eq. (7.27) tells us that G’ is covariantly

constant,

DosGr =0. (7.31)

The fact that G' is covariantly constant strongly constrains the superspace geometry.
In particular, we have

0= {D;, Dj}G"
= 216717 Dps G — 4ic 5 SKV G — 4ic 56K USTILG,
— 4C, KGN 1 4ic, MU s E Gy, (7.32)
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which fixes the form of the curvature components as

St = ssl7 —2GlG7y,  §:=8%g, (7.33a)
Cog’” = 0. (7.33b)

The composite vector multiplet now reduces to
Gl = 45G"7 — 4S=¢. (7.34)
Due to the equation of motion (7.20a), S is seen to be constant,
DIs=0. (7.35)

As a result, the covariant derivatives corresponds to (2,1) AdS superspace [87]. Therefore
the theory (7.18) indeed describes (2,1) AdS supergravity.
Without a cosmological constant, £ = 0, we find

st =, (7.36)
and the resulting geometry corresponds to Minkowski superspace.

7.5 Topologically massive supergravity

Topologically massive N = 3 supergravity'® can be described by the action
1
StMmsG = ﬁSCSG + 55 (7.37)

where Sgg corresponds to the supergravity Lagrangian (7.18).
The equation of motion for the Weyl multiplet now becomes

1
T, + ﬁWa =0, (7.38)

compare with (7.20b). The equation of motion for V coincides with (7.20a).
We would like to degauge the equations of motion to SO(3) superspace. Eq. (7.38)
tells us that . 1
! 1K
— GiDoiGg = ——W,, 7.39
el 1DasGk p (7.39)

where upon degauging the Cotton tensor is
i i
Wa = EE[]KDBICQQJK = E'Dﬂlca[a[ . (7.40)
Using the gauge condition G = 1 we find

i
GIDasGK) = @5IJKWQ ; (7.41)

9 Topologically massive N = 1 supergravity was introduced in [88, 89]. The off-shell versions of topolog-
ically massive N' = 2 supergravity were presented in [80].
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where we have defined the constant

LM
== 7.42
p= (7.42)
Contracting with Gk gives
i K
DoiG gy = 2ﬂ51JKG Wa . (7.43)
Therefore the Bianchi identity becomes
i 1
DIG7 = ﬁaUKGKWa = —ﬁa”KGKDﬂLCaﬁL : (7.44)
Next, we notice that on the one hand, due to eq. (7.44), we have
1 i
I nJyK _ K[ ~J K(IpJ)
(DL, DA G¥ = —4ﬂ25a55 tallwrw, — EG D Wy , (7.45)
while on the other we have
(DL, DIYGK = 216" DosGF — die,5S*UGT) — die,305 T S1EG
— 4C, KU GT) 4ic, M IsDEqy, (7.46)
Combining the two results gives
i
St = st —2GtG7) — @WVWVGIGJ . S =5, (7.47a)
1
DopG' = —ﬂG”D(a Wy, (7.47b)
1
Cas'’ = @s”KD(aKW/B) : (7.47¢)
These imply the equation of motion on Calgl
DD Cpyyy + 241iCop" = 0 (7.48)
and the corresponding equation of motion on W,
DYDIW, + 24iaW, =0 . (7.49a)
In addition to (7.49a), the Cotton superfield must obey the Bianchi identity
DYW, =0. (7.49b)
Due to the conditions (7.47), the composite vector multiplet may be expressed as
follows . 3
I 1J ! I I ! I
G =45"G;+ 502 WeW,G" = —45G* — 802 WIW,G" . (7.50)
Furthermore, from the equation of motion (7.20a) we see that S can be expressed in terms
of the Cotton tensor as ¢ 5
1 «
=2 ) .51
S 173 2ﬂ2W Wa (7.51)
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For £ = 0, a solution of the equations of motion for topologically massive supergravity is
obtained by setting W, = 0 in the above relations. This solution describes a flat superspace.
Linearizing the equations (7.49) around Minkowski superspace, it may be shown that W,
obeys the Klein-Gordon equation

(O —m2)W, =0, m:4ﬂ:4%, (7.52)

with O := 9%°0,. For £ # 0, the equations of motion for topologically massive supergravity
are solved by setting W, = 0. Locally it describes (2,1) AdS superspace [87].

8 Matter-coupled N = 4 supergravity

The off-shell matter couplings in N' = 4 supergravity were constructed in [52]. In general,
the action for a supergravity-matter system may be represented as a sum of two terms,
S = 51, + SR, the left St, and right Sy actions, which are naturally formulated in curved
N = 4 projective superspace M3I® x CP} x CPL. The left action is given by eq. (D.12),
where the Lagrangian L’I(f) (vy) is a real left projective multiplet of weight two, with vy, = v°
the homogeneous coordinates for CP. The structure of Sg is analogous.

We assume that the dynamical supermultiplets include two Abelian vector multiplets
such that their field strengths Gi‘] and G!7 are self-dual and anti-self-dual, respectively,
and nowhere vanishing, G3 = %Gf Giry # 0. The anti-self-dual field strength GI/
can equivalently be realized as a left O(2) multiplet Gy,(vr,) := Gj;v*0?. The self-dual field
strength Gi] can equivalently be realized as a right O(2) multiplet Gg(vR) := ngvgvj . The
vector multiplet with field strength Gfr‘] can be described in terms of a gauge prepotential
V1 (v,), which is a left weight-0 tropical multiplet with gauge freedom (D.16). The right
O(2) multiplet Gr(vg) is constructed in terms of Vi, according to (D.17) and proves to
be a gauge invariant field strength. Similar properties hold for the vector multiplet field
strength G/ except all ‘left’ objects have to be replaced by ‘right’ ones and vice versa.

As demonstrated in appendix D, the left action can be recast in the BF form (D.29),
where Gg)(vR) = U;UEGH is a composite right O(2) multiplet defined by (D.30). Eq. (D.29)
defines the right linear multiplet action, Srim. Obvious modifications lead to the left linear
multiplet action, Sppv- One of our goals in this section is to reduce the actions Sy and
Strm to components.

