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Abstract The kidney plays a crucial role in the mainte-
nance of the body calcium (Ca2+) balance. Ca2+ is an
essential ion in all organisms and participates in a large
variety of structural and functional processes. In mammals,
active tubular Ca2+ reabsorption is restricted to the distal
part of the nephron, i.e., the late distal convoluted (DCT2)
and the connecting tubules (CNT), where approximately
10–15% of the total Ca2+ is reabsorbed. This active
transcellular transport is hallmarked by the transient
receptor potential vanilloid 5 (TRPV5) epithelial Ca2+

channel, regulated by an array of events, and mediated by
hormones, including 1,25-dihydroxyvitamin D3, parathy-
roid hormone, and estrogen. Novel molecular mechanisms
have been identified, such as the direct regulatory effects of
klotho and tissue kallikrein on the abundance of TRPV5 at
the apical membrane. The newly discovered mechanisms
could provide potential pharmacological targets in the
therapy of renal Ca2+ wasting. This review discusses the
three basic molecular steps of active Ca2+ reabsorption in
the DCT/CNT segments of the nephron, including apical
entry, cytoplasmic transport, and basolateral extrusion of
Ca2+. In addition, an overview of the recently identified
mechanisms governing this active Ca2+ transport through
the DCT2/CNT epithelial cells will be presented.
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Introduction

Calcium (Ca2+) is essential for the physiological function-
ing of all living cells. In humans, 99% of total body Ca2+

resides in the skeleton. The remaining 1% is distributed in
soft tissues and extracellular fluid, which is the prime target
of the Ca2+ homeostatic systems. Three tightly controlled
mechanisms, including bone resorption and formation,
intestinal absorption, and renal reabsorption, maintain Ca2+

homeostasis. In the kidney, approximately 45% of the
plasma Ca2+, present in free ionized form, filters through
the glomerulus and enters the proximal tubule segment of
the nephron, where ∼65% of the filtered Ca2+ is passively
reabsorbed [56, 62]. In the thick ascending loop of Henle
(TAL), an additional 20% is reabsorbed through this
passive paracellular pathway, mediated by the tight junction
protein claudin-16 [3, 43]. In these segments, Ca2+

reabsorption is not specifically regulated and depends on
gradients established by NaCl and water reabsorption [61].
The final regulation of Ca2+ excretion, according to
physiological needs, appears to occur primarily in two
segments of the distal part of the nephron, namely in the
late part of the distal convoluted tubule (known as DCT2)
and the connecting tubule (CNT; Table 1) [16].

Morphologic characteristics of the CNT

The above discussed distal segments of the nephron exhibit
distinct morphological, as well as functional features. In the
superficial cortex, the DCT/CNT region is short and flows
directly into the cortical collecting duct (CCD). Midcortical
and juxtamedullar nephrons, on the other hand, have longer
DCT/CNTs merging with other CNT segments into arcades
before transitioning to the CCD [56]. DCTs consist of two
short segments, DCT1 and DCT2, both comprising a
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uniform population of principal cells, whereas the CNT
contains both principal and two types of intercalated cells [3,
16, 43, 56]. Furthermore, the principal cells in the CNT have
less cell–cell contacts and mitochondria, and their apical
membrane contains fewer projections than DCT cells. Unlike
the polygonal-shaped CNT cells, intercalated cells appear to
be round with an apical membrane densely adorned with
microprojections [43, 56]. The proton secreting α-intercalat-
ed cells have extensive apical microvilli with abundant
expression of the H+/K+ exchanger and vacuolar H+-ATPase
and numerous subapically localized small mitochondria,
whereas the bicarbonate secreting β-intercalated cells have
fewer apical microvilli, and their mitochondria tend to
accumulate basolaterally, where the proton pump is also

located [56]. Although the ratio of α- and β-intercalated
cells vary depending on the actual physiological state, α-
intercalated cells are more common in the CNT.

In addition to the ubiquitously expressed Na+/K+-
ATPase, the Na+/Ca2+ exchanger (NCX1) and the plasma
membrane ATPase type 1b (PMCA1b) have been found
along the DCT2/CNT region, whereas the apically localized
thiazide-sensitive Na+/Cl− co-transporter (NCC) and the
transient receptor potential melastin subtype 6 are present in
the DCT (see Xi et al. in this issue). The DCT2 region also
shares additional similarities with the CNT segment, as both
segments express the transient receptor potential vanilloid
type 5 (TRPV5) and the Ca2+-binding protein calbindin-
D28K. The tight junctions in these segments are imperme-

