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Abstract Decadal climate predictability is examined in

hindcast experiments by a multi-model ensemble using

three versions of the coupled atmosphere-ocean model

MIROC. In these hindcast experiments, initial conditions

are obtained from an anomaly assimilation procedure using

the observed oceanic temperature and salinity with pre-

scribed natural and anthropogenic forcings on the basis of

the historical data and future emission scenarios in the

Intergovernmental Panel of Climate Change. Results of the

multi-model ensemble in our hindcast experiments show

that predictability of surface air temperature (SAT)

anomalies on decadal timescales mostly originates from

externally forced variability. Although the predictable

component of internally generated variability has consid-

erably smaller SAT variance than that of externally forced

variability, ocean subsurface temperature variability has

predictive skills over almost a decade, particularly in the

North Pacific and the North Atlantic where dominant sig-

nals associated with Pacific decadal oscillation (PDO) and

the Atlantic multidecadal oscillation (AMO) are observed.

Initialization enhances the predictive skills of AMO and

PDO indices and slightly improves those of global mean

temperature anomalies. Improvement of these predictive

skills in the multi-model ensemble is higher than that in a

single-model ensemble.

Keywords Decadal climate prediction � Multi-model

ensemble � AMO � PDO

1 Introduction

Regional climate predictions for the coming decade have

gained considerable attention since they can help to solve

socioeconomic problems owing to climate change

(Hibbard et al. 2007; Cox and Stephenson 2007). These

predictions are one of the most challenging issues faced by

the climate community (Murphy et al. 2010). To predict

regional climate variability on decadal timescales, we need

to consider the internally generated atmospheric and oce-

anic variabilities as well as externally forced variability

related to global warming (Hawkins and Sutton 2009).

Using a coupled atmosphere-ocean general circulation

model (AOGCM) with initialization technique for assimi-

lating observation in the ocean and prescribed natural and

anthropogenic forcings (e.g., greenhouse gases and aerosol

concentrations, solar cycle variations, and major volcanic

eruptions), a recent series of studies has successfully pre-

dicted regional climate variability on decadal timescales

(Smith et al. 2007; Keenlyside et al. 2008; Pohlmann et al.

2009; Mochizuki et al. 2010; Chikamoto et al. 2012). In

order to provide useful future climate information for the
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coming decades, further improvement of predictive skills

on decadal timescales is an important topic in the climate

community.

Experiments of decadal climate prediction are restricted

to computational resources because such studies need to

perform ensemble model integrations over long-term

periods utilizing several types of experiments designed by

the Coupled Model Intercomparison Project-5 (CMIP5)

(Taylor et al. 2009; Murphy et al. 2010). When we

increase the resolution of AOGCM, model performance

may improve because of a more realistic representation of

small-scale phenomena (Sakamoto et al. 2012; Delworth

et al. 2011), which may have a positive impact on the

improvement of predictive skills. Nevertheless, increase in

the resolution using limited computational resources leads

us to reduce the number of ensemble members which may

underestimate the ensemble spread during prediction. In

addition, for decadal climate prediction, definition of a

model climate drift during prediction, which may disrupt

the prediction, requires a large number of hindcast samples

coupled with a large number of ensemble members. Dec-

adal climate predictability is also affected by uncertainty

due to model deficiencies such as incorrect representation

of physics, climatological field, internal variability, exter-

nally forced variability, and climate sensitivity.

A multi-model ensemble performed by many research

centers is a useful approach to reduce model uncertainty

under limited computational resources. For example, Jin

et al. (2008) showed that the El Niño-Southern Oscillation

(ENSO) predictive skill of a multi-model ensemble with

ten different AOGCMs is higher than those of any indi-

vidual model and hindcast experiments based on persis-

tence and a dynamic statistical model. van Oldenborgh

et al. (2012) investigated the decadal predictive skill in

hindcast experiments using a multi-model ensemble of four

European AOGCMs and indicated that sea surface tem-

perature (SST) in the North Atlantic and Pacific Oceans

regionally has the predictive skills beyond the persistence.

Among these hindcast experiments using four AOGCMs,

one group adopted a strategy of anomaly initialization (i.e.,

the observed anomalies are incorporated into the model

anomalies) in order to reduce the model climate drift

during the experiments, whereas the other three groups

initialized the predictions by using full-field observations

in order to provide initial conditions most similar to the

real climate system (Doblas-Reyes et al. 2010). These

studies suggest that the multi-model ensemble approach is

an effective tool for decadal climate prediction.

In this study, we examine predictable components on

decadal timescales by using the multi-model ensemble

approach and discuss the number of ensemble members

suitable for decadal climate prediction. In addition, we

address the impact of anomaly initialization for decadal

climate prediction by comparing the skills of initialized and

uninitialized predictions. To reduce the model climate drift

during prediction, we conducted decadal climate prediction

experiments on the basis of anomaly initialization using

AOGCMs with low, medium, and high resolutions (Tatebe

et al. 2012; Mochizuki et al. 2012; Chikamoto et al. 2012).

The remainder of this paper is organized as follows.

Section 2 describes the three versions of our model and

experiments to assess the predictability of decadal climate

variability. In Sect. 3, we evaluate the geographical dis-

tribution of the predictable area related to surface air and

oceanic subsurface temperature anomalies. The predict-

ability of the major climate variability on decadal time-

scales in terms of the global mean temperature, Atlantic

multidecadal oscillation (AMO), and Pacific decadal

oscillation (PDO) is examined in Sect. 4. We conclude and

discuss the study in Sect. 5.

2 Model and experiments

2.1 Model

In this study, we use the AOGCM MIROC that was coop-

eratively developed by the Atmosphere and Ocean

Research Institute of The University of Tokyo, National

Institute for Environmental Studies (NIES), and Japan

Agency for Marine-Earth Science and Technology.

MIROC’s atmospheric component is based on a global

spectral dynamical core and a standard physics package

(K-1 Model Developers 2004) developed at the Center for

Climate System Research (CCSR)/NIES/Frontier Research

Center for Global Change (FRCGC). The ocean general

circulation model is the CCSR ocean component model

(COCO; Hasumi 2006) which includes a sea ice model

(K-1 Model Developers 2004; Komuro et al. 2012). No

correction is applied in exchanging heat, water, and

momentum fluxes between the atmosphere and the ocean.

In addition, a land model that incorporates a river module is

used (Takata et al. 2003; K-1 Model Developers 2004).

As summarized in Table 1, we used three different

versions of MIROC: MIROC3m, MIROC4h, and

MIROC5. In MIROC3m, the atmospheric and oceanic

resolutions are a T42 spectral model with 20 levels on

vertical r-coordinates and an approximately 1� 9 1� lon-

gitude-latitude grid with 44 vertical levels, respectively.