8.1 Left linear multiplet action

The left linear multiplet action is given by
1 _
Stat = 5 j'{ (v, dor,) / d*za®o v aP (8.1)
where GI(?) (vL) = v;v;GY is a composite left O(2) multiplet, and Vi, (vy,) is the tropical

prepotential of the vector multiplet with field strength Gfr‘] . The composite left O(2)
multiplet, Gf)(vL), can be equivalently realized as the anti-self-dual SO(4) bivector G*7.
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It turns out that the action Sy may be reformulated in terms of the closed three-form
J=VANF-%, (8.2)

where F is the super two-form associated with G/ and V = E4V} is the gauge one-form
associated with the field strength Gf. The three-form > = %EC ANEB ANEAS Apc is

Eééf —0, (8.3a)

Baf = ~2i(7a)p, G+ "G p, (8.3b)
1

Saph = _ggabc(')’c)'yé(vMGiJG—JK + Vs GG, (8.3¢c)

. 1 1 1
abe = lffabc<24V}V§G—me" + 53 VIViGKGE ¢ SV VG JK>. (8.3d)
The corresponding component action is
1 3 abe 1. IJ L. IJ 1 ol
SLim 9 d"zel ™o fpe + Zh+ g+1J + Zh_ 915 — 5/\ Aol

(Y)r6%a) (N7 g_ ;" + X7 g 4T

_|_

DO | = DN =

Eabc('Ya)’yﬂbb}(wc% g+KPg—LP> s (8.4)
where the component fields are defined as in section 5:

o =G M= IVt < G gL (s5)
g7 =G|, AL = %vaJGfﬂ, hyll = ;VV[IV,YKG{}K| +2uwg 17, (8.5b)
va = €™Vl = Val + a3V (5.5¢)

Fap = Fap| — %(T/J[aK’Yb])\K) + %%ﬂ{d}b? 9_KL
= —ifabc(Vc)aﬁvagG—KL‘ - %(w[aKVb}AK> + %%ﬂ(%g 9 KL - (8.5d)

The component fields are defined so that h!/ is anti-self-dual and flf is self-dual, see
eq. (5.17b).

8.2 Right linear multiplet action

The right linear multiplet action is given by
Srin = — d dPzd®0 C Y VrRGY 8.6
RLM = 5 (vr,dur) T R VRGR', (8.6)
where Gg )(UR) = Wv;Gﬁ is a composite right O(2) multiplet, and Vg (vg) is the tropical

prepotential of the vector multiplet with field strength G/. The composite right O(2)
multiplet, GQ(UR), can be equivalently realized as the self-dual SO(4) bivector Gi‘].
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The action Sgr,m may be reformulated in terms of the closed three-form
J=VANF-X, (8.7)

where F' is the two-form field strength associated with Gi‘] and V = EAV, is the gauge
one-form associated with the field strength GZ/. The three-form ¥ = %EC/\EB ANEAY Agc
is given by

SLak =0, (8.8a)

Safl = <2i(70)5, G- "G p, (8.8D)
1

Sapy = —52abe(1)y’ (Va1 GG )" + VGG "), (8-8¢)

. 1 1 1
Sabe = lgabc<24v7,v§GHKGKJ + 5 VIViGkGE + SVIGYVE GJK) . (8.8d)
The corresponding component action is
1 3 abc 1. 1J 1 1J i al
SRLM =5 d’zel eV fp. + Zh+ g5+ Zh_ g-1J — §>\ Aol

(Y )s¥a] N7 gyt + X% g, ;1)

+

N~ DN —

Sabc(’Ya)wéwb’}Y(¢c% g+KPgLP) s (8.9)

where the component fields are defined as in section 5:

2 - i

o =G|, N=3VasGY, = gvﬂwaﬁKl —2wg "7, (8.10a)
2 ) i
gt =G|, M =2VaGY|, 1= ngvaGﬂKy —2wg 7, (8.10D)
1
Vg = eamvm| = Va‘ + 51/41?‘/0{‘ ) (8'1OC)

1 i
fao=Fa| = §(w[aKVb} AK) + 5%7[(%'6 9+KL
i cya 1 i
= =5 8are (V) IVEVEG ikrl — S (W wAe) + 50 Uy gigr - (8.10d)

The component fields are defined so that IA”Li] is self-dual and fLI_J is anti-self-dual, see
eq. (5.17b).

8.3 Composite O(2) multiplets

Similar to the N' = 3 construction described in section 7.2, we now present special examples

of composite left and right O(2) multiplets. To construct Gg ) we consider a massless vector

multiplet Lagrangian of the form [52]

a®
£ P m—L (8.11)
R iy
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and make use of the representation (D.30).2° The contour integral in (D.30) may be
evaluated using the technique developed in [52]. A similar analysis may be used to construct
G(L2). Alternatively, GI7 « Gg) (vg) and GV GI(?) (vr,) may also be found by looking
for primary superfields which obey the Bianchi identity

viglr = vlig{" - 351[JVVLGfL . (8.12)
The resulting composite O(2) multiplets are given by
Gy =X+ %EIJKLX:FKL, %aUKLGfL =+Gyyy, (8.13a)
where we have defined
X = 6G v, cGP% + 9G3 esidesin (8.13b)

To show that Gi‘] is primary and satisfies the Bianchi identity, the following identities
prove useful

GIEGLk = 35{,(;2 , (8.14a)
elIELG  p = :F35[ Gi Kl (8.14b)

In the isospinor notation, the composite (’)(2) multiplets constructed read

GE = éVaz(ivg)GU G3 VM(ZGUVIW)GMG]!
1 ai(ivrj]) Gij
= veilivi] (?), (8.15a)
i al(it al(ii k lj
GJ_6G+V( VJ)JG 9G3V( G; VJ)G G

vamw) (G

G+) (8.15b)

These expressions may be compared with the 4D AN = 2 results in [85].
For completeness we give the expressions for the composite O(2) multiplets in SO(4)
superspace:

G _ 1 pailipii) 4 gigiiiy (G
G = L(D™DY) 4 sis )(G_), (8.16a)
G__
a(iti)i i5i]
G 4(1) DI 4 8iS )(G+). (8.16b)

Here Siii = S(if)@) is one of the two irreducible components of the torsion superfield
S4:i = ST (7)¥ (/)37 defined by

Siidl — S 4 IS (8.17)

20The arctic weight-1 hypermultiplet T£1> and its smile conjugate TS) in (8.11) are purely gauge degrees
of freedom.
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8.4 Supercurrent

The remainder of this section is devoted to a study of specific supergravity theories. To start
with, we would like to discuss the structure of the N' = 4 supercurrent (see also [46, 50]).
Our consideration below is similar to the N' = 3 analysis of section 7.3.