Table 1 Regulation of Ca2+ transporters

Refs Apical membrane Cytoplasm Basolateral membrane

Transporter Action Transporter Action Transporter Action

Intracellular
factors

TRPV5 Calbindin-D28K NCX1 PMCA1b Na+/K+-
ATPase

Hormones
[27] 1,25(OH)2D3 Gene expression ↑ Gene expression ↑ NCX1 PMCA1b Gene expression ↑,=
[67] Estrogen Gene expression ↑ Gene expression ↑ NCX1 PMCA1b Gene expression ↑
[41] Insulin Gene expression ↓ Gene expression ↓

Gene expression ↑
[12, 68] PTH Plasma membrane

abundance ↑
Gene expression ↑ NCX1 Gene expression ↑

Transporter
trafficking
regulators

[72] S100A10–annexin-2 Plasma membrane
abundance ↑

[73] Clathrin Plasma membrane
abundance ↑

[12] Caveolin Plasma membrane
abundance ↑

[71] Rab11a Plasma membrane
abundance ↑

Transporter activity
regulators

[50] [Ca2+]i Activity ↓
[51] [Mg2+]i Activity ↓
[42] PIP2 Activity ↑
[23] 80K-H Activity ↑

Extracellular factors
[5, 40, 77] pH Plasma membrane

retention ↑
Activity ↑

[5] [Mg2+]pro-urine Activity ↓
[24] TK/bradykinin Plasma membrane

retention ↑
[11, 14] Klotho Plasma membrane

retention ↑
Na+/K+-ATPase, NCX1 Plasma membrane

abundance ↑
Indirectly increased
activity

Regulation of Ca2+ transporters in kidney by intracellular and extracellular factors. Data included in the table were based on listed references
↑ increased gene expression, increased channel activity, or increased plasma membrane abundance,↓ downregulation of gene expression or
inhibition of channel activity, = no effect
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able for Ca2+, and transcellular Ca2+ transport occurs
against an electrochemical gradient, supporting that Ca2+

reabsorption in the DCT2/CNT is mediated by active
transepithelial transport.

Transepithelial Ca2+ reabsorption

Transepithelial transport of Ca2+ is a three-step process. It
initiates with influx of Ca2+ across the apical membrane
mediated by TRPV5 [29]. Subsequently, entered Ca2+ is
sequestered by the specialized intracellular carrier protein
calbindin-D28K and diffuses to the basolateral membrane
(Fig. 1). Finally, transporter proteins, such as NCX1 and
PMCA1b, extrude Ca2+ from the epithelial cell into the
circulation (Fig. 1). The identification and characterization
of TRPV5 as the gatekeeper of renal epithelial Ca2+

transport [30] gave new momentum to the understanding
of the molecular mechanisms underlying the process of
active Ca2+ reabsorption.

TRPV5—the apical gate

TRPV5, also known as the epithelial Ca2+ channel, is a
member of the TRP channel superfamily [29]. This channel
comprises large and flexible intracellular amino- and
carboxyl-terminal tails flanking six transmembrane seg-
ments (TM) and an additional hydrophobic stretch between
TM5 and TM6, predicted to be the pore-forming region.
The amino-terminal tail contains six ankyrin repeats [19,
54] that are important structural elements for both channel
assembly and protein–protein interactions [13, 19]. Fur-
thermore, the first extracellular loop between TM1 and
TM2 contains an evolutionary conserved asparagine (N358)
crucial for complex-glycosylation and in turn for regulating
channel activity [11, 13, 33]. The carboxyl-terminal tail
harbors three potential protein kinase C (PKC) sites, which
suggests an important role for phosphorylation in channel
activity. Moreover, in cultured mammalian cell systems, as
well as in oocytes, TRPV5 is assembled into large
homotetramers in order to acquire the active conformation

Fig. 1 Model of transcellular Ca2 reabsorption in DCT2 and CNT.
The renal distal tubule in the nephron comprises anatomically discrete
segments, including the thick ascending limb of the loop of Henle
(TAL) and the distal convoluted tubule (DCT) that ends in the
connecting tubule (CNT). The late part of the DCT (DCT2) and CNT
play an important role in fine-tuning renal excretion of Ca2+. The
epithelial Ca2+ channel (TRPV5) is primarily expressed apically in
these segments and co-localizes with calbindin-D28K (28K), Na+/Ca2+

exchanger (NCX1), and the plasma membrane ATPase (PMCA1b).
Upon entry via TRPV5, Ca2+ is buffered by 28K and diffuses to the
basolateral membrane, where it is released and extruded by a
concerted action of NCX1 and PMCA1b. In addition, the basolateral
membrane exposes a parathyroid hormone receptor (PTHR) and the