MIROC4h includes the same model physics as MIROC3m

but at an eddy-permitting resolution for the ocean: a T213

spectral model with 56 levels in the atmosphere and an

approximately 1/4� 9 1/6� longitude-latitude grid with 47

vertical levels in the ocean. In MIROC5, most parts of

model physics are updated or replaced with new para-

meterization schemes derived from MIROC3m and
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MIROC4h. The resolution of MIROC5 is T85 spectral with

40 sigma-pressure hybrid vertical levels in the atmosphere

and approximately 1� horizontal grid of curvilinear coor-

dinates with 49 vertical levels in the ocean. Details of the

performance and settings of MIROC3m, MIROC4h, and

MIROC5 are described in Nozawa et al. (2007), Sakamoto

et al. (2012), and Watanabe et al. (2010), respectively.

2.2 Experiments

In order to evaluate decadal climate predictability, we

conducted the following three experiments using the three

versions of MIROC: the twentieth century climate simu-

lation (NoAS), the data assimilation (ASSM), and the

hindcast (HCST) experiments. In the NoAS experiment,

the model was prescribed by historical natural and

anthropogenic forcings such as greenhouse gases and

aerosol concentrations, solar cycle variations, major vol-

canic eruptions and future emission scenarios based on the

report of Intergovernmental Panel of Climate Change

(IPCC). Using the model climatology defined by the

NoAS experiment, the observed temperature and salinity

anomalies in the ocean (Ishii et al. 2006; Ishii and Kimoto

2009) were incorporated into model anomalies by an

incremental analysis update (IAU) scheme (Bloom et al.

1996; Huang et al. 2002) in the ASSM experiment. The

observed temperature and salinity anomalies, obtained

from the gridded monthly objective analysis covering the

whole ocean produced by Ishii et al. (2006) and Ishii and

Kimoto (2009), were linearly interpolated to each day and

to the ocean model grid. Analysis increment estimated

from a temporally and spatially invariant model-to-

observation ratio in analysis errors was incorporated into

the model as constant forcing in the model tendency

equation during an analysis interval of one day. Under our

current computational resources, our simple assimilation

approach can be applied for decadal climate prediction.

From the ASSM experiment, we can first obtain a pair of

atmospheric and oceanic initial conditions and then con-

duct ensemble HCST experiments. As described below

and summarized in Tables 2 and 3, the experimental

designs and the number of ensemble members are dif-

ferent among experiments in MIROC3m, MIROC4h, and

MIROC5. Details of the model experiment and the

assimilation procedure are described in Tatebe et al.

(2012) and Mochizuki et al. (2012).

In MIROC3m, the NoAS, ASSM, and HCST experi-

ments are based on 10-member ensembles (Table 3).

Nozawa et al. (2005) and Shiogama et al. (2007) per-

formed 10-member ensemble simulations for the

1850–2000 period using the historical data of natural and

anthropogenic forcings and the 2001–2030 period using the

A1B-type emissions scenario of the Special Report on

Emissions Scenarios (Nakicenovic et al. 2000). These

ensemble simulations are started from different initial

states obtained from the pre-industrial control run and

correspond to the NoAS experiment in MIROC3m.

Therefore, each member of the NoAS experiment has a

different phase of internally generated variability such as

ENSO, PDO, and AMO. From each member of the NoAS

experiment, we obtained 10-member initial states on Jan-

uary 1, 1945, and conducted 10-member ensemble assim-

ilations over the 1945–2009 period. During data

assimilation, the observed temperature and salinity anom-

alies in the upper 700-m ocean depth (Ishii et al. 2006) are

incorporated into MIROC. Although each ensemble

member in the ASSM experiment tends to have a same

phase of oceanic internally generated variability, our sim-

ple assimilation approach would have different trajectories

among ensemble members, particularly in the atmospheric

high-frequency states. On the basis of the 10-member

assimilation experiment, we also obtained 10-member

initial states and conducted 10 sets of 11-year-long,

10-member ensemble hindcast experiments initialized on

January 1, 1960, 1965, 1970, 1975, 1980, 1985, 1990,

1995, 2000, and 2005. These experimental designs in

MIROC3m are the same as those in Mochizuki et al. (2010).

In MIROC5, 3-member ensemble simulations in the

NoAS experiment were conducted for the 1850–2005

period using the historical forcing dataset updated for

CMIP5 and for the 2006–2100 period using the emissions

scenario of the Representative Concentration Pathway

(RCP4.5; Moss et al. 2008, 2010). Using two initial con-

ditions on January 1, 1945, taken from 3-member simula-

tions of the NoAS experiment, we conducted 2-member

assimilation experiment for the 1945–2007 period. In the

ASSM experiment, the observed temperature and salinity

anomalies from the surface to 3,000-m depth (Ishii and

Kimoto 2009) were assimilated into MIROC5 in a similar

manner to MIROC3m. In the HCST experiment, we con-

ducted 10 sets of 10-year, six-member ensemble hindcast

experiments initialized in 1961, 1966, 1971, 1976, 1981,

Table 1 Summary of MIROC

versions
Version Atm. res. Ocn. res. Reference

MIROC3m T42L20 1� 9 1� grid, L44 Nozawa et al. (2007)

MIROC4h T213L56 1/4� 9 1/6� grid, L47 Sakamoto et al. (2012)

MIROC5 T85L40 1� 9 1� grid, L49 Watanabe et al. (2010)
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1986, 1991, 1996, 2001, and 2006. Six ensemble members

were obtained from the lagged average forecasting (LAF)

method with the previous 3- and 6-month lags on the basis

of the two-member ASSM experiment. For example, for

the 1961 initialization, predictions commenced on July 1,

1960, October 1, 1960, and January 1, 1961.

The experimental design of MIROC4h is almost the

same as that of MIROC5. The main differences between

these experimental designs are the periods in the NoAS and

ASSM experiments, the number of ensemble members, and

the assimilation procedure. In MIROC4h, the NoAS

experiment has three ensemble members for 1950–2007

but one member for 2008–2035. To reduce computational

cost, the ASSM experiment was conducted with one

member for 1950–2007. In terms of horizontal resolution, a

small-scale eddy in the ocean is resolved in MIROC4h but

not in the observation (Ishii and Kimoto 2009). When we

assimilate the observation on a 1� 9 1� horizontal grid into

the eddy resolving model such as MIROC4h, analysis

increment estimated by our system adopted in MIROC3m

and MIROC5 acts to reduce the small-scale eddy resolved

by MIROC4h. To retain the small-scale eddy, large-scale

components of analysis increment estimated from a spa-

tially smoothed field is incorporated into MIROC4h

(Tatebe et al. 2012).

To distinguish climate signals from unrealistic signals

arising from the model climate drift during prediction,

drifts estimated in each model were excluded in the HCST

experiment on the basis of INTERNATIONAL CLIVAR

PROJECT OFFICE (2011) and Chikamoto et al. (2012). In

each model, differences between the model predicted

anomaly at a forecast lead time and the corresponding

observational anomaly at a valid time are averaged over 9

sets initialized from 1960 or 1961 to 2000 or 2001 every

5 years. As shown in Chikamoto et al. (2012), the HCST

experiment in MIROC5 displays a temperature drift during

prediction, such as El Niño, for the initial 3-year lead time

while a small temperature drift appears in the North

Atlantic in MIROC3m. Although we used anomaly

assimilation techniques to reduce the model climate drift,

an inconsistency in the thermocline depth between the

observation and the model may cause a model drift.

