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It is known (E.L. Green (1997), O. Post (2003)) that for an arbi-
trary m ∈ N one can construct a periodic non-compact Riemannian
manifold M with at least m gaps in the spectrum of the corre-
sponding Laplace–Beltrami operator −�M . In this work we want
not only to produce a new type of periodic manifolds with spec-
tral gaps but also to control the edges of these gaps. The main
result of the paper is as follows: for arbitrary pairwise disjoint in-
tervals (α j, β j) ⊂ [0,∞), j = 1, . . . ,m (m ∈ N), for an arbitrarily
small δ > 0 and for an arbitrarily large L > 0 we construct a pe-
riodic non-compact Riemannian manifold M with at least m gaps
in the spectrum of the operator −�M , moreover the edges of the
first m gaps belong to δ-neighbourhoods of the edges of the inter-
vals (α j, β j), while the remaining gaps (if any) are located outside
the interval [0, L].

© 2011 Elsevier Inc. All rights reserved.

0. Introduction

In this paper we deal with non-compact periodic manifolds. The n-dimensional Riemannian mani-
fold M is called periodic if there is a discrete finitely generated abelian group Γ acting isometrically,
properly discontinuously and co-compactly on M . Roughly speaking M is glued from countably many
copies of some compact manifold M (period cell) and each γ ∈ Γ maps M to one of these copies.

Let M be an n-dimensional periodic Riemannian manifold. We denote by −�M the Laplace–
Beltrami operator on M . It is known (see e.g. [23]) that the spectrum σ(−�M) of the operator −�M

has band-gap structure, that is
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σ(−�M) =
∞⋃

k=1

Jk(M), (0.1)

where Jk(M) = [ak,bk] ⊂ [0,∞) are compact intervals called bands, ak,bk ↗
k→∞

∞, a1 = 0. In general

the bands may overlap. The open interval (α,β) is called a gap if (α,β) ∩ σ(−�M) = ∅ and α,β ∈
σ(−�M).

The existence of gaps in the spectrum is not guaranteed: for instance the spectrum of the operator
−�Rn = −∑n

j=1 ∂2/∂x2
j in Rn coincides with [0,∞). It is easy to see (cf. [6]) that in 1-dimensional

case any periodic Laplace–Beltrami operator has no gaps. However in the case n � 2 we have essen-
tially another situation. Namely, E.B. Davies and E.M. Harrell II [6] considered the manifold M = Rn

(n � 2) with a periodic conformally flat metric gij = aδi j , where a = a(x) is a periodic strictly positive
smooth function. The authors proved that a(x) can be chosen in such a way that at least one gap in
the spectrum of the operator −�M exists.

Further, E.L. Green [12] for any m ∈ N constructed a periodic conformally flat metric in R2 such
that the corresponding Laplace–Beltrami operator has at least m gaps in the spectrum.

Manifolds of another type were studied by O. Post in [24], where the author considered two differ-
ent constructions: first, he constructed a periodic manifold Mε (ε > 0 is a small parameter) starting
from countably many copies of a fixed compact manifold connected by small cylinders (the parameter
ε characterizes a size of the cylinders), in the second construction he started from a periodic mani-
fold which further is conformally deformed (the parameter ε characterizes sizes of domains where the
metric is deformed). For any m ∈ N the existence of m gaps is proved for ε small enough. These re-
sults were generalized by F. Lledo and O. Post [21] to the case of periodic manifolds with non-abelian
group Γ .

Also P. Exner and O. Post [7] proved the existence of gaps for some graph-like manifolds, i.e. the
manifolds which shrink with respect to an appropriate parameter to a graph.

We remark that a similar problem (i.e. the existence of gaps in the spectrum) was studied in [8,11,
14,30] for periodic divergence type elliptic operators in Rn , in [13] for periodic magnetic Schrödinger
operator, and in [9,10] for periodic Maxwell operator. In these works the gaps in the spectrum are
the consequence of a high contrast in the coefficients. We refer to the overview [15] where these and
other related questions are discussed in detail.

