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Abstract 

A new model-trust region algorithm for problems in unconstrained optimization and nonlinear equations utilizing a 
quadratic interpolant for step selection is presented and analyzed. This is offered as an alternative to the piecewise-linear 
interpolant employed in the widely used "double dogleg" step selection strategy. After the new step selection algorithm has 
been presented, we offer a summary, with proofs, of its desirable mathematical properties. Numerical results illustrating 
the efficacy of this new approach are presented. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

We are concerned in this paper with a new procedure for solving unconstrained optimization 
problems whether they arise directly or indirectly through minimization o f  the norm of  the residual 
o f  a system o f  nonlinear equations. O f  particular interest are problems of  sufficient complexity to 
preclude the determination o f  an initial guess for the iteration that is close to the desired solution. 
This situation is quite common in engineering design, one such problem arising in the numerical 
simulation o f  semiconductor devices [4]. 

Newton ' s  method [6] is a powerful  tool for solving such problems since it exhibits local q-quadratic 
convergence, i.e. it is q-quadratically convergent provided that we start the iteration sufficiently close 
to the solution. In order to construct a globally convergent variant, Newton ' s  method is hybridized 
with the globally, yet typically slowly, convergent Cauchy 's  method (steepest descent). The resulting 
so-called model-trust region algorithms [2] retain the best features o f  both methods: strong global 
convergence coupled with rapid local convergence (i.e. they are globally q-quadratically convergent). 
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The various model-trust region algorithms differ from one another in precisely how this hybridization 
is achieved. This matter will be further elaborated upon in the next section. 

The present paper offers an improvement to the standard "double dogleg" version of this algorithm 
via replacement of its piecewise-linear approximant by a quadratic interpolant. In the ensuing pages, 
we first introduce the model-trust region strategy. We then present our new step selection algorithm, 
describe its mathematical properties, and compare it to the "double dogleg" strategy. Finally, we 
report on the strenuous excercise of the new algorithm on a suite of  standard test problems [5] as 
well as on the numerical simulation of a p -  n diode [4]. Additional details of the test problems 
appear in [3]. We focus herein on those aspects of our algorithm which are innovative. For details on 
model-trust region algorithms in general (e.g. scaling, initialization, termination, Hessian estimation, 
linear solver), the reader is referred to the superlative text [1 ]. 

2. Model-trust region algorithms 

Consider the unconstrained minimization problem 

m ~ f ( x ) ,  f "  R" ~ N, (1) 

with f ( x )  assumed twice continuously differentiable. We seek a local minimizer, x., for this problem. 
For unconstrained maximization, simply replace f ( x )  by - f ( x ) .  In what follows, all unspecified 
norms are Euclidean 2-norms, ][xII :-- ~ ,  and I lx[b := ~ with A symmetric and positive 
definite (SPD). 

In Newton's method [6], the step at each stage is selected to minimize the local quadratic model: 

mc(Xc + s) := f~ + VfcVS + ½sVVZf~s, (2) 

where a subscript denotes the point of evaluation, in this instance the current point, xc. Applying 
the first derivative test for a local extremum, we arrive at the equations for the Newton step: 

V2 fcSN -~- - - V  fc. ( 3 )  

If  VZf~ is not positive definite then we modify the local quadratic model as follows: 

rhc(X~ + s) := fc + VATs + ½sTHcs, (4) 

where Pc t> 0 is selected so that the modified model Hessian, H~ := V2fc + #fl  is "safely positive 
definite". Assuming that V 2 f .  is nonsingular, V2fc will be SPD when we are close to the local 
minimizer, so that #c = 0 eventually. Further justification for this modification as well as details of 
its implementation are available in [1]. 

Similarly, we may also address the root-finding problem: 

F(x . )=O,  x. E ~n, F : R" ~ ~n, (5) 

via its reformulation as the unconstrained minimization problem: 

min f (x ) ,  f ( x )  : =  ½F(x)TF(x) = ½llF(x)ll 2 (6) 
x E R" 
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Taylor series expansion about the current iterate, xc, yields the following local approximation to 
f(x):  

mc(x¢ + s) := ½F(xc)TF(xc) + [J(xe)TF(xc)]Ts 

+½sV[j(xc)Tj(x¢) + ~ Fi(xc)V2Fi(xe)]s. (7) 
i=1 

Rather than having to compute the Hessian matrices, V2Fi (i = 1 . . . .  ,n), we observe that their 
coefficients vanish at x,. Thus, we omit the above summation and introduce the modified local 
quadratic model: 

rh~(Xc + s ) ' =  ½F(xc)TF(x~) + [J(x~)TF(xc)]rs + ½ST[J(x~)TJ(x~)]S 

= ½mc(x¢ + s)VMc(xc + s); M¢(x~ + s) := F(x~) +J(x~)s. (8) 