Dynamical processes that induce the model climate drift

during prediction will be reported elsewhere. The multi-

model ensemble approach may reduce these systematic

biases, as explained in Sect. 3.

After removing model drift during prediction in each

model, multi-model ensemble in the HCST experiment is

obtained from an average over three ensemble means in

each model. Although initial dates starting from initial

conditions depend on ensemble members and model ver-

sions as shown above, forecast lead time is defined as

departure from initial dates on January 1, 1961, 1966,

1971, 1976, 1981, 1986, 1991, 1996, 2001, and 2006. In

other words, the HCST experiment in MIROC3m are

regarded as the LAF method at 1-year lag. The anomalies

are defined as departures from the climatological mean

value for 1971–2000 period in each model and are linearly

interpolated into MIROC3m grid.

3 Overview of decadal climate predictability

To examine the regional skill of surface air temperature

(SAT) anomalies in decadal climate prediction, we com-

puted the centered anomaly correlation coefficient (ACC)

and root-mean-squared error (RMSE) of anomalies

between the National Centers for Environmental Prediction

(NCEP) reanalysis (Kalnay et al. 1996) and the multi-

model ensemble of the HCST experiments for 1-, 2–4-, and

5–9-year lead times (Fig. 1). Highly correlated and lower

RMSE regions appeared mainly over the Indian Ocean, the

West Pacific, and the North Atlantic. For the 1- and 2–4-

year lead times, RMSEs in the HCST experiments were

almost entirely lower than that in the NoAS experiments

(hatched orange region in Fig. 1b, d). For the following

5–9-year lead time, however, the lower RMSE region in

the HCST experiments diminished considerably. These

lower RMSEs suggest that initialization contributes to the

enhancement of the predictive skill of SAT anomalies for

initial several years, while its impact becomes unclear later

Table 2 Summary of our

experimental design for the

three MIROC versions

Ext. for. Obs. depth ASSM period Initial

MIROC3m 20C3M & A1B 700-m 1945–2009 Every 5-year from 1960

MIROC4h 20C3M & RCP4.5 3,000-m 1955–2007 Every 5-year from 1961

MIROC5 20C3M & RCP4.5 3,000-m 1945–2007 Every 5-year from 1961

Table 3 Number of ensemble members in each experiment

MIROC3m MIROC4h MIROC5

NoAS 10 3 3

ASSM 10 1 2

HCST 10 3 (LAF) 6 (LAF)

Ensemble members of hindcast experiments in MIROC4h and MI-

ROC5 were obtained from the lagged average forecast (LAF) with

previous 3- and 6-month lags: initial conditions were July 1, October

1, and January 1
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in our current hindcast system. Despite the fact that the

model climate still imperfectly represents the observed

climate state, our results in a grid-to-grid comparison imply

that some regional climate changes are predictable (i.e.,

ACC exceeds the statistical significance at the 90 % level)

in our multi-model ensemble.

In order to obtain potentially predictable variations in

the model and observational fields separately, we apply a

singular value decomposition (SVD) analysis between the

hindcast system and the observations. The SVD analysis

(Wallace et al. 1992; Bretherton et al. 1992) can provide

the observed and the model represented spatiotemporal

structures correlated between two fields (i.e., maximized

the cross-covariance between two fields). We expect that

the lower-order modes of SVD analysis for these two fields

could capture predictable components in our hindcast

experiment through maximized cross-covariance, even

though model simulated variations may have different

structures from the observations due to model deficiencies.

Figure 2 shows the first and second SVD modes of SAT

anomalies between the multi-model ensemble of the HCST

experiment for a 1–3-year lead time and the NCEP

reanalysis for its valid time. Although we generally apply

the SVD analysis for dynamically related variables such as

SST and geopotential hight anomalies (Wallace et al.

1992), there are no dynamical connection between the

observational and hindcasted fields. In our paper, we cal-

culated homogeneous correlation maps in Fig. 2 in order to

consider the observational and model fields separately.

In the first SVD mode (left panels in Fig. 2), SAT

globally increased for the recent decades in the observation

and the multi-model ensemble, which seems to represent a

global warming signal associated with external forcing.

The first SVD mode in the observed SAT anomalies shows

increasing trends over the Western tropical Pacific, the

Indian Ocean, the North Atlantic, and the Arctic Ocean but

no or decreasing trends over some parts of the Eastern

North Pacific, the Southern Ocean, and the Tibetan Plateau

(Fig. 2a). These observed temperature trends are qualita-

tively consistent with the global warming signals estimated

from linear trend (Fig. 3a) and regression maps with global

mean SAT (Fig. 3c) over 1955–2010 period. In fact, unc-

entered pattern correlation coefficients of the first SVD

mode in observation (Fig. 2a) with the linear trend

(Fig. 3a) and the regression map (Fig. 3c) are 0.77 and

0.79, respectively. On the other hand, the first SVD mode

in the HCST experiment has a zonally uniform structure of

SAT increasing trend except for some regions of the

Southern Ocean (Fig. 2c). When externally forced varia-

tions of SAT anomalies are estimated from linear trend and

regression map with global mean SAT in the NoAS

experiment (Fig. 3b, d), SAT increasing pattern has zonally

uniform structures except for some parts of the Southern

Ocean. Moreover, those patterns of first SVD modes in the

HCST experiment and observations are almost identical to

those obtained by applying SVD analysis between the

NoAS experiment and observations (Fig. 3e, f): uncentered

pattern correlation coefficients of these first SVD modes in

observations (Figs. 2a, 3e) and models (Figs. 2c, 3f) are

0.99 and 0.98, respectively.

The second SVD mode shows a mixture of PDO-like

pattern in the Pacific and the AMO-like pattern in the North

Atlantic (right panels in Fig. 2). In the Pacific region,

observed SAT anomalies become positive in mid-latitude

regions of the North and South Pacific and negative in the

tropical Pacific and the high-latitude region of southern

Pacific. This SAT pattern in observation is similar to the

regression map on the PDO index (definition of PDO index

is described in Sect. 4.3): the uncentered pattern correlation

coefficient is -0.74 over the Pacific region (50�S–70�N,

100�E–70�W). In the Atlantic, positive SAT anomalies in

observation are limited around Greenland, which appears at

5 years later after the mature phase of AMO. In fact,

uncentered pattern correlation coefficients between the

second SVD mode and the regression map of SAT on the

AMO index are 0.47 simultaneously but increases up to

0.63 at the 5-year lag over the Atlantic region (50�S–70�N,

60�W–0�). These observed signals in the Pacific and

Atlantic regions also appear in the second SVD mode of

our multi-model ensemble (Fig. 2d). As pointed out by

Solomon et al. (2010), distinguishing between internally

generated and externally forced variations is a difficult

problem due to some assumption intrinsic to an analysis

technique. Our SVD analysis is one of the useful tools to

roughly estimate predictability associated with natural and

externally forced variations in observational and model

represented fields under the small sampling such as our

HCST experiment (10 samples in this paper).

