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The lateral parabrachial nucleus (LPBN) and the central nucleus of the amygdala (CeA) are

important central areas for the control of sodium appetite. In the present study, we
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investigated the importance of the facilitatory mechanisms of the CeA on NaCl and water

intake produced by the deactivation of LPBN inhibitory mechanisms. Male Holtzman rats

(n¼7–14) with stainless steel cannulas implanted bilaterally in the CeA and LPBN were

used. Bilateral injections of moxonidine (α2-adrenoceptor/imidazoline agonist, 0.5 nmol/

0.2 μl) into the LPBN increased furosemideþcaptopril-induced 0.3 M NaCl (29.777.2, vs.

vehicle: 4.471.6 ml/2 h) and water intake (26.476.7, vs. vehicle: 8.271.6 ml/2 h). The GABAA

agonist muscimol (0.25 nmol/0.2 μl) injected bilaterally into the CeA abolished the effects of

moxonidine into the LPBN on 0.3 M NaCl (2.871.6 ml/2 h) and water intake (3.372.3 ml/

2 h). Euhydrated rats treated with muscimol (0.5 nmol/0.2 μl) into the LPBN also ingested

0.3 M NaCl (19.176.4 ml/4 h) and water (8.873.2 ml/4 h). Muscimol (0.5 nmol/0.2 μl) into the

CeA also abolished 0.3 M NaCl (0.170.04 ml/4 h) and water intake (0.170.02 ml/4 h) in

euhydrated treated with muscimol into the LPBN. The present results show that neuronal

deactivation of the CeA abolishes NaCl intake produced by the blockade of LPBN inhibitory

mechanisms, suggesting an interaction between facilitatory mechanisms of the CeA and

inhibitory mechanisms of the LPBN in the control of NaCl intake.
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1. Introduction

The lateral parabrachial nucleus (LPBN), a pontine structure
that lies dorsolaterally to the superior cerebellar peduncle, is
connected with several brain areas that belong to a circuit
subserving the control of sodium appetite and thirst like the
nucleus of the solitary tract (NTS), area postrema (AP),
paraventricular nucleus of the hypothalamus (PVN), central
nucleus of amygdala (CeA) and median preoptic nucleus
(MnPO) (Ciriello et al., 1984; Fulwiler and Saper, 1984;
Herbert et al. 1990; Jhamandas et al., 1992, 1996; Krukoff
et al., 1993; Lança and van der Kooy, 1985; Norgren, 1981).

The LPBN strongly inhibits hypertonic NaCl intake, an
influence which is hypothesized to prevent excessive solute
intake (Andrade-Franze et al., 2010a, 2010b; Andrade et al.,
2004, 2011; Callera et al., 2005; De Oliveira et al., 2008;
Gasparini et al., 2015a; Menani et al., 2014; Roncari et al.,
2014). Signals that influence water and NaCl intake like those
from arterial baroreceptors, cardiopulmonary receptors, gus-
tatory receptors and other visceral receptors that reach the
NTS ascend to the LPBN (Norgren, 1981; Lança and van der
Kooy, 1985; Ciriello et al., 1984; Fulwiler and Saper, 1984;
Herbert et al. 1990; Jhamandas et al., 1992, 1996). These
signals may modulate the activity of LPBN inhibitory
mechanisms by releasing different neurotransmitters like
serotonin, cholecystokinin, corticotrophin-releasing factor
(CRF) and glutamate which increase the inhibitory action,
whereas others like GABA, opioids, ATP and noradrenaline
reduce the inhibitory action (Andrade et al., 2004, 2011;
Callera et al., 2005; De Gobbi et al., 2009, Gasparini et al.,
2009, De Oliveira et al., 2007, 2008, 2011; Menezes et al., 2011,
2014; Roncari et al., 2014). The deactivation of the inhibitory
mechanisms by changing the activity of specific neurotrans-
mitters/receptors in the LPBN increases hypertonic NaCl and/
or water intake induced by different dipsogenic or natrior-
exigenic stimuli like angiotensin II (ANG II), sodium deple-
tion, water deprivation, central cholinergic activation or even
osmoreceptor activation (Menani and Johnson, 1995, 1998;
Menani et al., 1996, 2002, 2014; De Luca et al., 2003; Andrade
et al., 2004, 2006; De Gobbi et al., 2009; Gasparini et al., 2015b).
In addition, the neuronal deactivation with bilateral injection
of the GABAA agonist muscimol into the LPBN stimulates
hypertonic NaCl intake by euhydrated rats (Callera et al.,
2005; De Oliveira et al., 2007).