Na+/K+-ATPase consisting of the α-, β- and γ-subunit. PTHR
activation by PTH stimulates TRPV5 activity, and entered Ca2+ can
subsequently control the expression level of the Ca2+ transporters. At
the apical membrane, there is a bradykinin receptor (BK2) that is
activated by urinary tissue kallikrein (TK) to activate TRPV5-
mediated Ca2+ influx. In the cell, entered Ca2+ acts as a negative
feedback on channel activity, and 28K plays a regulatory role by
association with TRPV5 under low intracellular Ca2+ concentrations.
Extracellular urinary klotho directly stimulates TRPV5 at the apical
membrane by modification of the N-glycan, whereas intracellular
klotho enhances Na+/K+-ATPase surface expression that in turn
activates NCX1-mediated Ca2+ efflux
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state [26, 33]. Facing each other, the hydrophobic stretches
between TM5 and TM6 in each subunit are postulated to
form the aqueous pore centered at the fourfold symmetry
axis.

Detailed electrophysiological studies have compellingly
demonstrated the constitutive activity of TRPV5 at low
intracellular Ca2+ concentrations and physiological mem-
brane potentials [75]. The current–voltage relationship of
TRPV5 shows strong inward rectification [29, 74, 75].
Another important functional feature of TRPV5 is the high
Ca2+ selectivity, making this epithelial Ca2+ channel the
most Ca2+-selective member in the TRP superfamily [75].
Finally, the generation of a TRPV5 deficient mouse strain
(TRPV5−/−) provided compelling evidence for the physio-
logical function of this channel. Active Ca2+ reabsorption in
DCT2 and CNT is severely impaired in these animals as
TRPV5−/− mice waste approximately six- to tenfold more
Ca2+ than their wild-type littermates, which is in line with
the postulated gatekeeper function of TRPV5 in active Ca2+

reabsorption [31].
Shortly after the identification of TRPV5, a homologous

channel, sharing 75% amino acid identity with TRPV5, was
cloned from intestine and named TRPV6 [53]. Although
there are some functional differences between these
channels, TRPV6 exhibits the same Ca2+ selectivity and
current–voltage relationship [32, 47, 78]. Moreover, this
latter channel has been implicated in intestinal Ca2+

absorption. Disturbances in the Ca2+ homeostasis were also
reported in mice lacking TRPV6 (TRPV6−/−) as these
animals display reduced intestinal Ca2+ absorption and low
bone mineral density [1]. Although it has been shown that
TRPV6 is moderately expressed in adult kidney [59] and
the TRPV6−/− mice have increased urinary Ca2+ excretion,
the exact role of TRPV6 in the kidney is not yet fully
understood.

Calbindin-D28K—the intracellular shuttle

The principal cells of the DCT2/CNT segments are
continuously challenged by a substantial Ca2+ influx
through TRPV5, yet the cells manage to maintain a low
intracellular Ca2+ concentration ([Ca2+]i). Maintaining the
free [Ca2+]i at the basal level is essential for several reasons.
High levels of free Ca2+ in the cytoplasm are known to
induce apoptosis and protein precipitation. In addition, Ca2+

has an essential signaling function for many processes in
the cell. More importantly, an increased [Ca2+]i has been
shown to inhibit the activity of TRPV5 [75]. Based on the
currently available data, three different models have been
postulated for transepithelial Ca2+ transfer from the apical
to the basolateral membrane. The first model is based on a
passive diffusion tunneling through the endoplasmatic
reticulum, vesicular transport along the microtubules

involving lysosomes, and finally, facilitated diffusion.
According to the second model, Ca2+-transporting cells
utilize lysosomes to sequester Ca2+ and facilitate its
movement to the basolateral membrane [35]. The apical
Ca2+ influx through TRPV5 initiates the disruption of the
actin cytoskeleton and the formation of Ca2+-enriched
endocytic vesicles, which are transported along the micro-
tubules and some fuse with lysosomes [46]. In a third
model, the intracellular diffusion of Ca2+ is facilitated by
the vitamin D3-dependent Ca

2+-binding protein, calbindin-
D28K, in the principal cells of DCT2 and CNT segments [7,
20]. Together with parvalbumin, calmodulin, and troponin
C, calbindins are Ca2+-binding proteins that form a family
of proteins with Ca2+ affinity [15]. Calbindin-D28K has
three pairs of EF-hands that are the structural basis of the
high Ca2+ affinity binding capacity [6]. Moreover, in the
kidney, the expression of calbindin-D28K is restricted to
DCT2, CNT, and CCD regions. It has also recently been
shown that calbindin-D28K translocates to the TRPV5-
containing plasma membranes upon a decrease in intracel-
lular [Ca2+] and directly associates with this channel [39].
Due to the relatively slow Ca2+-binding kinetics of
calbindin-D28K, hormone-induced Ca2+ signaling can also
occur independently of the transcellular Ca2+ transport rate
[37]. Bound to calbindin-D28K, Ca2+ is shuttled to the
basolateral membrane, where Ca2+ is discharged into the
blood flow by the basolateral Ca2+ extrusion systems.
Finally, some studies reported that calbindin-D28K