The first and second SVD modes of SAT anomalies

explain 97 and 1.4 % of the total covariance between the

observation and the multi-model ensemble. In other words,

the most predictable component of SAT anomalies in our

current hindcast system is the global warming signal. When

we focus on the ocean subsurface temperature variability

instead of SAT, the covariance ratio explained by the

second SVD mode considerably increases (to 20 %) as

shown by Mochizuki et al. (2012). This high covariance

ratio suggests that ocean subsurface temperature variability

and the global warming signal are also important for the

long-term predictability of SAT anomalies.

Figure 4 shows predictive skill maps for vertically

averaged ocean temperature anomalies from the surface to

300-m depth (VAT300) using objective analysis produced

by Ishii and Kimoto (2009). In the North Pacific, signifi-

cant predictability (i.e., high ACC and low RMSE) appears

particularly around the Kuroshio–Oyashio extension and
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subtropical oceanic frontal regions (Fig. 4), which are the

centers of action of the PDO pattern (Trenberth and Hurrell

1994; Mantua et al. 1997; Mochizuki et al. 2010), while

the predictable component of SAT is limited in the western

part of the North Pacific (Fig. 1). Moreover, the predictive

skills of VAT300 are improved in the HCST experiment

compared with those in the NoAS experiment in those

regions (hatched orange region in Fig. 4). In addition, ACC

exceeding 0.72 in VAT300 extends more westward from

the west coasts of Europe and North Africa than in SAT. In

particular, lower RMSEs in the HCST experiment than

those in the NoAS experiment extend to the Labrador and

Greenland Seas, where the strength of deep convection can

force meridional overturning circulation and then may be

(a)

(c)

(e) (f)

(d)

(b)

Fig. 1 Surface air temperature predictability of the multi-model

ensemble for a, b 1-, c, d 2–4-, and e, f 5–9-year lead times. The

predictive skill is measured according to the ACC (left panels) and

RMSE (right panels) between the NCEP reanalysis (Kalnay et al.

1996) and multi-model ensemble of the HCST experiments. The

multi-model ensemble is computed by averaging over three ensemble

means in each model. Correlation coefficients of 0.44, 0.55, and 0.72

correspond to the statistical significance at the 90, 95, and 99 %

levels, respectively, by using a one-sided Student t test with eight

degrees of freedom. Hatching orange region in right panels indicates

the regions where the ratio of RMSE in the HCST experiments to that

in the NoAS experiments is less than 0.9, implying the skill

improvement of 10 % by initialization compared to an uninitialized

run
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 2 First (left) and second (right) SVD modes of surface air

temperature anomalies between the multi-model ensemble of the

HCST experiment for a 1–3-year lead time and the NCEP reanalysis

(Kalnay et al. 1996) for its corresponding time. The SVD analysis

was performed in the global domain. The squared covariance fraction

(SCF) explained by the SVD mode and the temporal correlation

coefficient (R) between the expansion coefficients for the observation

and multi-model ensemble fields are indicated above (a) and (b). Top
and middle panels indicate homogeneous correlation maps of the

observation and the multi-model ensemble, respectively. Bottom

panels are time coefficients for (e) first and (f) second SVD modes in

the observation (broken line) and the multi-model ensemble of the

HCST experiments (solid line)

Decadal climate predictability 1207

123



related to AMO (Delworth and Mann 2000; Knight et al.

2005; Zhang 2007). These higher predictive skills in

VAT300 compared to those in SAT suggest that the ini-

tialization of ocean temperature variability contributes to

the enhancement of the predictive skill on decadal

timescales.

The predictable components on decadal timescales

associated with internally generated variability are higher

in the subsurface ocean than on the surface. Figure 5 shows

predictable areas where 3-year-mean ocean temperature

anomalies at the surface and the depths of 100 and 300 m

are significantly hindcasted at 95 % confidence levels in

(a)

(c)

(e) (f)

(d)

(b)

Fig. 3 Externally forced variations of surface air temperature anom-

alies estimated from a, b linear trend (�C/50-year), c, d regression

maps with global mean temperature anomalies (�C/�C), and e, f first

SVD mode between the NoAS experiment and observation (�C). Left

and right panels are the observation (Kalnay et al. 1996) and the

NoAS experiment, respectively. Linear trend and regression maps are

calculated by annual anomalies over 1955–2010 period while SVD

analysis are performed for 3-year-mean from 1961 to 2006 every

5 years (same as Fig. 2)
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terms of ACC and the ratio of RMSE in the HCST

experiment to that in the NoAS experiment is less than 0.9.

The area with enhanced predictability of ocean temperature

anomaly expands with the depth (Fig. 5). In particular, in

the North Atlantic, predictability becomes prominent at

300-m depth but limited at the surface near the coast of

eastern America and Greenland. Although ocean temper-

ature variability near the sea surface is affected by high-

frequency atmospheric variability, the long-term predict-

able memory associated with slow ocean variability would

reside in the subsurface ocean.

Figure 6 shows an annual time series of ocean temper-

ature anomalies at 300-m depth in the North Pacific, the

South Pacific, and the North Atlantic. Observed ocean

temperature anomalies in Ishii and Kimoto (2009) vary on

decadal timescales (black lines in Fig. 6), while externally

forced variability estimated from the multi-model ensem-

ble in the NoAS experiment (red lines in Fig. 6) shows an

almost monotonically increasing trend. In the North Paci-

fic, the observed temperature anomalies display two posi-

tive phases for the 1960–1980 and 1990-2000 periods and

two negative phases for the 1980–1990 and 2000–2010

(a)

(c)

(e) (f)

(d)

(b)

Fig. 4 Same as Fig. 1, but for vertically averaged temperatures from the ocean surface to 300-m depth
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periods with an amplitude of 0.3 �C (Fig. 6a), which show

the opposite phases of the PDO index, as shown in the next

section. This observed temperature variability is well

simulated in the HCST experiment (blue lines) and easily

distinguishable from the warming trend represented by the

NoAS experiment: ACCs for 10-year-mean temperature

anomalies are 0.86 between the observation and HCST

experiment and -0.19 between the observation and NoAS

experiment. Similar results between the observation and

the HCST and NoAS experiments were also obtained in the

South Pacific (Fig. 6b), while a variance is about 1.2 times

larger than that in the North Pacific (standard deviations of

the observed temperature anomalies are 0.177 �C and

0.194 �C in the North and South Pacific, respectively). In

the North Atlantic, on the other hand, a temporal variation

of observed temperature anomalies is significantly corre-

lated with the time coefficient for the second SVD mode

(Figs. 2f, 6c; ACC is 0.71) and the AMO index (ACC is

0.72), as shown in the next section. This temporal variation

in the North Atlantic is observed with an overestimated

intensity in the HCST experiment but not the NoAS

experiment. Note that an abrupt temperature warming in

the North Atlantic during mid 1990s in the observation is

well simulated by the hindcast experiment initialized in

1996 (Fig. 6c). Recent studies (Robson 2010; Robson et al.