Since the gradients of the, me, and f are identical at x¢, they share descent directions from that point. 
In particular, Pso := - J r F  (steepest descent direction) and PN := - j - I F  (Newton direction) are 
shared by all three functions. Eq. (8) may be recast in the form of Eq. (4) by the indentifications 
Vf¢ = JfF~ and H~ = J~J~, which is positive definite provided that J~ is nonsingular. 

A variant of Newton's method for either unconstrained minimization or nonlinear equations with 
attractive global convergence properties may be derived as follows. A pure Newton iteration would 
correspond to selecting s to minimize lh¢ regardless of the quality of this local quadratic model. The 
model-trust region algorithms improve upon this by utilizing an estimate, 6¢, of the radius of the 
region about xc in which ~hc adequately represents f .  Thus, the next iterate is determined by the 
step, s, which solves the locally constrained minimization problem: 

m}nEth~(x¢ + s ) =  f¢ + Vf~Ts + ½stiles] 

s.t. Ilsll ~< 6o. (9) 

This stands in stark contrast to restricted-step Newton methods which retain the Newton step direction 
but simply reduce the step length when far from x,. 

Defining 

s(,~) := - (He + / Vf~, (10) 

we may now state the fundamental theorem of model-trust region algorithms (see Fig. 1): 

Theorem 1 (Fundamental Theorem of model-trust region algorithms). The solution to the locally 
constrained minimization problem, Eq. (9), is given by 

fs(O) =sN, if IIs(O)[I ~ 6~ 
s+ = L s(~+) ~ Ils(~+)ll = 6~, otherwise. 

(11) 
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Fig. 1. Model-trust region. 

Proof. See [1, pp. 131-132]. [] 

Note that the curve, s(2), has the following properties [1]: s ( 0 ) =  SN, S ( 1 ) =  0, S'(1)----Vfc. 
Thus, the associated step-directions range between the Newton (6~ large) and the Cauchy (6¢ small) 
directions. Also, s(2) is a descent direction from x¢ for all 0 ~< 2 < 1 and distance from x~ increases 
as 2 decreases. In practice, the difficulty in applying Theorem 1 lies in the complexity of finding 
2+. If we attempt to find it exactly, as is done in the optimal "hook step" strategy [1 ], then systems 
of equations of  the form 

2k I'~ 
H~ + 1 - 2k ] sk = -~ ' f~  (12) 

need to be solved at each step. 
A popular alternative to incurring this added computational burden is the use of  the "double 

dogleg" strategy [1] whereby the curve s(2), 0 ~< 2 ~< 1, is approximated by a piecewise-linear curve 
xc ~ XSD --~ £ ~ XN as shown in Fig. 2. Here, XSD is the Cauchy point, XN is the Newton point, 

:----- xc + ~N (7 ~< ~ ~< 1 ), and ? is the ratio of the Cauchy step length to the length of  the projection 
of  the Newton step onto the Cauchy direction which we will show in the next section to be bounded 
by 1. The new point, x+, is chosen so that I Ix+ - xoll  - -  unless [IH~-IVf~]I ~< 6c in which case 
X +  ~ X N .  

It is shown in [1] that with such a choice for ~ (they suggest setting ~ = 0.8~ + 0.2), the "dou- 
ble dogleg" curve possesses two very important properties. Firstly, as a point proceeds along the 
"double dogleg" curve from x~ to Xy, distance from xc increases monotonically, so that this process 
is well defined. Secondly, the value of the modified local quadratic model, th~(xc + s) decreases 
monotonically as a point traverses this curve in the same direction, so that this process is reason- 
able. In the next section, we present a new quadratic interpolant to s(2) with these same desirable 
properties. 
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Fig. 2. Double dogleg strategy. 