−/− mice
fed a high Ca2+ diet have impaired renal Ca2+ handling as
they excrete more Ca2+ in their urine than the wild-type
control littermates [60], whereas other studies did not
observe a difference that is probably due to the compensa-
tory increase of renal calbindin-D9K expression [22]. These
data suggest that calbindin-D28K facilitates the intracellular
diffusion of Ca2+ in DCT2 and CNT.

NCX1 and PMCA1b—the basolateral extrusion system

The energy-consuming step of transcellular Ca2+ transport
lies in the Ca2+ efflux process. In this step, intracellular Ca2
+ is transported across the basolateral membrane against its
electrochemical gradient, and the ions are extruded back to
the blood flow. Two transporters have been implicated in
this mechanism, PMCA1b and NCX1. Plasma membrane
ATPases are high-affinity Ca2+ efflux pumps that maintain
the resting Ca2+ concentration in virtually all cells [4]. The
highest Ca2+-ATPase activity in kidney was reported in the
DCT segment. However, earlier studies have suggested that
the capacity of this PMCA pump in CNT seems to be
insufficient to keep pace with the absorptive flux of Ca2+

because it can transport only ∼30% of the total Ca2+ efflux
[2, 69]. In contrast to PMCA1b, the Na+/Ca2+ exchanger
has been shown to be a prerequisite for transepithelial Ca2+
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transport [2, 69]. NCX1 exchanges Ca2+ and Na+ generally
in a 1:3 stoichiometric ratio. Moreover, NCX1 is a widely
expressed protein as it can be found in several tissues,
including the heart, brain, and skeletal muscle [45]. In the
kidney, the expression of NCX1 is restricted to the distal
part of the nephron, particularly the CNT segment, where it
predominantly localizes along the basolateral membrane [3,
28, 43] and accounts for the remaining 70% of the Ca2+

efflux [2, 69].

Regulatory mechanisms of Ca2+ transport in DCT2/
CNT

The aforementioned transporters comprise the machinery
transporting Ca2+ from pro-urine to the blood in the DCT2/
CNT. Several factors have been shown to contribute to the
regulation of the Ca2+ transporting capacity of these
particular nephron segments, which can be classified into
four categories: (1) the control of the overall abundance of
the transporter proteins by calciotropic hormones, (2) the rate
of intracellular trafficking of the plasma membrane trans-
porters, (3) alteration of activity of the transport proteins in
the membrane by intracellular factors, and finally, (4) tuning
apical Ca2+ influx by extracellular (luminal) factors.

Controlling the abundance of Ca2+ transporters

PTH

Parathyroid hormone (PTH) is an essential component of
the Ca2+ homeostasis. The secretion of PTH from the
parathyroid gland is triggered by changes in blood Ca2+

levels sensed by the parathyroid Ca2+-sensing receptor [8].
PTH receptors have been detected in DCT2/CNT, enabling
the direct control of active Ca2+ reabsorption by PTH [57].

PTH-mediated regulation of the Ca2+ transporters was
studied in parathyroidectomized rats [68]. Parathyroidecto-
my reduced the expression of TRPV5, calbindin-D28K, and
NCX1. This decline in expression of Ca2+ transporters
resulted in decreased active Ca2+ reabsorption and the
development of hypocalcemia [68]. After PTH supplemen-
tation, the expression of Ca2+ transporters, as well as
increased plasma Ca2+ concentration were normalized in
these parathyroidectomized rats. In addition, the regulation
by PTH was investigated in primary cultures of rabbit CNT
cells. In these Ca2+-transporting cells, PTH resulted in an
elevated expression of the Ca2+ transport proteins TRPV5,
calbindin-D28K, NCX1, and PMCA1b. Taken together,
these results indicate that PTH stimulates renal Ca2+

handling by co-regulating the expression of the Ca2+

transport proteins [68]. In addition, experiments in these
primary CNT cell cultures supported a gatekeeper role of

TRPV5 since a blockade of the apical Ca2+ influx by
ruthenium red prevented the PTH-induced upregulation of
the other Ca2+ transporters.