2012; Yeager et al. 2012) indicated that this abrupt

warming is caused by changes in northward heat transport

of the Atlantic Ocean associated with the Atlantic merid-

ional overturning circulation (AMOC).

In summary, predictability on decadal timescales is

prominent in the subsurface ocean rather than at the sea

surface. Near the sea surface, externally forced components

such as the global-warming signal are the main factors that

explain decadal predictability, whereas the response pat-

terns of SAT to external forcing are different between the

observation and the model. On the other hand, initialization

enhances the predictive skills of temperature variability,

particularly in the subsurface ocean. Time series of tem-

perature variability in the subsurface ocean show dominant

natural variability such as PDO and AMO. In the next

section, we focus on the predictability of the major climate

variability: the global mean temperature, AMO, and PDO.

4 Internally generated and externally forced

variabilities

As we have seen in the previous section, our HCST

experiment, compared to the NoAS experiment, shows the

improved predictive skill of temperature variability for the

initial several years. When we focus on subsurface tem-

perature variability, long-term predictability for a decade

appears in the regions near the centers of action associated

with PDO and AMO. In this section, we will show that the

major decadal climate variability such as PDO and AMO is

predictable for several years.

4.1 Global mean temperature

The global mean temperature trend is mainly explained by

externally forced variability. Indeed, Fig. 7 shows a time

series of globally averaged SAT in the observation (red

line) and the HCST (blue) and NoAS experiments (green).

On an annual timescale, the observed SAT gradually

increases with interannual variations (top panels in Fig. 7).

By applying longer time filtering such as a 3- and 5-year

running mean, interannual variability becomes considerably

(a)

(b)

(c)

Fig. 5 Predictable years of the 3-year-mean ocean temperature

anomalies at a the surface, b 100-m depth, and c 300-m depth in

the HCST experiment. Shaded region indicates the areas with ACC

higher than 0.55 (i.e., the statistically significance at the 95 % level)

and RMSE of the HCST experiment to the NoAS less than 0.9. The

bar colors indicate the best lead time for the predictability for each

grid points and the lead time labeled by the middle year of 3-year-

mean (e.g., a 2-year lead time indicates the mean of the 1–3 year lead

time). Black boxes in (c) indicate regions in the North Pacific, the

South Pacific, and the North Atlantic, as shown in Fig. 6
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smaller and then the temperature trend becomes prominent.

This temperature trend is well simulated in both HCST and

NoAS experiments (Fig. 7c–f) and is significantly corre-

lated with the first SVD mode in Fig. 2 (ACC is 0.73).

The predictive skill of global mean temperature vari-

ability is slightly improved in the HCST experiment

compared to the NoAS experiment although internally

generated variability has a small impact on the globally

averaged temperature variation. As a result of the small

improvement by initialization, predictive skills in the

multi-model ensemble, measured by ACC and RMSE, are

slightly higher in the HCST experiment than in the NoAS

experiment (Fig. 7). In the recent decade, for example, the

weakened warming trend in the observation is well simu-

lated in the HCST experiment but not the NoAS experi-

ment, particularly for the 2–4-year lead time (Fig. 7c, d).

Mochizuki et al. (2010) suggested that a cool phase of

PDO contributed to the weakened warming trend for the

2006–2008 period.

Statistical skill improvement of the global mean tem-

perature by initialization is particularly exemplified by the

RMSE. Figure 8 shows a histogram of the predictive skills

estimated by an ensemble mean of 10 members obtained

from random sampling of total 19 members in the three

versions of MIROC. The probability density function

(PDF) of RMSE in the HCST experiment (solid line) is

smaller and narrower than that in the NoAS experiment

(gray shaded area) for 1-, 2–4-, and 5–9-year lead times

(bottom panels in Fig. 8), while the predictive skill mea-

sured by ACC is saturated for 2–4- and 5–9-year lead times

(Fig. 8b, c). When the number of ensemble members is

small, such as the three-member case (broke line), PDF of

RMSE in the HCST experiment becomes broader than that

in the NoAS experiment. Therefore, the predictive skill of

the global mean temperature also depends on the number of

ensemble members.

4.2 AMO

AMO is known as the multi-decadal SST variability in the

North Atlantic (Delworth and Mann 2000; Murphy et al.

2010). Observational and modeling studies have indicated

that AMO is related to rainfall variability in north east

Brazil (Folland et al. 2001) and African Sahel regions

(Folland et al. 1986; Rowell et al. 1995; Rowell 2003),

summertime climate in North America and western Europe

(Enfield et al. 2001; McCabe et al. 2004; Sutton and

Hodson 2005), and Atlantic hurricanes (Goldenberg et al.

2001; Knight et al. 2006). For example, McCabe et al.

(2004) suggested that recent droughts over the United

States during 1999–2002 can be partly explained by a

positive phase of AMO. This positive phase may have also

affected the recent European summer heat wave during

2003 (Sutton and Hodson 2005). Although the mechanism

of AMO is still controversial due to the insufficient his-

torical observation in the deep ocean, study on AMO pre-

dictability is an important topic for climate prediction in

terms of decadal timescales.

As shown in Figs. 2f and 6c, temperature anomalies of

surface air and subsurface ocean in the North Atlantic

display positive phases for the 1960–1970 and 2000–2010

periods and a negative phase for the 1980–1990 period.

These temperature anomalies exhibit behavior similar to

the AMO index (Enfield et al. 2001; Knight et al. 2005;

(a)

(b)

(c)

Fig. 6 Time series of annual ocean temperature anomalies at 300-m

depth in a the North Pacific (40�N–50�N, 170�E–160�W), b the South

Pacific (30�S–15�S, 150�W–120�W), and c the North Atlantic (50�N–

65�N, 50�W–30�W). Black, red, and blue lines indicate the obser-

vation and the multi-model ensemble in the NoAS and the HCST

experiments, respectively
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Sutton and Hodson 2005; Trenberth and Shea 2006).

Figure 9 shows the time series of the AMO index proposed

by Trenberth and Shea (2006); i.e., SST anomalies averaged

over the North Atlantic (EQ–60�N, 80�W–0�W) minus

global SST anomalies (60�S-60�N). For 1- and 2–4-year

lead times, the observed temporal variation of the AMO

index is well simulated in the HCST experiment (ACCs are

0.79 and 0.86, respectively) but is slightly underestimated

in the multi-model ensemble (standard deviations at 1- and

2–4year lead times are 0.15 and 0.13 in the observation but

0.11 and 0.08 in the multi-model ensemble, respectively).