In the present work we want not only to construct a new type of periodic Riemannian manifolds
with gaps in the spectrum of the Laplace–Beltrami operator but also be able to control the edges of
these gaps. Namely the goal of the work is to solve the following problem: for an arbitrary finite
set of pairwise disjoint finite intervals on the positive semi-axis to construct a periodic Riemannian
manifolds M with at least m gaps in the spectrum of −�M (here m is the number of the preassigned
intervals), moreover the first m gaps have to be “close” to the preassigned intervals, and the remaining
gaps (if any) have to be “close” to infinity.

Let us formulate the main result of the paper.

Theorem 0.1 (Main theorem). Let (α j, β j) ⊂ [0,∞) ( j = 1, . . . ,m, m ∈ N) be arbitrary pairwise disjoint finite
intervals. Let δ > 0 be an arbitrarily small number, L > 0 be an arbitrarily large number. Let n ∈ N \ {1}.

Then there exists an n-dimensional periodic Riemannian manifold M, which can be constructed in the
explicit form, such that

σ(−�M) = [0,∞) \
(

m′⋃
j=1

(
αδ

j , β
δ
j

))
, m � m′ � ∞, (0.2)

where (αδ
j , β

δ
j ) ⊂ [0,∞) are pairwise disjoint finite intervals satisfying∣∣αδ

j − α j
∣∣+ ∣∣βδ

j − β j
∣∣< δ, j = 1, . . . ,m,(

αδ
j , β

δ
j

)⊂ (L,∞), j = m + 1, . . . ,m′. (0.3)
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Fig. 1. The manifold Mε (m = 2). The period cell Mε
i is tinted in more dark colour.

Remark 0.1. In 1987 Y. Colin de Verdière obtained the following remarkable result [4]: for arbitrary
numbers 0 = λ1 < λ2 < · · · < λm (m ∈ N) and n ∈ N \ {1} there exists an n-dimensional compact Rie-
mannian manifold M such that the first m eigenvalues of the corresponding Laplace–Beltrami operator
−�M are exactly {λ j}m

j=1. Our main theorem can be regarded as an analogue of this result for the
case of non-compact periodic Riemannian manifolds.

Remark 0.2. Obviously it is sufficient to prove Theorem 0.1 only for such intervals (α j, β j) that are
nonvoid and their closures are pairwise disjoint and belong to (0,∞). For definiteness we renumber
the intervals in the increasing order, i.e.

0 < α1, α j < β j < α j+1, j = 1,m − 1, αm < βm < ∞. (0.4)

Proving Theorem 0.1 we suppose that the intervals (α j, β j) satisfy (0.4).

The idea how to construct the manifold M comes from one of the directions in the theory of
homogenization of PDE’s (for classical problems of the homogenization theory we refer e.g. to the
monographs [22,27,29]). This direction deals with problems of the following type. Let Mε be a Rie-
mannian manifold depending on a small parameter ε: it consists of one or several copies of some
fixed manifold (we call it “basic manifold”) with many attached small surfaces whose number tends
to infinity as ε → 0. On Mε some PDE (heat equation, wave equation, Maxwell equations etc.) is con-
sidered. The problem is to describe the behaviour of its solutions as ε → 0. More exactly the problem
is to find the equation on the basic manifold (so-called “homogenized equation”) whose solutions
approximate the solutions of the pre-limit equation as ε → 0.

Firstly the problem of this type was studied by L. Boutet de Monvel and E.Ya. Khruslov in [2] where
the behaviour of the diffusion equation was investigated. The asymptotic behaviour of the spectrum
of the Laplace–Beltrami operator was studied in [5,17–20], in these works only compact manifolds
were considered.