3. The quadratic interpolant 

In the new step selection algorithm (see Fig. 3), we approximate s+ by replacing s(2) by the 
quadratic interpolant: 

a(r/) := ( r / -  1) [ ( r / -  1)Ss + r//3Vf~]; 0 ~< ~/~< 1, (13) 

when sN lies outside the trust region. For the moment, we leave /3 > 0 unspecified. We next sum- 
marize some general properties of  a(q). 

Theorem 2. For any fl > O, xc + a(rl) passes through x¢ and XN and is tangent to x¢ + s(2) at xc. 
Moreover, a(q) is a descent direction f rom x¢ for  any 0 <% t 1 < 1. 

Proof. a ( 0 ) =  sN =~ interpolation at xN. a ( 1 ) =  0 =~ interpolation at xc. a ' ( r / )=  2 ( r / -  1)SN + ( 2 r / -  
1)flVf~ ~ a '(1) =f lVf~ => tangency at xc. Vf~Ttr(r / )=--(r / -  1)211~7fc112_, + r/(t]-  l)l]~Tfcll 2 < 0 =:> 
O'(t/) is a descent direction from x~ for 0 ~< r / <  1. 

Ideally, the free parameter, fl, would be chosen to achieve tangency at xN also. However, this is 
equivalent to selecting/3 so that -2Sy - flVf¢ II -H 'sN and would thus require that an additional 
system of  equations be solved. We wish to avoid this added cost. In the next section, we show that 
the choice 

/ -24vf  
fl := V ~ f ~  (14) 

endows the curve xc + o-(17) with certain highly desirable properties, thus obviating the need for 
multiple linear solves at each step of  the model-trust region iteration. 
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Fig. 3. New step selection algorithm. 

4. Mathematical properties 

In order to fully explore the consequences of  the above choice for fl, Eq. (14), we need to lay 
some preliminary groundwork. We begin with: 

Lemma 1. Let  A ,B ,C  E R n×n with A and C positive definite and x , y  E Rn; then the following are 

equivalent: 

[xrByl 2 <~ (xXAx)(yrCy),  (15) 

21xrByl <~ xXAx + yXCy ' (16) 

p(BXA-lBC -1) ~< 1. (17) 

Proof.  This is Theorem 7.7.7 [2, p. 473] specialized to real, square matrices. [] 

This lemma has the following important consequence. 

Theorem 3. Assume that Hc & SPD; then 

IVAll 2 ~ IIVAII,,¢- IIVAII,,~-,. 
1 2 IIVAII 2 ~< ~. [llVAII.c + IIVAIl~r,]. 

IIVAII ~< ½[IIVAII.o + IIVAII.<-.]. 

(18) 

(19) 

(20) 

Proof. Let A = He, B = L C = H -1 Vf~ in Lemma 1" then p(BXA-~BC -1 ) = p( I )  = 1. c , x = y =  
Thus, 

(i) Vf~rVA ~< (Vf~XH¢VA) 1/2" (VfcrH£1VA)  '/2. 
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(ii) 2Vfca'Vf¢ ~< Vf~XHcVfc + VfcTH~-IVf¢. 
(iii) Taking the arithmetic mean of  (i) and (ii) yields IlVf~ll ~ ~ ¼[llVfcll~/= +211Vfdl.=llVf~ll~, 

+llVf~ll~=,] = ¼[IIVAII.¢ + IlVfcll.=,]:. Taking the square root of  both sides of  this results 
in (iii). [] 

This brings us to the fundamental result: 

Theorem 4 (Cauchy-Newton inequality). The size o f  the Cauchy step is always bounded above by 
the length of  the projection of  the Newton step onto the Cauchy step." 

x sso (21) Ilss~ll ~ s ~  . 

Proof. 

IlVAIl: IlVfcll 3 
SSD := VfTH~Vf ~ • VA =~ I]ssoll-- VfJH~Vf~; 

v f / L - ' v A  
sN := - H Z  1Vf¢ =~ l[ projection o f  sN onto V fell -- ]]Vf¢l ] 

Ilvfdl3 V 4 r H j I V f c  which we now recognize as By Eq. (18), IIvA[I '  ~< IlVf~ll~.llVAIl~-, ~ v::.¢v:¢ ~< iiv:¢ll ' 
the desired inequality, Eq. (21). [] 

In what follows, we require an additional result: 

Lemma 2. 