Bilateral electrolytic lesions of the CeA abolish daily 0.5 M
NaCl intake and sodium appetite induced by 24 h of sodium
depletion, subcutaneous (s.c.) deoxycorticosterone (DOCA) or
yohimbine (α2-adrenoceptor agonist) or by intracerebroven-
tricular (i.c.v.) injections of renin (Covian et al., 1975;
Galaverna et al., 1992; Zardetto-Smith et al., 1994), suggesting
that contrary to the LPBN, important facilitatory mechanisms
for the control of sodium intake are present in the CeA.
Damage to the CeA also abolishes the increased water and
0.3 M NaCl intake produced by bilateral injections of the
α2-adrenoceptor agonist moxonidine into the LPBN of rats
treated with subcutaneous (s.c.) injections of the diuretic
furosemide (FURO) combined with low dose of captopril
(CAP) s.c. (Andrade-Franze et al., 2010b). The FUROþCAP is a
treatment that induces hypovolemia, mild hypotension and
acute NaCl and water intake dependent on central production
of angiotensin II (ANG II) (Andrade et al., 2004; Fitts and
Masson, 1989; Gasparini et al., 2009; Thunhorst and Johnson,
1994). Furthermore, bilateral electrolytic lesions of the CeA
abolish water and 0.3 M NaCl intake produced by bilateral
injections of the GABAA agonist muscimol into the LPBN in
normovolemic and euhydrated rats (Andrade-Franze et al.,
2010a). These results suggest that the integrity of the CeA is
essential for sodium intake that results from the deactivation
of the LPBN inhibitory mechanisms (Andrade-Franze et al.,
2010a, 2010b).

Although the integrity of the CeA is certainly important for
the increase of sodium intake that results from the deactiva-
tion of LPBN inhibitory mechanisms (Andrade-Franze et al.,
2010a, 2010b), the effects of electrolytic lesions might result
from non-specific destruction of fibers of passage and not of
neuronal cell bodies. Therefore, the objective of the present
study was to find out if the local neuronal activity in the CeA
is important for the increased water and NaCl intake that
results from deactivation of the LPBN inhibitory mechanisms.
For this purpose, the activity of CeA neurons was blocked
with injections of muscimol into the CeA. The injections into
the CeA were combined with injections of either muscimol or
moxonidine into the LPBN to deactivate the inhibitory
mechanisms in the LPBN.
2. Results

2.1. Histological analysis

Fig. 1A shows the typical bilateral injection sites in the CeA.
The CeA injection sites were located lateraly to the tip of the
optic tract, above the basomedial amygdaloid nucleus and
medial to the basolateral amygdaloid nucleus. The sites of
the injections in the present study were similar to those that
previous studies showed the effects of lesions of the CeA on
NaCl intake (Andrade-Franze et al., 2010a, 2010b).

Fig. 1B shows the typical bilateral injection sites in the
LPBN. The LPBN injection sites were centered in the central
lateral and dorsal lateral portions of the LPBN (see Fulwiler
and Saper, 1984, for definitions of LPBN subnuclei). The sites
of the injections in the present study were similar to those
that previous studies showed the effects of muscimol or
moxonidine injected into the LPBN on NaCl and water intake
(Andrade-Franze et al., 2010a, 2010b; Andrade et al., 2004,
2006; Callera et al., 2005).

2.2. FUROþCAP-induced water and 0.3 M NaCl intake in
rats treated with bilateral injections of muscimol into the CeA
combined with moxonidine into the LPBN

ANOVA showed differences between treatments for 0.3 M
NaCl [F(3,18)¼10.0; po0.05] (n¼7) (Fig. 2A) and water intake,
[F(3,18)¼9.1; po0.05] (Fig. 2B).