Although the NoAS experiment also appears to simulate the

AMO index involved in the warming trend, the predictive

skills of the AMO index in the HCST experiment are higher

than those in the NoAS experiment for the initial five years

(Fig. 10). Consistent with these results, the improved

predictive skills in the HCST experiments appear in ACC

and RMSE histograms based on 10-member ensembles

(Fig. 11a, b, d, e). However, for the 5–9-year lead time, the

simulated AMO indices in the HCST and NoAS experi-

ments have similar histograms of prediction skills in par-

ticular in ACC (Fig. 11c, f), implying that the initialization

impact on SST anomalies associated with AMO is effective

for the initial five years.

Our HCST experiments, including a total of 19 mem-

bers, facilitated the investigation of the predictive skills

related to the number of ensemble members. Random

sampling of 19 members in the three MIROC versions

included not only initial uncertainty but also model

uncertainty. A histogram of the skills with 10,000-times

resampling shows a normal distribution, particularly in

RMSEs (Fig. 11), implying that our bootstrap method has a

(a)

(c)

(e) (f)

(d)

(b)

Fig. 7 Time series of globally

averaged surface air

temperature in the HCST and

NoAS experiments (left and

right panels, respectively) for

a 1-, c 2–4-, and e 5–9-year lead

times for their corresponding

times. Red, blue, and green
colors indicate the observation,

and the HCST and NoAS

experiments, respectively.

Cross, square, and triangle
marks indicate each ensemble

member in MIROC3m,

MIROC5, and MIROC4h,

respectively. The correlation

coefficient and RMSE are given

for the multi-model ensemble
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sufficient number of samples. Figure 12 shows the pre-

dictive skills of the AMO index in the HCST experiment as

a function of the number of ensemble members. By

increasing the number of ensemble members, the predictive

skill becomes higher and its range reduces in both ACC

and RMSE. The skill improvement of the median with the

increase of ensemble members is prominent for less than 5

ensemble members, while the skill range tends to be sat-

urated for more than 10 ensemble members taken from a

mixture of all ensemble members in the three MIROC

versions. Note that the ACC skill ranges of the AMO index

have a long tail toward low predictive skills (Fig. 11a–c).

These PDFs of ACC are affected by the upper limit of the

correlation coefficient.

Although the predictive skill in MIROC3m is low for

2–4- and 5–9-year lead times, the multi-model ensemble of

the three MIROC versions has a remarkable predictive

skill. In particular, for 2–4-year lead time, the multi-model

ensemble shows the best predictive skill as compared to

each MIROC ensemble version (Fig. 12b, e). As shown in

Sect. 2, our HCST experiments have a different number of

ensemble members among three MIROC versions. Due to

the small number of ensemble members, MIROC4h shows

unstable predictive skills of the AMO index (circle in

Fig. 12): the lowest for the 1-year lead time, highest for the

2–4-year lead time, and medium for the 5–9-year lead time.

Our higher predictability in the multi-model ensemble

suggests a possibility that useful predictive skills will also

be obtained by the CMIP5 multi-model ensemble in many

research centers.

In our multi-model ensemble, the HCST experiment

shows higher predictive skill of the AMO index than the

NoAS experiment for the initial 5-year lead time but lower

at 7-year and 5–9-year lead times (Figs. 9e, f, 10). The

lower predictive skills of the HCST experiment for longer

lead time may be related to large forecast uncertainty.

From 4-year to 5-year lead times, predictive skills of the

AMO index suddenly decrease in both of the HCST and

NoAS experiments (Fig. 10). Associated with this

decrease, magnitude of ACC error bar also increases in the

(a)

(d) (e) (f)

(c)(b)

Fig. 8 Histogram of anomaly correlation coefficients (top) and

RMSE (bottom) of globally averaged surface air temperature in the

HCST experiment with 10,000 times random resampling of 19

members. Solid and broken lines indicate 10 and three members in the

HCST experiments. Gray shaded area indicate the prediction skill by

10 members in the NoAS experiments
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HCST experiment from 0.14 to 0.2 during this period.

After 5-year lead time, the error bar in the HCST experi-

ment becomes more than 2.0 while that in the NoAS

experiment retains about 0.15. In addition to this large

uncertainty in the HCST experiment, predictive skill of the

AMO index suffers from a small sampling of hindcast

because our analysis period covers only one phase of

AMO. When we focus on the longer lead time such as

7-year or 5–9-year, the recent upward trend of the AMO

index becomes prominent due to a limited sampling of the

downward trend during 1960s (Fig. 9e, f). In our multi-

model ensemble, however, the reason for the high predic-

tive skill of AMO in the NoAS experiment is still

unknown. To reveal predictability of AMO, a perfect

model approach and a reproduction of climate for the past

century are an important topic for future studies.

4.3 PDO

The PDO is the dominant climate variability in the North

Pacific on decadal timescales (Mantua et al. 1997). During

the positive phase of PDO, SST anomalies became cool in

the central North Pacific and warm along the western coast

of North America, and vice versa. Meehl et al. (2009)

pointed out that the abrupt climate change observed in

1970s (known as the climate shift) contributed to decadal

variability in PDO from negative to positive phases as well

as externally forced variability. Mochizuki et al. (2010)

indicated that the initialized ensemble hindcast in MIROC3m

demonstrated a predictive skill of PDO for several years. In

their follow-up paper (Mochizuki et al. 2012), reasonable

predictability of PDO was also obtained by the initialized

hindcasts in MIROC5 but not in MIROC4h due to the

(a)

(c)

(e) (f)

(d)

(b)

Fig. 9 Same as Fig. 7 but for

the AMO index
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small number of ensemble members. On the basis of these

hindcast experiments with different skills of PDO, we

focus on the impact of the multi-model ensemble on the

predictability of PDO in this subsection.

To obtain a time series for the PDO index in the

observation and the HCST and NoAS experiments, we

used a common definition of PDO. In a manner similar to

the definition in Mantua et al. (1997), we defined the

spatial pattern of PDO as the leading empirical orthogonal

function (EOF) of the observed and linearly detrended

VAT300 anomaly (Ishii and Kimoto 2009) over the North

Pacific (north of 20�N) during the 1955–2010 period. For

this spatial pattern of PDO, time coefficients were obtained

by the linearly detrended projection of VAT300 anomalies

in the observation and the HCST and NoAS experiments.

These linearly detrended time series are defined as the PDO

index in this paper. As shown in Fig. 2a, c, the spatial

patterns of temperature trend are not identical for the

observation and the HCST experiment: SAT anomalies in

the North Pacific have almost no trend in the observation

but a warming trend in the HCST experiment. This dis-

crepancy implies model deficiencies related to the response

to external forcing.

Figure 13 shows a time series for the PDO index in the

observation and the HCST and NoAS experiments for 1-,

2–4-, and 5–9-year lead times. The observed PDO index

has a negative phase from 1960 to 1975, a positive phase in

1980s, and a negative phase again for the recent five years.