13 <~ - v 5  s~V f~ IIs~ll: 
IIvAII------- ~ <. - v S .  s ~ V A  (22) 

Proof. By Eq. (18), IlVfc[I 4 ~ (Vf~THj lVA) .  (VfcTHcVfc) = (--s~Vfc) • (VfcTHcVfc). Thus, 

~z _ --2sVVfc (s~Vfc) 2 

VfJHoVf~ ~< 2.  IIVAII 4 

The first half of  the inequality now follows by taking square roots. The second half of  the 
inequality is a direct consequence of  the Cauchy-Schwarz inequality. [] 

We are finally in a position to fully describe the mathematical properties of  the curve Xc + tr(r/) 
with our choice of  ft. We summarize these as: 

Theorem 5. With a(rl) given by Eq. (13) and fl defined by Eq. (14): 
(i) Distance from x¢ increases monotonically as we proceed along the curve, Xc + trOD, from 

xc ( t / =  1) to X N (I~ = 0) .  

(ii) The value of  the local quadratic model, rhc(xc + a(q)), decreases monotonically as we traverse 
the curve, x~ + a(~l), from x¢ (q = 1 ) to xN (q = 0). 
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Proof. 
(i) A direction, p, from xc + a(~/) increases distance from Xc iff pTa(r/) > 0. The tangent vector 

to the path xc + a(q) from xc to xs is parallel to p := -a'(~/), so that we need to establish that 
a'(~/)Ta(t/) < 0 for 0 < ~/ < 1. But, a ' (q )=2(~/ -  1)ss+(2~/-  1)fl~Tfc, so that a'(q)Ta(q)=(~l - 1).U(q) 
where u(r/) := r/2. [211Vfc] ]2fl 2 ÷ 4s~ f~ f l  + 2]]SN 112] -- q. [] ]~7fc ] 12fl2 ÷ 5sT~fcfl ÷ 41 ]SN 112] + [s~f~f l  + 
211sNII2]. We need to establish that u(r/) > 0 for 0 < r / <  1. Note that u ( 0 ) =  21IsNII 2 + >t 0 
by Lemma 2, and that u(1) = fl2llVf~l] 2 > 0. Thus, either both roots of  this quadratic lie in (0, 1) 
or neither one does. Furthermore, the product of  the roots [7] of  this quadratic exceeds 1, again by 
Lemma 2, so that both roots cannot lie in (0, 1) and hence neither root can either. Hence, u(r/) > 0 
for 0 < r / <  1. 

(ii) The directional derivative of  rhc(Xc + a(q)) is [xTf~ + Hca(q)] T • and must be 
shown to be positive for 0 < r /<  1. We will accomplish this by establishing that d(r/) := [VfcT+(r/-  
1 )2s~Hc +q(q - 1 )flVf~THc] • [2(q - 1 )sy +(2q - 1 )flXYf~] > 0 for 0 < q < 1, since it has the same sign 
as the directional derivative. Note that d(0) = 0, d(1 ) = flllVf~ll 2 > 0, d'(0) = -4flllVf~ll 2 - 6s~Vfc 
> 0 - - o n c e  again, by Lemma 2, and d ' ( 1 ) =  2fll[XTf~[I 2 > o. Thus, it will suffice to exclude either 
of  the other two roots of  the cubic, d0/), from the interval (0, 1). This is achieved by rewriting 
d(q)=q.Q(rl) with the quadratic Q(r / ) :=  Aq2+Bq+C and A :-- 2fl2Vf~VHcVfc-4fll I Vf~ 112--2sTX(7fc, 
B : =  -3fl2VfcTHcVfc ÷ 9ill IVf~l I 2 + 6s~Vfc, c := fl2V.fcTHcVfc - 4ill IVfcl 12 - 4sr~ Vf~. The product 
of  the roots [7] of  Q(r/) is C/A ~> 1 provided that r2 ~< _ 2 • s~Vfc/Vf~THcVf~ which is assured 
by Eq. (14). Thus, for our choice of r ,  the two roots of Q(~/) cannot both reside on (0, 1), so that 
neither can separately. Hence, we have that dUD is nonnegative on [0, 1] and is positive on (0, 1). 