Consider a dynamical system describing N/ = 4 conformal supergravity coupled to
matter supermultiplets. In general, the supergravity-matter action has the form

1
S = ﬁscsc; + Smatter » (8.18)

where Scgg denotes the N' = 4 conformal supergravity action [45] and Spatter the matter
action. The equation of motion for conformal supergravity reads

1

where W is the NV = 4 Cotton superfield and T is the matter supercurrent. It follows from
this equation that the supercurrent must have the same properties as W. Specifically, T'
must be a primary superfield of dimension 1,

slr=o0, Dr=r, (8.20)
and obey the conservation equation
1
vl = Za”v;wgf T. (8.21)

Of course, the latter holds provided the matter equations of motion are satisfied.
Matter-coupled Poincaré or anti-de Sitter supergravities can also be described by an
action of the type (8.18) with 1/ = 0. The matter supermultiplets have to include two
conformal compensators. As before, these are chosen to be two Abelian vector multiplets
such that their field strengths Gf and G/ are self-dual and anti-self-dual, respectively,
1

and nowhere vanishing, G% := §G£EJ G+17 # 0. The supergravity equation of motion is

T=0. (8.22)
As an example, let us consider N' = 4 AdS supergravity. it can be described by two
Lagrangians, left and right ones, which were chosen in [52] as

(2)

@ _1f.@, G (2)
ESG,L - E{GL In 1T£1)T£1) + &L VLGL }7 (823&)
2)
@ _1f.@ Gy @)
Lsar = K{GR hlw + & VRGR } : (8.23b)

where k is the gravitational coupling constant and the parameters &, and £g determine a
cosmological constant. We recall that Gg) (vr,) and Gg) (vr) are the gauge invariant field

strengths for Vg (vr) and Vi, (vr,) respectively. The cosmological term is described by the
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left and right BF terms in (8.23). It is known [52] that the action does not change if the
BF coupling constants are modified as

EL_>§L+GI7 ER_>§R_G'7 (824)

for any real constant a. For the action to be mirror invariant, we have to choose [52]

L=Er=¢/2. (8.25)

This choice will be assumed in what follows.
With the left and right Lagrangians given by (8.23), the supercurrent is

KT =G4+ — G- . (8.26)
It may be shown that the equations of motion for Vi, and Vi are equivalent to
Gl +eql? =o, (8.27)

where the composite superfields G/ are defined according to (8.13). Using these equations
of motion, one can show that the supercurrent satisfies the conservation equation (8.21).

8.5 (2,2) anti-de Sitter supergravity

It turns out that the model (8.23) describes the (2,2) AdS supergravity. We will show this
by degauging the equations of motion for the compensators, eq. (8.27), and the equation
of motion for the Weyl multiplet,

T=0. (8.28)

Using the results of [50] we degauge G to SO(4) superspace

2

i 4
ql7— L plip oK . = g 1)K wal
3G:|: YK + G:': K F + G:F F

2i

+
962

DGy rpDaGel G2

+ ﬁel TRSDOP Gy pDGrorGrsK - (8.29)
:F

We then use the super-Weyl transformations to impose the gauge condition

Gy=1. (8.30)
Taking a spinor derivative of G gives
2
G DGR - SGH DG ks =0. (8.31)

Then using the (anti-)self-duality condition

1
plgit = :ng”KLDfGﬂp, (8.32)
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we find
D/G =0 = DlcgM=o0. (8.33)

The above tells us that Gf;’ is covariantly constant
DIGIK =0. (8.34)
Since the supercurrent vanishes (eq. (8.28)) we have
Gr=G_=1. (8.35)
Similarly we deduce that G/ is covariantly constant
DIG'E =0 . (8.36)

The covariant constancy of G+ has immediate consequences on the superspace ge-
ometry. In particular, we have

0={D,, D3}GE"
= 2167 Doy GEL — 4icas SKUGIE + dieas SHUGIE + 8ie, s STV 6TIK G pT
B 4iCa6K(IGi)L —|—4iCa,gL(IGi)K i 8iCa5P([(5J)[KG;|:PL]
F dicasW GIE £ dic oWk GIE | (8.37)
which gives
SEUGIE _ gLUGIK _ 9gPUsNIK G, L 4 WK G £ welllg K
CaﬁK(IGi)L _ Ca,BL(IGi)K = 20,5 UsNEGpH (8.38)
The above leads to the constraints
SKUG N =0,  SEx=+2W =0, (8.39a)
Cop’ =0, (8.39b)
Eq. (8.14a) and eq. (8.39a) tells us that S’/ takes the form
St —osKlg lyail, Sgf=0. (8.40)
The composite O(2) multiplets now reduce to
Gl =aslla!™ . (8.41)
Combining the above result with the equation of motion (8.27) gives

§

SklGIk = -3

Gl (8.42)

Then making use of eq. (8.14a) fixes the form of ST/ as follows

gt = _SakUg ), (8.43)
9 +
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Therefore S/ must be covariantly constant
DISIE = . (8.44)

The above geometry corresponds to (2,2) AdS superspace [87]. To see this, we rewrite ST/
in the isospinor notation

P
i — 55(;%3(;%3 7 (8.45)
where o o

Gi_@jj _ _&EEGij ’ Gi’jj _ _Eiijj ) (8.46)

As a result, the algebra of covariant derivative coincides with that for (2,2) AdS super-
space [87].2

When £ = 0 the covariant derivative algebra corresponds to that of A/ = 4 Minkowski
superspace.

8.6 Topologically massive supergravity

Topologically massive N’ = 4 supergravity can be described by the action
1
StMmsG = ESCSG + Ssa, L+ Ssa, R (8.47)

where the left Ssg,1, and right Ssg wr actions correspond to the supergravity La-
grangians (8.23). Now, the supercurrent is non-zero, since the equation of motion for
the Weyl multiplet is

1 1

where i = pu/k. We choose again the super-Weyl gauge condition (8.30), G4 = 1. Then
using the (anti-)self-duality condition (8.32) we find that Gf:f is covariantly constant

DIGIE =0. (8.49)
Following similar reasoning as in the last subsection, we derive the constraints
Cop’? =0, SV =28"tG kG, Ski=2w. (8.50)

The anti-self-dual composite O(2) multiplet, G/, becomes

G = 4sla® 4 owGl (8.51)
Using the equation of motion
G +¢Gt =0 (8.52)
we find the form of S/ to be
1
ST — _ng“G‘PK +5wel (8.53)

2'The super-Weyl gauge condition used in [87] was G4 = G_ = 2, which differs from ours, eq. (8.35).
However, this difference is irrelevant since G+ = G_ may be normalized whichever way we like.
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Taking a spinor derivative of G_ and using eq. (8.48) and the anti-self-duality condi-
tion (8.32) gives

DiG_[J: AG G_ [JD W (8.543,)
plg/Kl = ﬂga[_”pflw, (8.54b)

which, due to the Bianchi identity (8.12), lead to

2
DLGIK = e S G pKlyy 4 ﬂT(SI[JGl_(]LDaLW . (8.55)

Upon degauging to SO(4) superspace and using eq. (8.54), we find that the composite
vector multiplet Gi‘] may be expressed as

1J IJ K
G = 5 2G3 G DEWDLW
W
+ 4uG2 GLDLDEW — QGJJ
4
—¢G_GY — GWGI 7 (8.56)
Then the equation of motion
GY +¢c =0 (8.57)
leads to
AW
IJ K IJ K IJ
D D, DD W — . .
0= 22G3G W W+4MG2G D, W G_G* (8.58)

It follows that the equation of motion on W is

DEDEW +16i4G_W + o CWDEW =0, (8.59)
nG—
with .
G_=1- EW . (8.60)

This equation must be solved in conjunction with the Bianchi identity (A.27).