In rats treated with saline into the CeA, bilateral injections
of moxonidine (0.5 nmol/0.2 ml) into the LPBN increased FUR-
OþCAP-induced 0.3 M NaCl and water intake. Bilateral injec-
tions of muscimol (0.25 nmol/0.2 ml) into the CeA abolished
the increase in FUROþCAP-induced 0.3 M NaCl and water
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Fig. 2 – (A) Cumulative intake of 0.3 M NaCl and
(B) cumulative intake of water by the treatment with
FUROþCAP sc in rats that received bilateral injections of
muscimol (0.25 nmol/0.2 μl) or saline into the CeA combined

Fig. 1 – Photomicrographs of coronal sections of a brain from
one rat representative of those tested showing (arrows)
(A) the sites of bilateral injections into the CeA and (B) the
sites of bilateral injections into the LPBN. (opt-optic tract;
scp-superior cerebellar peduncle).
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intake produced by the treatment with bilateral injections of

moxonidine into the LPBN (Fig. 2). Muscimol injected into CeA

in rats treated with vehicle into LPBN did not significantly

modify 0.3 M NaCl or water induced by FUROþCAP.

with bilateral injections of moxonidine (0.5 nmol/0.2 μl) or
vehicle into the LPBN. The results are expressed as
means7SEM, n¼number of animals.
2.3. Water and 0.3 M NaCl intake by euhydrated rats treated
with muscimol injections simultaneously into the LPBN and CeA

ANOVA showed difference between treatments for 0.3 M NaCl

[F(3,30)¼9.22; po0.05] (n¼11) (Fig. 3A) and water intake [F

(3,30)¼6.61; po0.05] (Fig. 3B).
Euhydrated rats treated with bilateral injections of muscimol

(0.5 nmol/0.2 μl) into the LPBN combined with saline injections

into the CeA ingested marked amount of 0.3 M NaCl and water

(Fig. 3). Muscimol (0.5 nmol/0.2 μl) injected bilaterally into the CeA

abolished 0.3 M NaCl and water intake in rats treated with

muscimol injected bilaterally into the LPBN (Fig. 3). Muscimol

injections into the CeA combined with saline injections into the

LPBN did not affect 0.3 MNaCl or water intake in euhydrated rats.
2.4. Water and 0.3 M NaCl intake by rats that received
injections unilaterally, bilaterally or partially outside the LPBN
and CeA

Rats with injections not correctly placed bilaterally into the
CeA or LPBN (injections made unilaterally, bilaterally or
partially outside the LPBN or CeA) were grouped as rats with
injections outside those areas and the results of these rats
were analyzed and presented on Tables 1 and 2.

Bilateral injections of moxonidine (0.5 nmol/0.2 ml) into the
LPBN combined with injections of saline outside the CeA
increased FUROþCAP-induced water and 0.3 M NaCl. Injec-
tions of muscimol (0.25 nmol/0.2 ml) outside the CeA only
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Fig. 3 – (A) Cumulative intake of 0.3 M NaCl and
(B) cumulative intake of water by euhydrated rats that
received bilateral injections of muscimol (0.5 nmol/0.2 μl) or
saline into the CeA combined with bilateral injections of
muscimol (0.5 nmol/0.2 μl) or saline into the LPBN. The
results are expressed as means7SEM, n¼number of
animals.

Table 1 – Water and 0.3 M NaCl intake induced by the
treatment with FUROþCAP s.c. in rats that received
injections of muscimol or saline unilaterally, bilaterally
or partially outside the CeA combined with bilateral
injections of moxonidine or vehicle into the LPBN.

Treatment 0.3 M NaCl
intake

Water intake

(ml/2 h) (ml/2 h)

Saline out CeAþvehicle LPBN 4.071.0 12.471.0
Saline out CeAþmoxonidine LPBN 35.572.8* 26.871.6*

Muscimol out CeAþvehicle LPBN 1.570.3 4.571.4
Muscimol out CeAþmoxonidine
LPBN

14.075.5* 7.372.5*

The results are expressed as means7SEM, n¼10. Muscimol
(0.25 nmol/0.2 μl); moxonidine (0.5 nmol/0.2 μl); out CeA: unilateral,
bilateral or partial injection outside the CeA.
* Different from saline out CeAþvehicle LPBN; po0.05.