Vitamin D

The vitamin D endocrine system plays a pivotal role in Ca2+

homeostasis. In the recent years, it has become clear that the
active form of vitamin D (1,25-dihydroxyvitamin D3, or
abbreviated 1,25(OH)2D3) is a potent regulator of the Ca2+

transport proteins. Several groups have shown transcrip-
tional regulation of TRPV5, calbindin-D28K, and NCX1
by 1,25(OH)2D3, whereas a 1,25(OH)2D3-sensitivity for
PMCA1b is not consistently reported. Studies in vitamin-
D-deficient knockout models showed an impressive down-
regulation of renal TRPV5, calbindin-D28K, and NCX1
mRNA that could be normalized by 1,25(OH)2D3 supple-
mentation, whereas PMCA1b was not significantly affect-
ed [27]. On the other hand, several studies indicated that
PMCA1b is positively regulated by 1,25(OH)2D3 in the
intestine to increase Ca2+ absorption. Northern blot
analysis indicated that repletion of vitamin-D-deficient
chickens with vitamin D increases PMCA mRNAs in the
duodenum, jejunum, ileum, and colon [9]. Because these
studies and the role of vitamin D in Ca2+ homeostasis have
been reviewed extensively [29, 64, 70], detailed informa-
tion is not included in this review.

Estrogen

Although estrogen is generally not considered as a
calciotropic hormone, it is widely accepted that it plays a
role in renal Ca2+ handling. In rats, estradiol has been
suggested to enhance the expression of TRPV5, NCX1,
PMCA1b, and calbindin-D28K [67]. In line with these
observations, a recent study with aromatase deficient mice
lacking the aromatase enzyme (aromatase−/−) and, there-
fore, estrogen deficient, also showed decreased expression
of these transporters and concomitant renal Ca2+ wasting
[52]. Additionally, estradiol treatment of these animals
normalized the urinary Ca2+ excretion and gene expression.
In agreement with these observations, increased renal Ca2+

wasting, as well as renal stone formation in women after
menopause, is a well-known phenomenon [25], suggesting
that estrogens may significantly contribute to the regulation
of the transepithelial Ca2+ transport in the DCT2/CNT.

Controlling the intracellular trafficking

S100A10/annexin-2

S100A10 (also known as annexin-2 light chain) is an
auxiliary protein for TRPV5 [72]. With two Ca2+-
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insensitive EF-hands, S100A10 is predominantly present
as a heterotetrameric complex with annexin-2, which has
been implicated in many cellular processes, including
endocytosis and exocytosis [21]. An important regulatory
role has been proposed for the S100A10–annexin-2
heteromer in TRPV5 functioning [72]. The binding of
annexin-2 to TRPV5 through S100A10 was shown to
facilitate the translocation of TRPV5 toward the plasma
membrane. This association of S100A10 and TRPV5 takes
place through a short conserved peptide sequence, located
in the carboxyl-terminus of TRPV5. Moreover, co-expres-
sion of S100A10, annexin-2, and TRPV5 has been
observed in DCT2/CNT [72]. Taken together, these
findings show that the S100A10–annexin-2 complex is a
significant component for trafficking of TRPV5 toward
the plasma membrane.

Rab11a

The small GTPase Rab11a has also been identified as a
novel TRPV5- associated protein [71]. Rab11a is one of the
key regulatory proteins that controls the recycling of
endosomes [10, 76]. Rab11a was found to co-localize with
TRPV5 in the DCT2/CNT. Here, both TRPV5 and Rab11a
are present in subapical vesicular structures [71]. In
addition, a direct protein–protein interaction was observed
between Rab11a and TRPV5, suggesting that TRPV5
channels, present on the apical plasma membrane, recycle
from the intracellular (recycling) endosomes in a Rab11-
dependent manner.

Clathrin and caveolin

Van de Graaf and coworkers observed that the extraction of
TRPV5 from the cell surface takes place in a constitutive
clathrin-dependent manner [73]. In addition, the same
authors showed that following its internalization, TRPV5
is not immediately targeted to protein degradation. Instead,
by entering a Ca2+-dependent recycling pathway, TRPV5
remained stable in the subapical endosomal fraction [73].
Another recent study by Huang et al. suggested a caveolin-
1-mediated internalization of TRPV5, which was inhibited
by PKC [12]. Caveolin-1 is a structural component of
caveolae and is crucial for the stabilization of the
specialized membrane domains. Moreover, the caveolae-
dependent internalization of TRPV5 was strongly inhibited
by PTH-induced phosphorylation of TRPV5 via PKC,
indicating that next to its genetic effect on expression,
PTH also has a rapid effect on channel abundance [12].
These findings indicate that apical sorting of TRPV5 is
likely to be mediated by several mechanisms that could be
differentially controlled depending on physiological needs
of the body.