For £ = 0, a solution of the equations of motion for topologically massive supergravity
is obtained by setting W = 0 in the above relations. This solution describes a flat super-
space. Linearizing the equation (8.59) and the Bianchi identity (A.27) around Minkowski
superspace, it may be shown that W obeys the Klein-Gordon equation

(O —m2)W =0, m:2ﬂ:2%, (8.61)

with O := 9%0,.
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9 Concluding comments

In this paper we have worked out the linear multiplet action principles in NV = 3 and
N = 4 conformal supergravities. At the component level, the N’ = 3 action is given by
eq. (7.7), while the N/ = 4 action is a sum of the left and right sectors, given by eqs. (8.4)
and (8.9) respectively. Using these locally supersymmetric actions, it is not difficult to
construct the component off-shell actions for the (2,1) and (2,2) AdS supergravities and
their topologically massive extensions. For instance, the composite O(2) multiplet, which
has to be used in the action (7.7) in order to describe the (2,1) AdS supergravity, proves to
be G! + %éGl , where G is given by eq. (7.10). The derivation of the component actions
will be given elsewhere.

In superspace, the off-shell formulations for (2,1) and (2,2) AdS supergravities were
given in [52]. The specific feature of (2,1) AdS supergravity is that its conformal com-
pensator is a vector multiplet that can be described in terms of the tropical prepotential
V(v).22 The specific feature of (2,2) AdS supergravity is that its conformal compensators
are two vector multiplets that can be described using the left and right tropical prepo-
tentials, V(vy) and Vgr(vr).2> As concerns the (3,0), (3,1) and (4,0) AdS supergravity
theories, the structure of the corresponding conformal compensators is not yet known,
which is an interesting open problem.

Our procedure of constructing composite O(2) multiplets can be used to generate
higher derivative couplings for vector multiplets, similar to the known results in 4D N =
2 supersymmetry [85, 90].24 To illustrate the idea, let us fix A = 3 and consider the
composite O(2) multiplet defined by (7.10). Choosing in (C.18) a composite prepotential
of the form

V(v)

@ 1"
g@)EU;] n=12,... (9.1)

leads to a family of composite real O(2) multiplets

H,® (v) = H,ow; — A(4)?{ (0,do)
J 4 277'(’[),’[/})2

G () "
., VOH,®=0. (9.2

Here the contour integral can be computed using the technique of [85]. Now, we have two
types of composite O(2) multiplets, G(2)(v) and H,®(v), which differ by the number of
spinor derivatives involved. Both of them can be used to generate new composite O(2)
multiplets

G2 (@)
G2 (o)

A<4>% (@(d@)) H, (é))]q, 03)

221f ¢ = 0, the vector multiplet can be dualized into a weight-1/2 polar hypermultiplet [52].
% 0ne of the vector multiplets can be dualized into a weight-1/2 polar hypermultiplet [52].
%4For other constructions of higher derivative 4D N = 2 supersymmetric invariants, see [91, 92] and

references therein.
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with p and ¢ non-negative integers. The above composite O(2) multiplets are expected to
appear in low-energy effective actions for quantum N = 3 supersymmetric gauge theories.
In general, such an affective action is given by (C.14) with a Lagrangian of the form

£ _ G(2>£(G(2),G(2),Hn(2), . ) ’ (9.4)

where £ is a homogeneous function of degree zero.

In the N = 4 case, we need two vector multiplets, GS) (ur,) and Gg)(vR), in order to
generate higher derivative composite O(2) multiplets.

In the rigid supersymmetric case, Zupnik has derived, building on the earlier work by
Howe and Leeming [93], harmonic superspace formulations for the N' = 5 vector multi-
plet and corresponding Chern-Simons actions [94, 95]. In this setting, the off-shell vector
multiplet involves an infinite number of bosonic and fermionic degrees of freedom, which
makes possible the construction of Chern-Simons actions.

It is known that the harmonic superspace approach is the most elaborated scheme to
do supergraph calculations in off-shell theories with six and eight supercharges. It would
be interesting to see how quantum corrections of the type (9.4) are generated within the
background field formulation for quantum 3D N = 3 super Yang-Mills theories [96].
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A Geometry of N-extended conformal superspace

Here we collect the essential details of the A-extended superspace geometry of [50]. We
refer the reader to [50, 52] for our conventions for 3D spinors.

We begin with a curved three-dimensional N-extended superspace MBIZN
parametrized by local bosonic (z™) and fermionic coordinates (67):

M= (2™ 0%, (A1)

where m = 0,1,2, p = 1,2 and I = 1,--- ,N. The structure group is chosen to be
OSp(N]4,R) and the covariant derivatives are postulated to have the form

1 1
Va= EAMaM — wAQXQ = EAMaM — iQAbCMbC — i@APQNPQ — BAD — 3ABKB . (A2)

Here E4 = E M0y, is the inverse vielbein, M,; are the Lorentz generators, Ny are

generators of the SO(N) group, D is the dilatation generator and K = (K,,S.) are the

special superconformal generators.??