Table 2 – Water and 0.3 M NaCl intake by euhydrated rats
that received injections of muscimol or saline unilater-
ally, bilaterally or partially outside the CeA combined
with injections of muscimol or saline into or outside the
LPBN.

Treatment 0.3 M NaCl
intake

Water intake

(ml/4 h) (ml/4 h)

Saline out CeAþsaline out LPBN 0.0770.04 0.0470.02
Saline out CeAþmuscimol out
LPBN

0.370.2 1.070.6

Muscimol out CeAþsaline out
LPBN

0.170.1 0.970.5

Muscimol out CeAþmuscimol out
LPBN

0.270.2 0.570.4

Saline out CeAþsaline LPBN 0.0770.03 0.570.2
Saline out CeAþmuscimol LPBN 8.073.7* 3.671.4*

Muscimol out CeAþsaline LPBN 0.0770.02 0.170.1
Muscimol out CeAþmuscimol
LPBN

0.170.1 0.0770.02

The results are expressed as means7SEM, n¼7–14. Muscimol
(0.5 nmol/0.2 μl); out CeA or LPBN: unilateral, bilateral or partial
injection outside the CeA or LPBN.
* Different from saline out CeAþsaline LPBN; po0.05.
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partially reduced water and 0.3 M NaCl in rats treated with
moxonidine into the LPBN (Table 1), an effect different from
that of rats treated with muscimol bilaterally into the CeA
combined with moxonidine into the LPBN in which the
ingestion was almost abolished (2.871.6 ml/2 h). These
results suggest that bilateral inhibition of the CeA neurons
is necessary for complete inhibition of sodium intake pro-
duced by the injections of moxonidine into the LPBN in rats
treated with FUROþCAP, which reinforces the importance of
the CeA facilitatory mechanisms for sodium intake in this

condition.
Injections of muscimol (0.5 nmol/0.2 μl) outside the LPBN

combined with saline or muscimol (0.5 nmol/0.2 μl) outside

the CeA produced no significant ingestion of 0.3 M NaCl or

water in euhydrated rats (Table 2), which demonstrates the

specificity of LPBN as the site where muscimol injections

produce effects on water and NaCl intake.
Rats treated with partial or bilateral injections of musci-

mol (0.5 nmol/0.2 μl) into the LPBN combined with saline

outside the CeA ingested a low amount of 0.3 M NaCl, which

was reduced when rats were treated with muscimol outside



Table 3 – Summary of the effects of the combination of
treatments into the CeA and LPBN on 0.3 M NaCl intake in
euhydrated rats or rats treated with FUROþCAP.

Treatment CeA LPBN 0.3 M NaCl intake

Euhydrated rats Saline Muscimol ↑

Euhydrated rats Muscimol Muscimol No intake
FUROþCAP Saline Moxonidine ↑

FUROþCAP Muscimol Moxonidine No intake
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the CeA (Table 2). These results suggest that perhaps a partial
inhibition of the facilitatory mechanisms of the CeA is
enough to affect the ingestion of sodium in this condition.
It is also not possible to exclude an inhibitory action of
muscimol at the dose of 0.5 nmol in other nuclei of the
amygdala adjacent to the CeA.
3. Discussion

The results show that bilateral injections of muscimol into
the CeA abolished water and 0.3 M NaCl intake induced by
bilateral injections of muscimol into the LPBN in euhydrated
rats or by injections of moxonidine into the LPBN in FUROþ-
CAP-treated rats (Table 3). The present results with the
blockade the CeA neuronal activity are similar to previous
results (Andrade-Franze et al., 2010a, 2010b) with electrolytic
lesions of the CeA and suggest that the activity of the
facilitatory mechanisms of the CeA is essential for sodium
intake in response to the deactivation of the LPBN inhibitory
mechanisms.

The injections of muscimol into the CeA (present results)
similar to electrolytic lesions of the CeA (Andrade-Franze
et al., 2010a) produced a tendency to reduce FUROþCAP-
induced 0.3 M NaCl intake in rats treated with vehicle into the
LPBN. The same treatments in the CeA reduced 0.3 M NaCl
intake produced by 24 h of sodium depletion (furosemide
followed by 24 h sodium deficient diet) (Galaverna et al., 1992;
Wang et al., 2012), which suggests that the facilitatory
mechanisms of the CeA are involved in mediating sodium
intake in sodium-depleted rats. The low amount of 0.3 M
NaCl ingested and the variability of 0.3 M NaCl intake by rats
treated with FUROþCAP may explain the absence of signifi-
cant reduction of 0.3 M NaCl intake in FUROþCAP treated rats
that received muscimol into the CeA.