This temporal variation having an opposite sign is also

observed in the subsurface ocean, as shown in Fig. 6a, b.

For 1- and 2–4-year lead times, the observed temporal

variations of the PDO index are reproduced in the HCST

experiment but not in the NoAS experiment (Fig. 13a–d).

In particular, the positive phase during 1980s is observed in

the HCST experiment although the amplitude in the multi-

model ensemble is considerably smaller than that in the

observation. However, for the 5–9-year lead time, temporal

variations in the HCST experiment are almost the same as

those in the NoAS experiment and different from obser-

vations, suggesting that in our present system, the PDO

index is less predictable beyond the 5-year lead time.

Consistent with these time series, the 3-year-mean PDO

index has the predictive skills for about 5 years in the

HCST experiment but lower in the NoAS experiment

(Fig. 14). For the initial 5-year lead time, the HCST

experiment shows significant ACC values and RMSE

values lower than the observed standard deviation (black

lines in Fig. 14). On the other hand, the PDO index in the

NoAS experiment is almost uncorrelated with the obser-

vation and has RMSE values higher than the observed

standard deviation (red lines in Fig. 14). When a number of

ensemble members is limited, such as for the 10-member

case, ACC in the NoAS experiment covers a broader range

of values compared with that in the HCST experiment

(Fig. 15). The broad range of ACC values in the NoAS

experiment implies that our PDO index has larger variance

of internally generated variability than that of externally

forced variation. Mochizuki et al. (2012) showed that the

(a) (b)

Fig. 10 Three-year-mean predictive skill of the AMO index in the

HCST (black) and NoAS experiments (red), estimated by the multi-

model ensemble. Predictive skills are measured by a anomaly

correlation coefficient (ACC) and b root-mean-squared error (RMSE).

Broken line indicates persistent prediction estimated from

autocorrelation. Error bars indicate the range from 10 to 90 % of

predictive skills obtained by multi-model ensemble, in which the

ensemble mean in each model is estimated from random sampling

repeated 10,000 times. RMSE is normalized by one standard

deviation of the observed AMO index during the 1955–2010 period
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small number of ensemble members degrades the hindcast

skills of PDO. Consistent with their results, the histogram

of the HCST experiment with the 10-member ensemble is

sharper than those of the HCST experiment with the three-

member ensemble and the NoAS experiment with the

10-member ensemble (Fig. 15). These results indicate that

the predictive skill of the PDO would be enhanced by

increasing the number of ensemble members or the multi-

model ensemble performed by many research centers.

Although we used only the three models in the HCST

experiment, the stable predictive skill of the PDO index is

obtained in our multi-model ensemble. Figure 16 shows

the predictive skills of the PDO index associated with the

number of ensemble members. By increasing the number

of ensemble members, the averaged predictive skill tends

to improve except the ACC values for the 5–9-year lead

time. In particular, for 1- and 2–4-year lead times, the

multi-model ensemble provides the predictive skills iden-

tical to or higher than the 19-member ensemble mean

(asterisk and red circle in Fig. 16). These results suggest

that the multi-model ensemble is effective in improving the

predictive skill on decadal timescales.

Previous studies have suggested that PDO can be

regarded as the North Pacific expression of the basin-wide

SST variability called the Interdecadal Pacific Oscillation

(IPO) (Power et al. 1999; Folland et al. 2002; Meehl et al.

2009). In fact, subsurface temperature anomaly in the North

Pacific is correlated to that in the South Pacific with a 4-year

lag (Fig. 6a, b); ACC is 0.32 and exceeds the statistical

significance at the 95 % level by using a two-side Student

t-test with 50 degrees of freedom. However, the mechanism

of PDO or IPO is still controversial, e.g., in terms of the

origin of PDO or IPO, the tropics or extratropics (Liu 2012).

In addition, the three MIROC versions have different

characteristics of tropical SST variability; the amplitude of

ENSO is high in MIROC5 but low in MIROC3m (Watan-

abe et al. 2010). To enhance the predictive skill on decadal

timescales, physical processes contributing to interannual-

to-decadal ENSO phenomena and tropical Pacific vari-

ability are an important topic for future studies.

(a)

(d) (e) (f)

(c)(b)

Fig. 11 Same as Fig. 8 but for the AMO index
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5 Discussion and conclusions

We have investigated the predictability of decadal climate

variability by a multi-model ensemble using three versions

of MIROC. In our HCST experiments, initial conditions

were obtained in a similar manner on the basis of anomaly

assimilation in each model. We used the same external

forcing to drive the initialized and uninitialized runs for

each model. Therefore, uncertainties due to both initial

errors and model imperfection are contained in the HCST

ensemble, which can be used to assess the initialization

impacts by comparing the initialized and uninitialized runs

with sufficient ensemble size.

Our multi-model ensemble shows that the most pre-

dictable component in SAT variability originates in

external condition (Figs. 1, 2, 7) and that internally gen-

erated variability is of secondary importance in SAT var-

iability on decadal timescales. However, this does not

imply that internal variability targeted by initialization is

negligible in near-term climate prediction. For example,

with respect to the global mean temperature variability, the

impact of initialization has not been considerably clear in

the case of the twentieth century but has been significant in

the case of the recent decade (Fig. 7c, d); RMSEs of global

mean temperature anomalies at 2–4-year lead time in the

HCST and NoAS experiments are 0.05 and 0.06 by

excluding hindcasts initialized on 2001 and 2006 (not

shown), but 0.06 and 0.10 by including these initialized

hindcasts, respectively. Furthermore, when we focus on the

subsurface ocean, the observed interannual-to-decadal

variability is large compared to the linear trend or the

externally forced variability estimated by the NoAS

experiment, which is consistent with long-term predict-

ability related to AMO and PDO signals (Figs. 4, 5, 6). Our

results suggest that the long-term predictable memory

related to AMO and PDO resides in the subsurface ocean.

(a) (b) (c)

(f)(e)(d)

Fig. 12 Anomaly correlation coefficients (top) and RMSE (bottom)

of the AMO index in the HCST experiment associated with the

ensemble-averaged number of members. Circles and bars indicate the

median and the range from 1 to 99 % of predictive skills,

respectively, when random sampling was repeated 10,000 times for

19 members. Cross, triangle, square, and asterisk marks indicate

ensemble means in MIROC3m, MIROC4h, MIROC5, and multi-

model, respectively
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Near the sea surface, ocean temperature variability is

strongly affected by unpredictable atmospheric high-fre-

quency noise and externally forced variability. These

variations may reduce the predictive skills of SAT vari-

ability associated with AMO and PDO.

In our current prediction system, AMO and PDO indices

have the predictive skills for several years (Figs. 10, 12,

14, 16) although the mechanisms of these phenomena are

still unknown. The SVD analysis indicates that a predict-

able component of surface temperature anomalies shows a

mixture of PDO-like and AMO-like patterns (Fig. 2). Some

recent modeling and observational studies suggest that a

low-frequency component of PDO on multi-decadal time-

scales is responsible for AMO with a lag of about a decade

(Zhang and Delworth 2007; d’Orgeville and Peltier 2007).