25 As usual, we refer to K, as the special conformal generator and S as the S-supersymmetry generator.
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The Lorentz generators obey

[Map, Mea) = 20caMyja — 2040 My » (A.3a)
[Maba vc] = 277(:[avb] ’ [Maﬁa v'j;] = 6v(ozvé) : (A3b)

The SO(N) and dilatation generators obey

[Nk, N') = 26( N7 — 260Ny [Nk, VE] = 260, Var) (A.3c)
1
D,V,] = V., D,V = ivg . (A.3d)

The Lorentz and SO(N') generators act on the special conformal generators K4 as

[Mab7 Kc] = 27]c[aKb} ’ [Maﬂv S,ﬂ = 67(a5é) P (A3e)
[Nk, S5 = 260 Sar) (A.3f)

while the dilatation generator acts on K4 as
T Lor
D, K, =-K,, [D,S)]= —55‘& : (A.3g)
Among themselves, the generators K4 obey the algebra
(S5, 87} = 210" (1) K. - (A.3h)

Finally, the algebra of K4 with V 4 is given by

[Ka, V] = 20D + 2Mqy,, (A.3i)
[Ka, V] = =i(7a)a” S , (A.3))
[ng Vo] = i(’Va)aﬁvé ) (A.3k)
{S5,V3} = 2e0p6" "D — 26" Mog — 264N (A.31)

The covariant derivatives obey the (anti-)commutation relations of the form

1 1
V4, Vit =-TapVe — §R(M)ABCndd - §R(N)ABPQNPQ
— R(D)apD — R(S) A SE — R(K) a5 K., (A.4)

where Ty 5¢ is the torsion, and R(M)sp°?, R(N) "%, R(D) g, R(S)aB}), and R(K)ap°
are the curvatures corresponding to the Lorentz, SO(N), dilatation, S-supersymmetry and
special conformal boosts respectively.

The full gauge group of conformal supergravity, G, is generated by covariant general
coordinate transformations, dcgct, associated with a parameter &4 and standard supercon-
formal transformations, d4, associated with a parameter A2. The latter include the di-
latation, Lorentz, SO(N), and special conformal (bosonic and fermionic) transformations.
The covariant derivatives transform as

0gVa = [K, V4], (A.5)
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where K denotes the first-order differential operator
K = Ve + %A“bMab + %A”Nu +AD 4+ AMK, . (A.6)
Covariant (or tensor) superfields transform as
ogT = KT . (A.7)

In order to describe the Weyl multiplet of conformal supergravity, some of the com-
ponents of the torsion and curvatures must be constrained. Following [50], the spinor
derivative torsion and curvatures are chosen to resemble super-Yang Mills

(V5 Vi = —2ieqW!7 (A.8)

where W17/ is some operator that takes values in the superconformal algebra, with P4
replaced by V4. In [50] it was shown how to constrain W7 entirely in terms of the super
Cotton tensor (for each value of N'). Remarkably, for all N the torsion tensor takes its
constant flat space value, while the Lorentz and dilatation curvatures always vanish:

T = —iE° ANEY(v%).5, ¢ =0, (A.9a)
R(M)® =0, R(D)=0. (A.9b)

We now summarize the resulting covariant derivative algebra for all values of N.

A.1 The N =1 case

The N = 1 super Cotton tensor Wy, is a symmetric primary superfield of dimension-5/2

5

SsWapy =0, KiWeas, =0, DWys, = EWOC/B’Y . (A.10)
The algebra of covariant derivatives is given by
{Va,V3} =2iV,g, (A.11a)
1
[vaa voz] = Z("Ya)aBW,B'yzSK’yg > (Allb)
i c\af 07) 1 c\af Yy
[vaavb] = _gf':abc(’y ) VaWﬂ'yéK - Egabc(’y ) Wa,B'yS ) (A'llc)

The Bianchi identities imply an additional constraint on W3-, the vanishing of its spinor
divergence,

VO Wasy =0 . (A.12)

A.2 The N =2 case

The N = 2 super Cotton tensor W, 3 is a symmetric primary superfield of dimension-2

SIWas =0, KWa3=0, DWus=2Was . (A.13)
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As in the N/ = 1 case, its spinor divergence vanishes,
VAW, =0. (A.14)

The algebra of covariant derivatives is

(V5 Vi =216"" Vg — e eqsWys K7, (A.15a)
1 .
[Va, V3] = i(fya)g'ya‘]vaKW“‘sKa(s +i(va) gy e KW S5k, (A.15b)

i .
[Va, Vb] = _ggabc(,yc)’yé (aKL(VVKV(SLWa/gKaﬁ + 41V7KW5/BS€) — 8W75.,7) , (A.15C)
where the U(1) generator [J obeys

) 1 .
Nk =iexrd, J= —§5KLNKLa (T, V8] = -ie"V,; . (A.16)

A.3 The N =3 case

The N = 3 super Cotton tensor W, is a primary superfield of dimension-3/2,

3
SiWa =0, KWa=0, DW,= §Wa, (A.17)
with vanishing spinor divergence,
vIw, =0. (A.18)
The algebra of covariant derivatives is
(V5 Vi = 26"V ap — 2e0pe" WS, +ie0p (1)K (V kWs) Ko, (A19a)
[Va, V3] = ie”5 5 (42) gy W Nk, + 1”55 (7a) gy (VW) S,
1
57 ()8, (V)sp (Vi VW) Ke (A.19b)
1 1
[Va: Vo] = €abe(Y)ap | — §€UK(V?W5)NJK - ZSUK(V?VC?WW)SHK
i
+ ﬂs”K(yd)w(v?vﬁv}(Wfs)Kd . (A.19¢)

In order to define a large class of matter multiplets coupled to supergravity, it is often
useful to switch to an isospinor notation using the isomorphism SO(3) = SU(2)/Za. As
usual, this is achieved by replacing any SO(3) vector index by a symmetric pair of SU(2)
spinor indices, V1 — Vi = V¥, The details of this correspondence are available in [52].
Here we only give the results essential for our discussion. Converting the indices of the
SO(3) generator Nk, into isospinor indices gives

1 1 y 1 0 1 . .
Nijm = SepTic + STt N = —fﬂjzk - §€’kjjl ; (A.20)
where the SU(2) generator J* acts on the spinor covariant derivatives as

[TH, Vi) = gilbyli 4 gilkgli (A.21)
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eq. (A.19a) turns into

(VI VE} = = 2i"® ViV 5 + £05e? WIS, + coe* WS, 7!