Let us describe briefly the construction of the manifold M solving our main problem. We denote
by Ωε (ε is a small parameter) a non-compact domain which is obtained by removing from Rn a
countable set of pairwise disjoint balls Dε

i j (i ∈ Zn , j = 1, . . . ,m). It is supposed that Dε
i j = Dε

0 j + εi
and Dε

0 j ⊂ �ε
0 = {x ∈ Rn: 0 � xα � ε, ∀α}. We denote by dε

j the radius of the ball Dε
i j . Let Bε

i j (i ∈ Zn ,
j = 1, . . . ,m) be an n-dimensional surface (we call it “bubble”) obtained by removing a small segment
from the n-dimensional sphere of the radius bε

j . Identifying the points of ∂ Dε
i j and ∂ Bε

i j we glue the
bubbles Bε

i j (i ∈ Zn , j = 1, . . . ,m) to the domain Ωε and obtain the n-dimensional manifold Mε:

Mε = Ωε ∪
( ⋃

i∈Zn

m⋃
j=1

Bε
i j

)
.

The manifold Mε (for m = 2) is presented on Fig. 1.
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We equip Mε with the Riemannian metric gε which coincides with the flat Euclidean metric in
Ωε and coincides with the spherical metric on the bubbles Bε

i j .
The manifold Mε is periodic, the set

Mε
i = F ε

i ∪
(

m⋃
j=1

Bε
i j

)
, where F ε

i = �ε
0 \
(

m⋃
j=1

Dε
0 j

)
+ εi

is a period cell (for any i ∈ Zn).
We set dε

j = d jε
n

n−2 if n > 2 and dε
j = exp(− 1

d jε2 ) if n = 2, bε
j = b jε. Here d j , b j ( j = 1, . . . ,m) are

some positive constants which will be chosen later.
We prove (see Theorem 2.1) that the spectrum σ(−�Mε ) of the operator −�Mε has at least m gaps

when ε is small enough (i.e. when ε is less than some ε0). We denote by (σ ε
j ,με

j ) ( j = 1, . . . ,m) the
first m gaps, by J ε we denote the union of the remaining gaps (if any):

σ(−�Mε ) = [0,∞) \
[(

m⋃
j=1

(
σε

j ,με
j

))∪ J ε

]
. (0.5)

Then

∀ j = 1, . . . ,m: lim
ε→0

σε
j = σ j, lim

ε→0
με

j = μ j, (0.6)

lim
ε→0

inf J ε = ∞, (0.7)

where the numbers σ j , μ j depend in a special way on d j , b j and satisfy the conditions

0 < σ1, σ j < μ j < σ j+1, j = 1,m − 1, σm < μm < ∞.

The set [0,∞) \ (
⋃m

j=1(σ j,μ j)) coincides with the spectrum of some operator A acting in the Hilbert
space H = L2(R

n)
⊕

j=1,m L2(R
n,ρ j dx), where ρ j ( j = 1, . . . ,m) are some positive constant weights,

by dx we denote the density of the Lebesgue measure.

Remark 0.3. In the case when Ωε is obtained by removing a system of balls from some compact
domain Ω and m = 1 (i.e. the removed balls are equivalent, the attached bubbles are also equivalent)
the behaviour of the spectrum of the Laplace–Beltrami operator with Dirichlet boundary conditions
on ∂Mε = ∂Ω was studied in [17], also it was studied in [19] for another size of the removed balls,
namely ε

n
n−2 � dε

j � ε if n > 2 and exp(− 1
aε2 ) � dε

j � ε (∀a > 0) if n = 2. The same manifolds
were also considered in [3] where the behaviour of attractors for semi-linear parabolic equations was
investigated.

It was proved in [17] that the spectrum of the operator −�D
Mε (here D means the Dirichlet bound-

ary conditions) converges in the Hausdorff sense (see the definition at the beginning of Section 3) to
the spectrum of some self-adjoint operator A D acting in the space L2(Ω) ⊕ L2(Ω,ρ dx), where ρ > 0
is some constant weight. The spectrum σ(A) of the operator A D has the form

σ
(

A D)= {σ } ∪ {λD,−
k : k = 1,2,3, . . .