Regulation of TRPV5 activity at the membrane

Intracellular Ca2+, Mg2+, and PIP2

Although the Ca2+ concentration in the luminal compart-
ment of DCT2/CNT is in the 1.0–1.5 mM range, the resting
[Ca2+]i in these cells is maintained around 100 nM by
NCX1 and PMCA1b. TRPV5 has a high Ca2+ selectivity,
and at physiological Ca2+ concentrations, its current is
mainly carried by Ca2+. In human embryonic kidney
(HEK293) cells heterogeneously expressing TRPV5, cur-
rents can be activated under conditions of high intracellular
Ca2+ buffering by hyperpolarizing voltage steps. Earlier,
Nilius et al. suggested that intracellular Ca2+ acts as a
negative feedback switch regulating TRPV5 activity. The
Ca2+ current through TRPV5 is inhibited by the [Ca2+]i
with an IC50 of 82 nM [50]. Considering this high affinity
of Ca2+-dependent channel inhibition, the presence of the
co-expressed Ca2+ buffer calbindin in DCT2/CNT plays an
important role to maintain TRPV5 activity. Conclusively,
the [Ca2+]i itself directly regulates channel function in order
to maintain optimal Ca2+ reabsorption without excessive
influx of Ca2+.

Single TRPV5 channel currents in cell-attached and inside-
out patches were only detected in the absence of Ca2+ and had
a conductance of ∼75 pS [51]. So far, no reliable single
channel measurements have been performed in the presence
of extracellular Ca2+. Another interesting feature of TRPV5
is the open pore blockage by intracellular Mg2+. Currents
through TRPV5 are small at physiological extracellular Mg2+

and Ca2+ concentrations, but sufficient to increase the [Ca2+]i
at hyperpolarized potentials. Therefore, block by Mg2+ and
decrease of the current by extracellular Ca2+ might be
physiologically important to prevent Ca2+ overload of
TRPV5-expressing cells [51, 75]. In addition, Huang and
colleagues reported that PIP2 activates TRPV5 and that
activation of the channel by PIP2 reduces the sensitivity of
TRPV5 to the inhibition by the intracellular [Mg2+] [17, 42].
In this model, hydrolysis of PIP2 by receptor activation of
PLC may increase the sensitivity for Mg2+ inhibition.

80K-H

Another protein called 80K-H has been shown to directly
interact with TRPV5 in a Ca2+-dependent manner [23]. The
80K-H protein contains two putative EF-hands and an ER-
targeting signal. This TRPV5-linked protein was originally
cloned as a PKC substrate and was subsequently associated
with intracellular signaling [58]. Binding with Ca2+ abol-
ished the inactivation of the two EF-hand motifs of 80K-H,
and this, in turn, reduced the TRPV5-mediated Ca2+ current
and increased the sensitivity of TRPV5 to the [Ca2+]i,
accelerating the feedback inhibition of the channel [23].
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Moreover, 80K-H also co-localizes with TRPV5 in the
DCT2/CNT. Based on these findings, 80K-H has been
hypothesized to act a Ca2+ sensor to regulate the activity of
TRPV5 at the plasma membrane [23].

Pro-urinary factors stabilize TRPV5 in the apical membrane

Tissue kallikrein

Tissue kallikrein (TK) is a multifunctional serine protease
that is primarily synthesized in the DCT2 and CNT and
catalyzes the kininogen kinin conversion [55]. TK is
secreted into the pro-urine, where it mediates the formation
of bradykinin that binds to the type 2 bradykinin receptor
(B2R) [18]. A striking effect of TK has been observed in
primary rabbit CNT cells mediating transcellular Ca2+

transport [24]. Apical addition of TK or bradykinin (BK)
significantly increased transcellular Ca2+ transport that was
prevented by B2R antagonists, whereas basolateral appli-
cation of either TK or BK had no effect [24]. This
stimulatory effect of TK was mediated by the apical B2R
signaling through the phospholipase C/diacylglycerol/PKC
pathway, resulting in phosphorylation of TRPV5 and
subsequent delay in its retrieval from the plasma mem-
brane. Additionally, mice lacking TK (TK−/−) waste a large
amount of Ca2+ without any significant alterations in
plasma Ca2+, PTH, and vitamin D3 levels or any detectable
changes in the expression of Ca2+ transporters in the DCT2/
CNT. These observations together highlight the importance
of the regulation of the TRPV5 channel abundance in the
membrane by the pro-urine TK.