1 - . 1 . .
— 5ap (O (VM Wa) K = Seage™ (D (VWK . (A22)

We also have
(S, Vgl} = —2€a55i(kgl)jD + 2£i(ksl)jMa5 + sageﬂjik + eape® T (A.23)

A.4 The N > 3 case

WIJKL

For all values of N/ > 3, we introduce the super Cotton tensor , which is a totally

antisymmetric primary superfield of dimension-1,

SPWIIKL o [ WIIKL — o, DW!IKL — ylIKL (A.24)
The algebra of covariant derivatives ig26
(V5 Vi =26""Vag + icagW " H Ny, — N.%gaag(V}{W”KL)SWL

+ 2N — 2§(N —3) cap(Y) " (Vo Vs WA K, | (A.25a)
Vi V3] = g Oe)on (VW75

- B e (VI S

AN - 1)(Ni_ 2N —3) (Va) gy (V) sp (V3 VO VWKLY (A.25D)
V. Vil = g1 o ({73 VW) Nig

+ Aﬁ(v?vﬁv}(wﬂm)sﬂ

+ lel)(yd)w(v?vﬁv}(vgwf TED)Ky). (A.25¢)

where W1/EL gatisfies the Bianchi identity

4
N -3
For N = 4, the equation (A.26) is trivially satisfied, and instead a fundamental Bianchi

viwIKLP _ ngJKLP} B VQQWQ[JKL(SP]I ‘ (A.26)

identity occurs at dimension-2. Rewriting the super Cotton tensor as a scalar superfield,
as in (5.5), the Bianchi identity is
1
vAvIwW = Za”v%vgjw : (A.27)

We now we turn to a discussion of special features of the N/ = 4 case.

26The algebra for NV < 3 can be deduced from that for N > 3 [50].
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A.5 The N =4 case
For each SO(4) vector V7 we can associate a second-rank isospinor V;
Vier V= (Ve (V)" =V (A.28)
The original SO(4) connection turns into a sum of two SU(2) connections

= (Pr)a+ (Pr)a, (Pr)a =P "Ly, (Pr)a = D4Ry . (A.29)

Note that
Nk, — qul},ll— = el + e Ry - (A.30)

The left and right operators act on the covariant derivatives as
LM Vi) = byl [RM Vi) = iy | (A.31)
In the isospinor notation, the Bianchi identity on W becomes
VORI = %eijeﬁvg,;v’jffw . (A.32)
The algebra of spinor covariant derivatives becomes
(VIV} = 2ie7V 5 + 2icage? WLY — 2ic,5eVWRY
- ieageijV"’kEWSlf + iaagezjvﬂfi,;WS%E

1 . S = =
+ feap (alﬂvwklv’gfw — iy, ,;vg’fw) K" (A.33)
Note that
{Sﬁj, Vg} = 2604581']'5;5@ — 2€ijasza5 + 25a5€€5Lij + 25a55inzj . (A.34)

B Supersymmetry transformations

In this appendix we give the supersymmetry transformations of the component fields for
vector multiplets with A/ < 5. For the supersymmetry transformations of the Weyl multi-
plet we refer the reader to [45]. In general there are additional auxiliary fields coming from
the super Cotton tensor W//KL. These are defined for N’ > 3 as follows [45]

wrykr == WikLl, (B.1a)
w7 = —2(Ni_ 3)VQLW”KL|, (B.1b)
YKL Aﬁvw[lvawJKL]P| ’ (B.1c)
Koo = M)V o Wl W ol (B.1d)

where I(n) is defined by eq. (5.7). Expressions involving the component fields for lower
values of A/ may be derived via the truncation procedure given in [45].
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One readily finds the @-supersymmetry and S-supersymmetry transformations of vy,
to be

1
0Q(§)vm = _§§}<emb(%)fx§< — i €arcg” (B.2a)
ds(n)vm =0 . (B.2b)

The S-supersymmetry transformations of the non-gauge fields are

ds(n)g"” =0, (B.3a)
5s(m)Ae = 4nasg”" (B.3b)
55(77)h” = —2i17a[1)\i} — Qn?(xa”K, (B.3c)
Js(mxa’"™ = —6inll g75) . (B.3d)
Their @-supersymmetry transformations are
5q(&)g" = —iglxy" K — oA, (B.4a)
SN = ig, shT — 210V 5o g”! + 2i€PT Fy,, (B.4b)
5Q(£)hlj = 215?(6026(7]‘”( - 250416017)\? - 8i£?(waIJLgLK
— 8% wa KU gpTl 4 20wt T KE N + 4ig [ A
+igklg" AN, (B.4c)
3 .
5Q(€)XOLIJK _ E?/XaﬂLIJK o §§thK] - 3£B[IvﬂagJK] + GfaLwPL[IJgK]P
+ 3ika[g", g5, (B.4d)
where we have made use of the covariant derivative
1 1
D, = e, Dy = e,™ <am — 5(,Jm”‘«‘Mbc - 5Vm” Nij—by,D — ivm> (B.5)
and defined?”
3 i 1 7
VagIJ = DagIJ + §¢a§(XﬁIJK + §¢a6[1)‘5} ) (B.6a)
6a)‘gy = ,Da)\é - %wanhJI + i@bag@aﬁg(n - i¢aﬁlﬁaﬂ - Qd)angJI ) (B'Gb)
. 1 .
VaXaIJK = DaXaIJK + iwa/gXBaIJKL + Z¢athK] + g¢a5[lvﬁagJK]
3i .
- SwaaLwPL[IJgK]P - EwaL[gLUngK}] + 31¢a[o{gJK] . (B6C)

In the above we have derived the supersymmetry transformations of the component
fields for general N'. However, we are still missing the supersymmetry transformations of

Xagoy V2 > 1 (B.7)

These fields only appear for NV > 3, while for N = 4 Xagl JKL i5 composite once one imposes
the (anti-)self-dual condition (4.25), see eq. (5.17b). Keeping in mind the definition of the
component fields, egs. (5.29) and (5.13), and the truncation procedure, we see that all the
supersymmetry transformations for N/ < 5 are specified.

*"The component S-supersymmetry connection is defined as in [45], ¢a = €a" $m -
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C Action principle in N/ = 3 supergravity

As demonstrated in [52], general off-shell N' = 3 supergravity-matter systems are naturally
formulated in curved N = 3 projective superspace M3I6 % CP! in terms of covariant
projective multiplets. These multiplets were defined in [52] in SO(3) superspace. Here we
briefly extend those definitions to N' = 3 conformal superspace.

Let v* € C%\ {0} be homogeneous coordinates for CP!. We use these variables to
define a subset of spinor covariant derivatives

V((XQ) = Uﬂ}jvg . (Cl)
It follows from (A.22) that the operators V((f) anticommute with each other,
(v, vPr=0. (C.2)

This property allows us to define a family of constrained superfields.