}∪ {λD,+
k : k = 1,2,3, . . .

}
,

where σ > 0 is a point of the essential spectrum, the nondecreasing sequences λ
D,−
k , λ

D,+
k belong to

the discrete spectrum, moreover limk→∞ λ
D,−
k = σ , limk→∞ λ

D,+
k = ∞ and λ

D,+
1 > μ, where μ = σ +

σρ . Thus, (σ ,μ)∩σ(A D) = ∅, and, therefore, for an arbitrarily small δ > 0 the interval (σ + δ,μ− δ)
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does not intersect with the spectrum of the operator −�D
Mε when ε = ε(δ) is small enough. A similar

result is valid for the Neumann Laplacian −�N
Mε : the spectrum of the corresponding limit operator

AN consists of the point σ and two nondecreasing sequences λ
N,−
k , λ

N,+
k such that limk→∞ λ

N,−
k = σ ,

limk→∞ λ
N,+
k = ∞. Moreover λ

N,+
1 = μ. It is important that σ , ρ are independent of the shape of the

domain Ω and the type of the boundary conditions. These facts suggest that in the case Ω = Rn the
spectrum σ(−�Mε ) has a gap when ε is small enough, and this gap is close to the interval (σ ,μ).

The proof of Theorem 2.1 consists of three steps. Firstly we prove that the set [0,∞) \
(
⋃m

j=1(σ j,μ j)) coincides with the spectrum σ(A) of the operator A. Then we make the main step:
we show that for an arbitrary L /∈⋃m

j=1{μ j} the set σ(−�Mε ) ∩ [0, L] converges in the Hausdorff
sense to the set σ(A) ∩ [0, L] as ε → 0. Finally, we prove that within an arbitrary finite interval [0, L]
the spectrum σ(−�Mε ) has at most m gaps when ε is small enough. Together with the Hausdorff
convergence this fact will imply the properties (0.5)–(0.7) (see Proposition 3.1 at the beginning of
Section 3).

We note that the metric gε is continuous but piecewise-smooth. However one can approximate it
by a smooth metric gερ that differs from gε only in a small ρ-neighbourhoods of ∂ Bε

i j . Moreover
when ρ = ρ(ε) is sufficiently small then the spectra of the operator −�(Mε,gερ ) and the opera-
tor −�Mε have the same limit as ε → 0 (here −�(Mε,gερ ) is the Laplace–Beltrami operator on Mε

equipped with the metric gερ ). For precise statement see Remark 4.2 at the end of the paper.
In order to omit cumbersome calculations further we will work with the metric gε .
Now, let δ > 0 be arbitrarily small number, L > 0 be arbitrarily large number. It follows from

Theorem 2.1 that there is such small ε = ε(δ, L) that the structure of the spectrum σ(−�Mε ) is as
follows: σ(−�Mε ) has m gaps whose edges are located in δ-neighbourhoods of the edges of some
fixed intervals (σ j,μ j) ( j = 1, . . . ,m) while the remaining gaps (if any) belong to (L,∞). So we set
M = Mε , ε = ε(δ, L). In order to continue the proof of Theorem 0.1 we have to prove that for arbitrary
preassigned intervals (α j , β j) satisfying (0.4) it is possible to choose such d j , b j that

σ j = α j, μ j = β j, j = 1,m. (0.8)

We will prove this fact and present the exact formulae for the constants d j , b j (see Theorem 4.1).
The paper is organized as follows. In Section 1 we recall some definitions and facts from the

spectral theory for the Laplace–Beltrami operator. In Section 2 we construct the manifold Mε and
formulate Theorem 2.1 describing the behaviour of σ(−�Mε ) as ε → 0. Theorem 2.1 is proved in
Section 3. And, finally, in Section 4 we present the formulae for the parameter d j , b j .