Possible physical processes involved in the relationship

between PDO and AMO may be clarified by further ana-

lyzing the initialized HCST experiments, which will be a

topic of future work.

To contribute to the next report of IPCC AR5, hindcast

and forecast experiments will be conducted using many

CMIP models with different ensemble sizes. Our multi-

model ensemble shows higher predictive skills in the

dominant ocean temperature variability such as AMO and

PDO compared to any of the single-model ensemble. This

suggests that the multi-model ensemble approach in

CMIP5 also has the potential to increase the predictability

by reducing errors in single models. Further studies that

unravel physical processes of the predictable natural vari-

ability are desirable in order to enhance our understanding

of these processes and increase the predictive skills of

decadal climate variability.

(a) (b)

(c) (d)

(e) (f)

Fig. 13 Same as Fig. 7 but for

the PDO index
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(a) (b)

Fig. 14 Same as Fig. 10 but for the PDO index

(a) (b) (c)

(d) (e) (f)

Fig. 15 Same as Fig. 8 but for the PDO index
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The recent increase in Atlantic hurricane activity: causes and

implications. Science 293(5529):474

Hasumi H (2006) CCSR Ocean Component Model (COCO), Version

4.0. Center for Climate System Research Rep 25 p 103 pp,

[Avaiable online at http://www.ccsr.u-tokyo.ac.jp/hasumi/COCO/

coco4.pdf]

Hawkins E, Sutton R (2009) The potential to narrow uncertainty in

regional climate predictions. Bull Am Meteorol Soc 90(8):1095–

1107

Hibbard KA, Meehl GA, Cox PM, Friedlingstein P (2007) A strategy

for climate change stabilization experiments. EOS 88:217–219

Huang B, Kinter J, Schopf P (2002) Ocean data assimilation using

intermittent analyses and continuous model error correction. Adv

Atmos Sci 19(6):965–992

INTERNATIONAL CLIVAR PROJECT OFFICE (2011) Decadal

and bias correction for decadal climate predictions. International

CLIVAR Project Office 150:CLIVAR Publication Series (not

peer reviewed)

Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat

content variations with time-varying XBT and MBT depth bias

corrections. J Oceanogr 65(3):287–299

Ishii M, Kimoto M, Sakamoto K, Iwasaki S (2006) Steric sea level

changes estimated from historical ocean subsurface temperature

and salinity analyses. J Oceanogr 62:155–170

Jin E, Kinter J, Wang B, Park C, Kang I, Kirtman B, Kug J, Kumar A,

Luo J, Schemm J et al (2008) Current status of ENSO prediction

skill in coupled ocean–atmosphere models. Clim Dyn 31(6):

647–664. doi:10.1007/s00382-008-0397-3

K-1 Model Developers (2004) K-1 coupled GCM (MIROC) descrip-

tion, K-1 Tech. Rep., vol 1. Cent. for Clim. Syst. Res., Univ. of

Tokyo, Tokyo, 34 pp

Kalnay E, Kanamitsu M, Kistler R, Deaven WCD, Gandin L, Iredell

M, Saha S, White G, Wollen J, Zhu Y, Ebisuzaki MCW, Higgins

W, Janowiak J, Ropelewski KCMC, Wang J, Leetmaa A, Jenne

RRR, Joseph D (1996) The NCEP/NCAR 40-year reanalysis

project. Bull Am Meteorol Soc 77:437–471

Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E

(2008) Advancing decadal-scale climate prediction in the north

atlantic sector. Nature 453:84–88. doi:10.1038/nature06921

Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A

signature of persistent natural thermohaline circulation cycles in

observed climate. Geophys Res Lett 32:L20,708

Knight J, Folland C, Scaife A (2006) Climate impacts of the Atlantic

multidecadal oscillation. Geophys Res Lett 33:L17,706

Komuro Y, Suzuki T, Sakamoto TT, Hasumi H, Ishii M, Watanabe

M, Nozawa T, Yokohata T, Nishimura T, Ogochi K, Emori S,

Kimoto M (2012) Sea-ice in twentieth-century simulations by

new miroc coupled models: a comparison between models with

high resolution and with ice thickness distribution. J Meteorol

Soc Jpn (in press)

Liu Z (2012) Dynamics of interdecadal climate variability: a

historical perspective. J Clim (in press)

Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A

Pacific interdecadal climate oscillation with impacts on salmon

production. Bull Am Meteorol Soc 78:1069–1079

McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic

Ocean influences on multidecadal drought frequency in the

United States. Proc Natl Acad Sci USA 101(12):4136

Meehl GA, Hu A, Santer BD (2009) The mid-1970s climate shift in

the pacific and the relative roles of forced versus inherent

decadal variability. J Clim 22(3):780–792

Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa

T, Sakamoto TT, Shiogama H, Awaji T, Suiura N, Toyoda T,

Yasunaka S, Tatebe H, Mori M (2010) Pacific decadal oscillation

hindcasts relevant to near-term climate prediction. Proc Natl Acad

Sci USA 107:1833. doi:10.1073/pnas.0906531107

Mochizuki T, Chikamoto Y, Kimoto M, Ishii M, Tatebe H, Komuro

Y, Sakamoto TT, Watanabe M, Mori M (2012) Decadal

prediction using a recent series of MIROC global climate

models. J Meteorol Soc Jpn (special issue, in press)

Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J,

Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M,

Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J,

Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi

K, Rose S, Runci P, Stouffer R, van Vuuren D, Weyant J,

Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new

scenarios for analysis of emissions, climate change, impacts, and

response strategies. Tech. rep., Pacific Northwest National

Laboratory (PNNL), Richland

Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van

Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl

GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer

RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next

generation of scenarios for climate change research and assess-

ment. Nature 463(7282):747–756

Murphy J, Kattsov V, Keenlyside N, Kimoto M, Meehl G, Mehta V,

Pohlmann H, Scaife A, Smith D (2010) Towards prediction of

decadal climate variability and change. Procedia Environ Sci

1:287–304

Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S,

Gregory K, Grubler A, Jung T, Kram T et al (2000) Emissions

scenarios, a special report of working group III of the

intergovernmental panel on climate change. Cambridge Univer-

sity Press, New York

Nozawa T, Nagashima T, Shiogama H, Crooks SA (2005) Detecting

natural influence on surface air temperature change in the early

twentieth century. Geophys Res Lett 32:L20,719. doi:10.1029/

2005GL023540

Nozawa T, Nagashima T, Ogura T, Yokohata T, Okada N, Shiogama

H (2007) Climate change simulations with a coupled ocean-

atmosphere GCM called the model for interdisciplinary research

on climate: MIROC. CGER Supercomput Monogr Rep 12, cent.

for Global Environ. Res., Natl. Inst. for Environ. Stud., Tsukuba.
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