By definition, a covariant projective multiplet of weight n, Q™ (z,v), is a Lorentz-
scalar superfield on M?3I6 that is holomorphic on an open domain of C?\ {0} with respect
to v’, and is characterized by the following properties:

1. it obeys the analyticity constraint
vaQm = o ; (C.3)
2. it is a homogeneous function of v’ of degree n,
QM (cv) = QM (v),  ceC\{0}; (C.4)
3. its SU(2) transformation is
AQM = %AUJUQ(") 7 Aijjz.jQ(n) = —(APa2 —nAYQM — (C.5)

Here we have defined

Uiuj'

A®) = Avv;, A = e u)Aij, (v, u) == viuy (C.6)
and introduced the differential operator
1 .0
Y = — C.7
(v,u)u ovt (C.7)

These relations involve a fixed isospinor u; which is subject to the condition (v, u) # 0, but
otherwise completely arbitrary. For the covariant projective multiplet, one can define the
operation of smile conjugation which takes Q™ (v) to its smile-conjugate QM (v), which is
also a covariant weight-n projective multiplet, see [52] for the details. Its property is

QM () = (~1)"QM(v) . (C.8)

Therefore, if n is even, one can define real projective multiplets, Q(2n) = Q).
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A weight-n isotwistor superfield U™ (z,v) is defined to share with Q™ (z,v) all its
properties except the analyticity constraint (C.3).
In this paper, all covariant projective multiplets are assumed to be primary,

SiQM =0,  K,Q™ =0, (C.9)

and hence {S¥,V®}Q™ = 0. Then it follows from (A.23) that the dimension of Q) is
equal to n/2,

n
D™ = 5Q(ﬂ) . (C.10)

An important example of covariant projective multiplets is a real O(2n) multiplet, with
n=1,2,... It is described by a real weight-2n projective superfield H (2n) (v) of the form:

H® (p) = Hiv gy v, = HEV () | (C.11)
The analyticity constraint (C.3) is equivalent to
VI k) — (C.12)
while the reality condition H@n) — g@n) jg equivalent to
Hivizn = Hy g0 = €44, - - Eigy jon HI 920 (C.13)

The field strength of an Abelian vector multiplet, G(?), is a real O(2) multiplet.

To describe the dynamics of a supergravity-matter system, one has to specify a La-
grangian, £3 (v), which is postulated to be a real weight-two projective multiplet. Asso-
ciated with £®) is the supersymmetric action [52]

S = 1 d(v,dv) / Brd0ECCIL® | Bl —Ber(BuM).  (C.14)

21 ~

Here the model-independent isotwistor superfield C(=%(v) of weight —4 is required to be
conformally primary and of dimension —1,

Séjc(—‘l) =0, K,0% =0, DO = (=9 (C.15)

and obey the condition

AWCEY =1, (C.16)
where
AW = iv@)avg) . (C.17)

As shown in [52], the action (C.14) does not change under an arbitrary infinitesimal vari-
ation of C=%_ and thus (C.14) is actually independent of C'(=%).
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The second-order operator (C.17) allows us to engineer covariant projective multiplets.
The point is that the superfield AT (”_4)(11) is a covariant weight-n projective multiplet,

(n=4) of dimension n/2 — 1.

for any primary isotwistor superfield U

We now derive a new representation for the action (C.14) that is valid under the
assumption that there is an Abelian vector multiplet such that its gauge invariant field
strength G¥ is nowhere vanishing, G := /G G; # 0. Let V(v) be the tropical prepotential
for this multiplet. By definition, V(v) is a real weight-zero projective multiplet. The
superfield G¥ is a real O(2) multiplet which is related to V(v) as follows:

G (v) = Gijv'v! = A(4)7{ (6,d9) V(0) . (C.18)

5 2m (v, 0)?

The right-hand side on (C.18) is invariant under the gauge transformations (7.2).

In the action (C.14), we first replace £ — GP[£?)/G?)] and make use of the
representation (C.18) for the first multiplier. As a next step, we can integrate by parts in
order to let A® hit C(=% and then use (C.16). Finally, we can change the order of contour
integrations to result in

_ 1 o ) (v,dv)  £O)(v)
S = %é(v,dv)/d3xd69EV(v)?£2ﬂ(v7@)2 EIOR (C.19)

In this functional, we first re-label v <+ ¥, then insert the unity 1 = A®WC4 (v) and finally
integrate A™) by parts. Since V(v) obeys the constraint (C.3), the projection operator A%
commutes with V), and we end up with the representation

S_l

"~ 27

}{ (v, dv) / Prd9Ec-Yva? (C.20a)
g

where

O (o) = @) = AW @G® _ 5
G (1) = Giv'v fg%(v,@)?G@)(@)’ vOG® =0 (C.200)

is a composite real O(2) multiplet. Eq. (C.20) is our new representation for the ac-
tion (C.14). It is the main result of this section.

We conclude with an example that provides evidence of the universality of the projec-
tive superspace action (C.14). Let us consider the conventional ' = 3 locally supersym-
metric action

S:i/d3xd69E£, DL =0, (C.21)

where the Lagrangian £ is a dimensionless primary scalar superfield. It turns out that this
action can be recast in the form (C.14) if we define

£ = 2A(4)g(§) : (C.22)

This may be proved using the the contour integration techniques of [85].
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D Action principle in AN/ = 4 supergravity

Within the approach [52], off-shell N' = 4 supergravity-matter systems are formulated in
curved N = 4 projective superspace M3I® x (CPI} X (CPfl{ in terms of covariant projective
multiplets. These multiplets were defined in [52] in SO(4) superspace. Here we briefly
extend those definitions to N' = 4 conformal superspace. Our presentation is similar to the
N = 3 story of the previous section.

Let v, := v € C2\ {0} and vg := v’ € C?\ {0} be homogeneous coordinates for CP;
and CPPli respectively. We use these variables to define two different subsets, Vg})i and

1) . . . . . 7
Vgé )l, in the set of spinor covariant derivatives V%,

vi.— v,-vf, vf})i = mvﬁ . (D.1)

It follows from (A.33) that the operators V&lﬁ obey the anti-commutation relations:
{vg}ﬁ,vg)j} = ieape WLE + iaa5555v7(1>,;WS§1)’5
1 e )k
—Zaaﬁejvy(l)kvg) WK . (D.2)

There are two types of covariant projective multiplets, the left and right ones. A left
projective multiplet of weight n, Q£”) (vr), is defined to obey the constraint

VM =0 (D.3)
and is required to be a holomorphic and homogeneous function of v, of degree n,
Q" (cu) = QM(w),  ceC\{o}, (D.4)

on some open domain of C?\ {0}. The left projective multiplet is inert with respect to
SU(2)g and transforms under SU(2)y, as

5AQ£n) — ALy i”% (D.5a)
Q1 = -0 —na)or” (D.5b)

where we have defined

ViU

2 ij 0 ij
AP = Ay, AD = g (D.6)
and introduced the differential operator
(—2) 1 ; 0 i
— _— = i . D.
aL (’UL, UL) u 8'[}2 bl (UL7 UL) vu ( 7)

The right projective multiplets are defined similarly.