1. Theoretical background

In this section we present the definitions and some well-known results related to the Laplace–
Beltrami operator and periodic manifolds. For more details on the Laplace–Beltrami operator see
e.g. [28], for more details on periodic manifolds we refer to [23].

Let M be an n-dimensional Riemannian manifold with the metric g . By gαβ we denote the com-
ponents of g in local coordinates (x1, . . . , xn).

As usual we denote by L2(M) the Hilbert space of square integrable (with respect to Riemannian
measure) functions on M . The scalar product and norm are defined by

(u, v)L2(M) =
∫
M

uv̄ dV , ‖u‖L2(M) =√(u, u)L2(M),

where dV =√det g dx1 . . .dxn is the density of the Riemannian measure on M .
By C∞(M) (resp. C∞

0 (M)) we denote the space of smooth (resp. smooth and compactly supported)
functions on M .
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If the manifold M (possibly non-compact) has an empty boundary then we define the Laplace–
Beltrami operator −�M on M in the following way. By η̄M [u, v] we denote the closure of the sesquilin-
ear form ηM [u, v] defined by the formula:

ηM [u, v] = (∇u,∇v)L2(M) ≡
∫
M

(∇u,∇ v̄)dV (1.1)

with dom(ηM) = C∞
0 (M). Here (∇u,∇ v̄) is the scalar product of the vectors ∇u and ∇ v̄ with respect

to the metric g: in local coordinates (∇u,∇ v̄) = ∑n
α,β=1 gαβ ∂u

∂xα

∂ v̄
∂xβ

, where gαβ are the compo-

nents of the tensor inverse to gαβ . The form η̄ is densely defined, closed and positive (by the way
dom(η̄M) = H1(M) ≡ {u ∈ L2(M): ∇u ∈ L2(M)}). Then there exists the unique self-adjoint and positive
operator −�M associated with the form η̄M [u, v], i.e.

(−�M u, v)L2(M) = η̄M [u, v] for all u ∈ dom(�M), v ∈ dom(η̄M).

For a smooth function u the Laplace–Beltrami operator is given in local coordinates by the formula

−�M u = −
n∑

α,β=1

1√
det g

∂

∂xα

(
gαβ
√

det g
∂u

∂xβ

)
. (1.2)

If M is a compact manifold with a piecewise smooth boundary ∂M we define the Laplace–Beltrami
operator with Neumann (resp. Dirichlet) boundary conditions −�N

M (resp. −�D
M ) as the operator associ-

ated with the sesquilinear form η̄N
M (resp. η̄D

M ) which is the closure of the form ηN
M (resp. ηD

M ) defined

by formula (1.1) and by the definitional domain dom(ηN
M) = C∞(M) (resp. dom(ηD

M) = C∞
0 (M)).

The spectra of the operators −�N
M and −�D

M are purely discrete. We denote by {λN
k (M)}k∈N (resp.

{λD
k (M)}k∈N) the sequence of eigenvalues of −�N

M (resp. −�D
M ) written in the increasing order and

repeated according to their multiplicity.
Now we present the concept of periodic Riemannian manifolds.
We say that the group Γ acts on the manifold M if there is a map Γ × M → M (denoted (γ , x) �→

γ · x) such that ∀γ1, γ2 ∈ Γ , ∀x ∈ M one has (γ1 ∗γ2) · x = γ1 · (γ2 · x), where ∗ is the group operation,
and ∀x ∈ M one has id · x = x, where id is the identity element of Γ .

The Riemannian manifold M is called periodic (or more precisely Γ -periodic) if a discrete finitely
generated abelian group Γ acts on M , moreover

• Γ acts isometrically on M , i.e. ∀γ ∈ Γ : γ · is the isometrical map,
• Γ acts properly discontinuously on M , i.e. for each x ∈ M there exists a neighbourhood Ux such

that the sets γ · Ux (γ ∈ Γ ) are pairwise disjoint,
• Γ acts co-compactly on M , i.e. the quotient space M/Γ is compact.