Urinary pH and Mg2+

The acid–base balance has long been known to affect Ca2+

homeostasis. For example, patients with chronic metabolic
acidosis waste Ca2+. Pioneering micropuncture studies have
shown that chronic metabolic acidosis results in Ca2+

wasting [63]. Recent advances in total reflection fluorescent
microscopy analysis allowed the identification of the
molecular basis underlying these in vivo observations.
Exposure of TRPV5-expressing cells to an alkaline extra-
cellular environment (pH 8.0) caused rapid recruitment of
TRPV5-containing vesicles to the cell surface and a
consequent increase in TRPV5 activity [40]. In the
reciprocal experiment, acidic extracellular milieu (pH 6.5)
induced the internalization of TRPV5-containing vesicles
from the plasma membrane, resulting in a reduced channel
activity [40]. The extracellular acidity clearly affected the
current kinetics resulting in diminished single channel
conductance as shown by Yeh et al. [77]. Binding of protons
to an extracellular glutamate near the pore helix of TRPV5 at
position 522 (E522) resulted in decreased channel activity,

whereas substitution with a glutamine (E522→Q522) abol-
ished the proton sensitivity. This recognized E522 as the
extracellular pH sensor in TRPV5. Based on these experi-
ments, binding of protons to the sensor has been proposed to
induce a conformational change of the TRPV5 pore helix,
leading to a lowered channel activity. These observations
clearly point out that urinary acidification results in
decreased channel activity at the apical cell membrane, as
well as in a rapid retrieval of TRPV5 from the apical
membrane, both of which are likely to account for the renal
Ca2+ wasting in metabolic acidosis. Also, urinary Mg2+ is
known to modulate urinary Ca2+ excretion, but the mecha-
nism underlying this relationship is unknown. In a recent
study by Bonny et al., it was elegantly demonstrated that an
alteration in urinary Ca2+ excretion is directly proportional to
the change in Mg2+ excretion and inversely proportional to
the adjustment in urine pH [5]. Because TRPV5 was
inhibited by Mg2+, these data are compatible with the
hypothesis that urinary Mg2+ directly inhibits Ca2+ reab-
sorption in DCT2/CNT, which can be overruled by an
alkaline luminal pH.

Klotho

Klotho is a type-I (single-pass) membrane protein predom-
inantly expressed in tissues involved in Ca2+ homeostasis,
such as kidney, choroid plexus, and the parathyroid gland
[34]. The ablation of klotho causes severe multiple
phenotypes in klotho-deficient (klotho−/−) mice, such as
short life span associated with infertility and sternly
impaired Ca2+ and phosphate metabolism [38, 65]. There
is a growing body of evidence that klotho controls active
Ca2+ reabsorption in the DCT2/CNT segments through
several mechanisms.

In kidney, klotho is exclusively expressed in DCT2/
CNT, where following extracellular domain shedding, it is
secreted into the circulation and the pro-urine [13]. The
secreted form of klotho exerts β-glucuronidase activity
[14]. More importantly, klotho was suggested to regulate
the apical entry of Ca2+ in the DCT2/CNT region. The
presence of extracellular klotho robustly increased the
activity of TRPV5 in cultured rabbit primary CNT cells.
Moreover, TRPV5-expressing HEK293 cells also showed a
significant rise in channel activity after klotho treatment
that was accompanied with concomitant increased plasma
membrane channel abundance [14]. In addition, removal of
the complete N-glycan tree by Endo-F was recently
reported to result in a more pronounced increase in TRPV5
activity compared to that of observed upon klotho treatment
[44]. Recently, Cha et al. suggested sialidase rather than β-
glucuronidase activity for klotho, as they observed a
klotho-mediated removal of terminal sialic acids from the
N-glycan in TRPV5 [11]. This cleavage exposed the
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underlying galactose-N-acetylglucoseamine disaccharides
in TRPV5, which can directly interact with membrane-
bound galectin-1, causing the subsequent plasma membrane
retention of TRPV5. Interestingly, treatment with PNGaseF
to hydrolyze the entire N-glycan of TRPV5 mimicked the
stimulatory effect of klotho, suggesting additional mecha-
nisms besides binding to membrane galectin-1. It should be
noted that Cha et al. also reported a comparable increase in
TRPV5 activity upon β-glucuronidase treatment; however,
this effect could be observed only at much higher (0.1–
1 μM) concentrations of the enzyme, suggesting that klotho
exhibits primarily sialidase activity at physiologic concen-
trations (∼20–200 pM) [11]. These observations confirmed
the original conclusion that extracellular klotho hydrolyses
oligosaccharide chains from the N-glycosylated TRPV5,
causing channel retention at the membrane and a subse-
quent increase in TRPV5-mediated Ca2+ influx [14]. In line
with these findings, microperfusion studies have shown that
CNTs from klotho−/− mice fail to respond to PTH and,
therefore, waste large amount of Ca2+ [66]. Interestingly,
klotho was reported to interact and increase Na+/K+-ATPase
activity at the plasma membrane and stimulating the Na+/
Ca2+ exchange through NCX1 [34]. Taken altogether, there
is compelling evidence that klotho is a novel calciotropic
factor that, amongst others, can exert its stimulatory effect
on TRPV5 cell surface retention from the pro-urine in the
DCT2 and the CNT.