In NV = 4 conformal superspace, we can also introduce hybrid projective multiplets and
1sotwistor projective multiplets. The corresponding definitions are completely analogous to
those given in [52].
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All left and right projective multiplets are assumed to be primary, in particular

S —0, K,Q™=0. (D.8)
Hence we have the condition ) i
{si, el =o, (D.9)

which fixes the dimension of Qin)

n n _(n
DR = S01 . (D-10)

In general, the A = 4 supersymmetric action may be represented as a sum of two

terms, the left Sy, and right Sg ones,?
S=5.L+S5Rr . (D.11)
The left action has the form
1 3., 18 (—4) ~(2) —1 M
SL = o (vp,dor) [ d?xd®0ECp VLT, E7" =Ber(E4™), (D.12)

YL

where the Lagrangian ES) (ur,) is a real left projective multiplet of weight 2. The action

involves a model-independent primary isotwistor superfield 01(474) (ur,) of dimension —2,
DC£_4) = —20£_4). It is defined to be real with respect to the smile-conjugation and obey
the differential equation

AW — (D.13)

Here A£4) denotes the following fourth-order operator?”

@ _ 1 (goig® _ y@aey@) - Ly@ig®
Af o (v Vi aﬁ) I o (D.14)
with
v@ ._ yWrg® v@ . yWrg)
i T VE VA of = V(a Vpk (D.15)

The action (D.12) is independent of 01(174) in the sense that it does not change under an
arbitrary infinitesimal variation of C£_4).
An Abelian vector multiplet with self-dual field strength Gf can be described by a

left tropical prepotential Vi, (vr,) defined modulo gauge transformations

oV, = A\, + X\L , (D.16)

Z8There exist different action principles, in particular the one with a hybrid Lagrangian [52]. However,
they may be always reduced to the form (D.11).

29The operator A£4) is a covariant projection operator. Given a covariant left projective multiplet QIE") (vL)
of weight n, it may be represented in the form Qi") = A£4)Té”74>, for some left isotwistor superfield
T (v1,), see [52] for the details.
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where the gauge parameter \j, is an arbitrary left arctic multiplet of weight zero. The
corresponding gauge invariant field strength, G%, is a right O(2) multiplet related to VI,
as follows:

i

Gg)(vR) = v;v;Gﬁ = 47@'%‘?{

(UL, d’UL) uiuj
2 (UL, UL)

SV IV (ur) (D.17)

Here up, = u' is a constant isospinor such that (vp,ur) # 0 along the closed integration
contour. One may show that the right-hand side of (D.17) is independent of wur,.

The left O(2) multiplet G¥ is associated with a right tropical prepotential Vg (vgr)
according to the rule:

(vr,dvr) Uy

2r (wr UR)2vaﬁVQﬁVR(UR) : (D.18)

g
G£2) (vr) = viv;GY = 4112-1)]-7{
The prepotential Vg can always be represented as

Vr(vr) = AYTL Y (vg), (D.19)

for some isotwistor superfield Tl(%_zl) (vg).2° Here Ag) is defined similar to Al(jl),

Ag) — iv@)ijvg) .V

@ _ oD@
5 ) = vy (D.20)

ij (@ v4)

There exists an isotwistor superfield 7(=2~4) (4y,, vg) such that3!
_ oL, A
T (vg) :f L vL)T(iz’%)(@L,UR) : (D.21)

A 2

Then, the field strength (D.18) can be rewritten in the form [52]

(2) () ) — A (URad’UR)j{ (0n, don)  (32)p(~2,-4) 4 D.22
Gt - 7£R 2 5, 2m (v, 01,)2 (Broem) (b-22)

where we have defined
A2 = i@i@jvgvivaﬁvg‘j . (D.23)

We now obtain an alternative representation for the left action (D.12). The idea
is to insert the unity 1 = Gg)(vL)/Gg) (vr,) into the integrand (D.12), make use of the
expression (D.22) for the field strength in the numerator and then integrate by parts in
order to let Al(jl) hit C£_4). This gives

2
5= f (vg, dvg) [ (v, dor) z(%;)m)
w2 wo 2T Gy (o)

(01, dOL) A (3,2)(—2,-4) /1
— = L AT D.24
8 %ﬁ 2 (vy,, 0p,)? (6e, vm) ( )

30See [52] for the definition of N = 4 isotwistor superfields.

31For instance, we can choose T2 7% (1, vg) = —2Té_4)(’UR)G<2G)7?A).
L (YL
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where we have changed the order of contour integrals. The next step is to insert the unity
Ag )C§_4) = 1 into the integrand and then integrate by parts. This gives

St = 7{ (oR, dvr) / Prd g ECY
TR 2

(2) b do
XA&”% (v, dur,) EL2 (vL)f (ULaChiL)QA(Q D729 (gp wg) . (D.25)
w20 6P (o) o 2oL o)

(4)

Taking the explicit form of Ay’ into account, this expression can be replaced with the

following:
SL = —?{ (v, dvg) /d3x dBHEC(_4)7{ (v, dv)
. 27 R - 27
XA(_ { % 'ULvdUL (2 Z)A(Q,Q)T( 2, 4)(UL>’UR)} . (D26)
50, 2m (v, 01)2
Here the operator A(=22) is defined by
AC22) o Y ity T D.27

for an isospinor u; such that (vr,ur,) # 0. The operator A2 in (D.26) is obtained from
A2 eq. (D.23), by replacing ¥; — v;. Now, one may notice that AG2AR2) in (D.26) is
(4)

equivalent to (vr,,d1,)?AR’, and therefore the action turns into

d . d c?
s.- f (o don) [daaopci? ¢ o do) A<272>{%2)(”L)VR(UR)} (D.28)
TR L Gp/(vL)

(_272)

Since Vg is a right projective multiplet, it commutes with the operator A , and we end

up with the following representation for St,:

Sy = j{ W/d3xd80ECf({_4)VR G’g), (D.29)
v 27
where
. . - (,r®
G2 (og) — o3 GI = IW’"% (vL,doL)  ugu; YOIy i 51427(%) (D.30)
4 2r (v, ur) G(L)(UL)

is a composite right O(2) multiplet.

Eq. (D.29) is our new representation for the left action (D.11). The important point
is that the integration in (D.11) and (D.29) is carried out over different subspaces of the
curved projective superspace. The original left action (D.11) is given as an integral over
MBIE x CPL. In the final action (D.29), the integration is carried out over M3® x CPg.

Since (D.29) involves the composite right O(2) multiplet Gg), it will be referred to as
the right linear multiplet action.
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