Bilateral injections of muscimol (0.5 nmol/0.2 μl) into the
LPBN only slightly increased water intake when rats had only
water available (one-bottle test) (Callera et al., 2005). Bilateral
injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN also
produced no effect on FUROþCAP-induced water intake if
only water was available for rats to drink (Andrade et al.,
2004). Moreover, in the present work, the increase in 0.3 M
NaCl intake preceded water intake in response to both
treatments. Therefore, the marked ingestion of water in rats
treated with muscimol or moxonidine into the LPBN com-
bined with saline into the CeA is probably a consequence of
the increased plasma osmolarity due to the simultaneous
excessive ingestion of hypertonic NaCl. In this case, the
reduced ingestion of water caused by the injections of
muscimol into the CeA is probably due to the reduced
ingestion of hypertonic NaCl, similar to what was proposed
previously for electrolytic lesions of the CeA (Galaverna et al.,
1992; Wang et al., 2012; Zardetto-Smith et al., 1994). The
inactivation of the CeA with injections of muscimol increases
the exploratory behavior in rats (Moreira et al., 2007), which
suggests that the effects of muscimol injections into the CeA
on water and sodium intake are not due to an impairment of
motor activity. Bilateral injections of muscimol into the CeA
also did not change food intake in 24 h food deprived-rats
(unpublished data), which suggests that muscimol into the
CeA does not inhibit all motivated behaviors. In addition,
bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the
LPBN produce no change in the ingestion of 0.06 M sucrose or
in food deprivation-induced food intake (Andrade et al., 2004,
2007), suggesting that moxonidine into the LPBN does not
increase behavioral responses in general.

The anatomical specificity of the LPBN and CeA as the
central sites where moxonidine and/or muscimol injections
produce effects on water and/or NaCl intake was demon-
strated by previous studies (Andrade et al., 2004, Callera et al.,
2005; Wang et al., 2012). The present results show that
muscimol injected outside of the CeA at the dose of 0.25 nmol
did not abolish NaCl intake in rats treated with moxonidine
into the LPBN, whereas at the dose of 0.5 nmol it blocked NaCl
intake in rats treated with muscimol into the LPBN. The
results with injections of muscimol (0.25 nmol) outside or
partially outside the target sites suggest that bilateral inhibi-
tion of the CeA neurons is necessary for complete inhibition
of sodium intake. This reinforces the importance of the CeA
facilitatory mechanisms for sodium intake in this condition.
On the other hand, the effects of muscimol (0.5 nmol)
injected outside the CeA might suggest that not only the
neuronal activity of the CeA is important for the sodium
intake. Thus, it is not possible to exclude an inhibitory action
of muscimol (0.5 nmol) in other nuclei of the amygdala
adjacent to the CeA.

The CeA has reciprocal direct connections with the para-
brachial nucleus (PBN) (Jhamandas et al., 1996; Norgren,
1995). Visceral and gustatory signals that ascend to the NTS,
and are important to control sodium intake, make a second
relay in the PBN, prior to projecting to the CeA (Flynn et al.,
1991; Geerling and Loewy, 2006; Johnson and Thunhorst,
1997; Mungarndee et al., 2006). In addition, the CeA is also
connected with the lamina terminalis which is the primary
site of ANG II acting in the brain (Fitzsimons, 1998; Johnson
and Thunhorst, 1997; McKinley et al., 2001). Therefore, CeA
may receive signals of extracellular dehydration produced by
ANG II acting in the lamina terminalis, and electrolytic
lesions of the CeA impair ANG II-induced hypertonic NaCl
intake (Galaverna et al., 1992; Zardetto-Smith et al., 1994).
Similar to FUROþCAP, water and 0.3 M NaCl intake produced
by muscimol injected into the LPBN depends on angiotensi-
nergic activation in the forebrain, particularly in the lamina
terminalis (Andrade et al., 2004; Fitts and Masson, 1989;
Gasparini et al., 2009; Roncari et al., 2011, 2014; Thunhorst
and Johnson, 1994). One possibility is that inhibitory and
facilitatory signals relaying in the LPBN and lamina termina-
lis, respectively, converge to the CeA and the predominant
activation or inhibition of this area determines sodium
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appetite or not. Disrupting the neuronal activity in the CeA