[] 

Note that (i) precludes the quadratic trajectory, xc + a(q); q E [0, 1], from "overshooting" XN and 
"turning back on itself", so that there will be a unique point of  intersection of the path with the 
trust region boundary. Also, (ii) asserts that it is pointless to stop along the curve, xc + o-(r/), before 
reaching the trust region boundary since the local quadratic model, rhc, which we "trust" is still 
decreasing. 

Thus, it is well defined and reasonble to specify q+ as the smallest positive root of  the quartic 

q(r/) := [Io-(r/)]l 2 - 6~, (23) 

and to select as our next iterate (see Fig. 3) 

x+ := xc + o-(r/+). (24) 

Since the quartic, Eq. (23), has leading coefficient and constant term of opposite sign, it has at least 
two real roots, one positive and one negative [7, p. 105]. In fact, by Theorem 5 (i), q(r/) has a 
unique root in [0, 1] provided that C5c < I]SN]I. 

Letting A f  := f(x+) - f(Xc) and Afp := the(x+) - f(Xc), if A f  > 10 -4 • VfV(x+ - x~) then 
we reject x+ and reduce 3¢ by a quadratic backtrack strategy [1]. Otherwise, we check to see if the 
decrease in f was dramatic enough to justify an enlarged trust region with the present model. If not, 
then the model is updated with a ~c determined by a comparison of the actual decrease in f ,  A f ,  
with the predicted decrease, Afp. This portion of the algorithm is not new and further details on the 
model-trust region update are available [1]. The complete model-trust region algorithm is depicted 
in Fig. 4. 
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Fig. 4. Model-trust region algorithm. 

5. The Dennis-SelmaSel example 

Now, consider the example [1] 

f ( x , , x 2 )  := x 4 + x~ + x~, 

with 

xc = 1 ' 

This produces 

and 

,N-- 1 , 

(25) 

H ¢ = [  140102 (27) 

-0 .469]  (28) 
SSD= --0.156 " 

The new algorithm yields (see Fig. 3) fl = 0.1336, q+ = 0.444, a+----[-0.330,-0.375] T, while 
s+ = [-0.343, -0.365] v. Comparison to the standard "double dogleg" step of [-0.340, -0.669] T (see 
Fig. 2) indicates that the new algorithm provides a dramatic increase in accuracy at essentially no 
additional cost. 

1 (26) 6c = 5" 
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Table 1 
Summary of  numerical results 

Problem Starting point Scaled f(x) No. of  steps 

Rosenbrock Banana function (n = 2) 
Freudenstein-Roth function (n = 2) 

Powell badly scaled function (n = 2) 
Box 3D function (n = 3) 
Helical valley function (n = 3) 
Powell singular function (n = 4) 
P-N diode (n = 195) 

[--1.2, 1] T 9.86.10 -32 2 
[6, 5] T 7.32.10 -29 5 
[0.5, - 2 ]  7 6.91.10 -29 19 (11+8) 
[0, 1] 7 3.83.10 -27 12 
[0, 10, 20] T 4.48-10 -32 5 
[-- 1,0, 0] T 2.89.10 -28 13 
[3 , -1 ,0 ,  1] 7 2.50.10 -13 20 

Space-charge neutral 3.52.10 -25 7 

6. Numerical results 

With the dual aims of establishing the validity and the utility of our algorithm, Table 1 presents 
the results of a sequence of numerical examples. They run the gamut from low-dimensional systems 
with known solutions [5] to a cutting-edge problem in semiconductor device simulation (p-n diode) 
[4]. All simulations were performed in double precision using the Fortran77-3.0.1 compiler under the 
SunOS-5.5.1 operating system on a Sun Microsystems E3000 UltraEnterprise workstation. Complete 
details are available elsewhere [3]. 

7. Conclusion 

In the preceding sections, we have presented a flexible and powerful new model-trust region al- 
gorithm for unconstrained optimization and systems of nonlinear equations based upon quadratic 
interpolation. The mathematical properties of this algorithm have been described and full proofs 
have been provided. Comparison to the popular "double dogleg" strategy has been made. The new 
algorithm has been validated on a suite of widely used test problems from the literature [5] and its 
practical utility has been demonstrated on a challenging problem from semiconductor device simu- 
lation [4]. The full details pertaining to these test cases have appeared elsewhere [3]. In closing, we 
make the observation that methods based upon higher order interpolation might be contemplated. 
However, the concomitant increase in algorithmic complexity would demand numerical and/or ana- 
lytical justification. 
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