Clinical relevance

Several clinical disorders, such as chronic renal failure or
diabetes, are associated with the symptoms of dysregulating
body Ca2+ homeostasis. Chronic renal failure (CRF) is
frequently characterized by hypocalcemia, osteoporosis,
growth retardation, and secondary hyperparathyroidism.
Remarkably, the phenotype of the klotho−/− mice resembles
most of these characteristics [36]. Moreover, CRF patients
also have greatly reduced renal klotho levels [36]. Together
with the fact that klotho can regulate the activity of TRPV5
and NCX1 via Na+/K+-ATPase, the involvement of klotho
in the pathogenesis of Ca2+ abnormalities in CRF may be
envisaged.

Hypercalciuria and nephrolithias, disorders with a high
prevalence and socio–economic burden in the Western
society, are often treated with thiazide diuretics. These
drugs are known to affect the Ca2+ balance by inducing
hypocalciuria. Over the last decade, it was speculated that
thiazide-inhibited NCC activity stimulates active Ca2+

reabsorption in the DCT/CNT. However, recent studies
indicated that paracellular Ca2+ transport in the proximal
tubule due to extracellular volume contraction explains the
hypocalciuria during chronic thiazide treatment [48, 49].

Hypercalciuria is also an early finding in diabetes mellitus
patients. Similarly, rats with experimentally induced
diabetes display a significant increase in the fractional
excretion of Ca2+ [41]. However, these diabetic rats
showed increased mRNA and protein levels of both
TRPV5 and calbindin-D28K. Additionally, insulin therapy
corrected the hyperglycemia-associated hypercalciuria and
abolished the upregulation of TRPV5, suggesting that the
increased TRPV5 abundance in diabetic rats is due to a
compensatory adaptation to an increased load of Ca2+

secondary to hyperglycemia. Although in many patho-
physiological conditions the expression level of the Ca2+

transporters is out of balance, mutations in these proteins
have not been discovered yet.

Concluding remarks and future perspectives

Ca2+ reabsorption in the kidney and particularly in the distal
DCT2/CNT segments of the nephron is critical in the
maintenance of the Ca2+ balance. Here, TRPV5 is the
gatekeeper of the Ca2+ entry, and therefore, a tight control of
its activity enables the organism to adjust Ca2+ reabsorption
according to any demands of the body. The available
experimental data summarized in this review highlights the
most important mechanisms that can actually regulate active
Ca2+ reabsorption. Of these, controlling the TRPV5 cell
surface expression by extracellular factors in the pro-urine is
a newly discovered mechanism. Klotho delays the retrieval
of TRPV5 from the cell membrane by modifying the N-
glycan composition, whereas the insertion of channels in the
cell membrane is promoted by TK-induced phosphorylation
or alkaline pH. All mechanisms result in increased TRPV5
abundance and, in turn, regulate the entry of Ca2+ at the gate.
However, the canvas is far from complete. The molecular
mechanism by which intracellular Ca2+ bound to calbindin-
D28K is transported to the basolateral extrusion transporters
NCX1 and PMCA1b is largely unknown. It could be
envisaged that the local Na+ concentration may promote
the release of Ca2+; however, no experimental data are
available to support this theory. Therefore, the Ca2+ transfer
between calbindin-D28K on one site and NCX1 and
PMCA1b on the other site needs special attention. Another
interesting question to be solved is the regulation of the
basolateral trafficking of NCX1 and PMCA1b in the DCT2
and CNT cells. Certain players, such as the scaffold 14-3-3,
phospholemman, ankyrin, or caveolin-3, have been proposed
to play a role in the trafficking of the NCX transporters in
neurons and cardiac cells. Nevertheless, the basolateral
sorting of these transporters in the DCT2/CNT is essentially
unknown. Whether there is a crosstalk between the apical
Ca2+ entry and the basolateral Ca2+ extrusion regulatory
apparatus is not known. The fact that klotho increases both
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the channel abundance of TRPV5 in the apical membrane
and the activity of NCX1 at the basolateral side certainly
predicts the existence of such crosstalk [14, 34]. The main
question for the coming years is how all of these Ca2+

transport proteins communicate with each other in order to
facilitate optimal and regulated transcellular Ca2+ reabsorp-
tion in DCT2 and CNT under conditions of disturbed Ca2+

homeostasis.
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