with muscimol reduces or blocks signal output and, there-

fore, sodium intake is suppressed.
In conclusion, the present results show that disrupting the

neuronal activity in the CeA abolishes NaCl intake produced

by the blockade of LPBN inhibitory mechanisms, suggesting

an interaction between the facilitatory mechanisms of the

CeA and the inhibitory mechanisms of the LPBN in the

control of NaCl intake.
4. Experimental procedure

4.1. Animals

Male Holtzman rats (total of 49 rats) bred in the Unesp facility

at Araraquara – SP, Brazil, weighing 250 to 270 g at the

beginning of the tests, were used. The animals were housed

in individual stainless steel cages with free access to normal

0.5–1.0% sodium diet (Guabi Rat Chow, Paulinia, SP, Brazil),

water and 0.3 M NaCl solution. Rats were maintained at a

temperature of 2372 1C, humidity of 55710% and on a 12-h

light/dark cycle with light onset at 7:00 AM. All the experi-

mental procedures were approved by Ethical Committee in

Animal Use (CEUA) from Dentistry School of Araraquara –

UNESP (Proc. CEUA nr. 35/2010). The experimental protocols

followed the U.S. National Institutes of Health Guide for the

Care and Use of Laboratory Animals (NIH Publication no. 80-

23, 1996). Efforts were made to reduce animal discomfort with

analgesic medication and the number of animals used by

testing the same rat four times.
4.2. Brain surgery

Rats were anesthetized with ketamine (80 mg/kg of body

weight; Cristalia, Itapira, SP, Brazil) combined with xylazine

(7 mg/kg of body weight; Agener União, Embu-Guaçu, SP,

Brazil) intraperitoneally, placed in a stereotaxic instrument

(Kopf, Tujunga, CA, USA) and had the skull leveled between

bregma and lambda. Bilateral stainless steel cannulas

(0.6 mm o.d.) were implanted dorsally to the LPBN and CeA

using the following coordinates: 9.2 mm caudal to bregma,

2.1 mm lateral to the midline and 4.2 mm below the dura

mater for the LPBN and 2.2 mm caudal to bregma, 4.0 mm

lateral to the midline and 4.5 mm below the dura mater for

the CeA (Paxinos and Watson, 2004).The tips of the cannulas

were positioned 2 mm above the LPBN and the CeA. The

cannulas were fixed to the cranium using dental acrylic resin

and jeweler screws. A metal obturator (0.3 mm o.d.) filled the

cannulas between tests. At the end of the surgery, the

animals received an intramuscular injection of antibiotic

(Pentabiótico Veterinário – Pequeno Porte, Fort Dodge Saúde

Animal Ltda., 0.2 ml/rat) and a subcutaneous injection of the

analgesic Ketoflex (ketoprofen 1%, 0.03 ml/rat). The experi-

mental procedures started five days after the surgery. Rats

were tested in their home cages.
4.3. Drugs

Moxonidine hydrochloride (α2-adrenoceptor/imidazoline ago-
nist, 0.5 nmol/0.2 μl) was dissolved in a mix of propylene
glycol and water 2:1 (vehicle). Muscimol HBr (GABAA receptor
agonist, 0.25 or 0.5 nmol/0.2 μl) was dissolved in saline.
Furosemide (10 mg/kg of body weight) was dissolved in alka-
line saline (pH adjusted to 9.0 with NaOH). Captopril (5 mg/kg
of body weight) was dissolved in saline. All drugs were
purchased from Sigma-Aldrich Chem., St Louis, MO, USA.

4.4. Injections into the LPBN and CeA

Injections into the LPBN and CeA were made using 5-μl
Hamilton syringes (Hamilton, Reno, NV, USA) connected by
polyethylene tubing (PE-10) to injection needle (0.3 mm o.d.).
Starting one day after cerebral surgery, rats were handled
daily and trained for the procedure of central injections. At
time of testing, rats were removed from the cages and
restrained by a hand on a table. Obturators were removed
and the injection needles (2 mm longer than the guide
cannulas) introduced in the brain. The injection volume into
the LPBN and CeA was 0.2 μl each site. The obturators were
replaced after injections, and the rats placed back into the
cages.

4.5. Water and 0.3 M NaCl intake induced by FUROþCAP
in rats treated with moxonidine into the LPBN combined with
muscimol into the CeA

Rats (n¼17) received injections of FURO (10 mg/kg of body
weight)þCAP (5 mg/kg of body weight) s.c. and were returned
to their home cages in the absence of food, water and NaCl.
Forty-five min after FUROþCAP, rats received bilateral injec-
tions of moxonidine (0.5 nmol/0.2 μl) or vehicle into the LPBN,
and of muscimol (0.25 nmol/0.2 μl) or saline into the CeA; and
15 min later they had access to water and 0.3 M NaCl. Water
and 0.3 M NaCl were provided from burets with 0.1-ml
divisions that were fitted with metal drinking spouts. Cumu-
lative water and 0.3 M NaCl intake was measured at 15, 30, 60,
90 and 120 min starting 1 h after FUROþCAP treatment
(intake test). In each intake test, of a total of four, the rats
were divided in two groups and each group received one of
the following combination of treatments: saline (CeA)þvehi-
cle (LPBN); muscimol (CeA)þvehicle (LPBN); saline (CeA)þ
moxonidine (LPBN); muscimol (CeA)þmoxonidine (LPBN).
The sequence of these treatments was randomized in each
group across different tests. At the end of the four tests, each
rat received all the four combination of treatments. The
interval between two tests was 3 days.

4.6. Water and 0.3 M NaCl intake by euhydrated rats
treated with bilateral injections of muscimol into the LPBN
and CeA

The blockade of the neuronal activity with injections of
muscimol into the LPBN causes strong ingestion of 0.3 M
NaCl in euhydrated rats that received no additional treat-
ment (Callera et al., 2005, Andrade-Franzé et al., 2010b;
Roncari et al., 2011, 2014; Asnar et al., 2013). Therefore, the
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objective of this protocol was to test if the blockade of the

neuronal activity in the CeA with injections of muscimol

would affect 0.3 M NaCl caused by deactivation of LPBN

inhibitory mechanisms with muscimol injected into the LPBN

in euhydrated rats.
Euhydrated rats (n¼32) received first bilateral injections of

muscimol (0.5 nmol/0.2 μl) or saline into the LPBN, and

immediately after into the CeA. After returning to their home

cages, rats had water and 0.3 M NaCl available in the absence

of food. Water and 0.3 M NaCl were provided from burets with

0.1-ml divisions that were fitted with metal drinking spouts.

Cumulative water and 0.3 M NaCl intake was measured at

every 30 min during 240 min (intake test). In each intake test,

of a total of four, the rats were divided in two groups and

each group received one of the following combination of

treatments: saline (CeA)þsaline (LPBN); muscimol (CeA)þ
saline (LPBN); saline (CeA)þmuscimol (LPBN); muscimol

(CeA)þmuscimol (LPBN). The sequence of these treatments

was randomized in each group across different tests. At the

end of four tests, each rat received all the four combination of

treatments. The interval between two tests was 2 days.
4.7. Histology

At the end of ingestive behavior tests, rats received bilateral

injections of 2% Evans blue solution (0.2 μl) into the LPBN and

CeA. They were then deeply anesthetized with sodium

thiopental (80 mg/kg of body weight) and perfused transcar-

dially with saline followed by 10% formalin. The brains were

removed, fixed in 10% formalin, frozen, cut in 50 μm sections,

stained with Giemsa stain (Iñiguez et al., 1985) and analyzed

by light microscopy to confirm the injection sites into the

LPBN and into the CeA.
4.8. Statistical analysis

The results are reported as means7S.E.M. Two way repeated

measures analysis of variance (ANOVA) using treatments and

times as within-subjects factors followed by Newman–Keuls

tests was used for comparisons. Differences were considered

significant at Po0.05.
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