A compact subset M ⊂ M is called a period sell if
⋃

γ ∈Γ γ · M = M and M is a closure of an open
connected domain D such that ∀γ ∈ Γ , γ �= id: D ∩ γ · D = ∅.

For convenience throughout our work we will use the same notation γ for the element γ ∈ Γ and
the corresponding map γ · : M → M .

By Γ̂ we denote the dual group of Γ , i.e. the group of homomorphism from Γ into S1. We remark
that if Γ is isomorphic to Zn (as for the manifold Mε , which will be considered in the next section)
then Γ̂ is isomorphic to the n-dimensional torus Tn = {θ = (θ1, . . . , θr) ∈ Cn: ∀α, |θα | = 1}.

Let θ ∈ Γ̂ . We define the Laplace–Beltrami operator with θ -periodic boundary conditions −�θ
M in the

following way. By C∞
θ (M) we denote the space of functions u ∈ C∞(M) satisfying

u(γ x) = θ(γ )u(x)
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for each x ∈ ∂M and for each γ ∈ Γ such that γ x ∈ ∂M. Then we define the operator −�θ
M as the

operator associated with the form η̄θ
M which is the closure of the form ηθ

M defined by formula (1.1)
(with M instead of M) and by the definitional domain dom(ηθ

M) = C∞
θ (M).

The operator −�θ
M has purely discrete spectrum. We denote by {λθ

k (M)}k∈N the sequence of eigen-
values of −�θ

M written in the increasing order and repeated according to their multiplicity.

For any θ ∈ Γ̂ the following inequality holds:

λN
k (M) � λθ

k (M) � λD
k (M). (1.3)

It turns out that analysis of the spectrum σ(−�M) of the operator −�M on the periodic manifold
M can be reduced to analysis of the spectra σ(−�θ

M) of the operators σ(−�θ
M), θ ∈ Γ̂ . Namely one

has the following fundamental result.

Theorem. Let M be Γ -periodic manifold with a period cell M. Then

σ(−�M) =
⋃
k∈N

Jk(M), (1.4)

where Jk(M) = {λθ
k (M): θ ∈ Γ̂ }, k ∈ N are compact intervals.

2. Construction of the manifold

In this section we construct the manifold Mε and describe the behaviour of the spectrum
σ(−�Mε ) of the Laplace–Beltrami operator −�Mε as ε → 0.

Let {Dε
i j: i ∈ Zn, j = 1, . . . ,m} be the system of pairwise disjoint balls in Rn (n � 2) depending on

small parameter ε > 0. We suppose that:

(1) the balls Dε
0 j , j = 1, . . . ,m belong to the cube �ε

0 = {x ∈ Rn: 0 � xα � ε, ∀α};
(2) ∀ j = 1, . . . ,m: κε � dist(Dε

0 j, ∂�ε
0 ∪ (

⋃
l �= j Dε

l )), where the constant κ > 0 is independent of ε;
(3) ∀i ∈ Zn , ∀ j = 1, . . . ,m: Dε

i j = Dε
0 j + εi.

By xε
i j we denote the centre of Dε

i j , by dε
j we denote the radius of Dε

i j (the third condition above
implies that the radius of Dε

i j depends only on the index j).
We denote by Bε

i j the truncated n-dimensional sphere (we call it “bubble”) of the radius bε
j :

Bε
i j = {(θ1, θ2, . . . , θn): θ1 ∈ [0,2π), θk ∈ [0,π), k = 2, . . . ,n − 1, θn ∈ [Θε

j ,π
]}

.

Here Θε
j = arcsin(

dε
j

bε
j
), where bε

j ( j = 1, . . . ,m) are positive numbers satisfying bε
j > dε

j .

Let us introduce in Ωε the spherical coordinates (θ1, . . . , θn, r) with the origin at xε
i j . Here r is the

distance to xε
i j . Identifying the points (θ1, . . . , θn−1,dε

j ) ∈ ∂ Dε
i j and (θ1, . . . , θn−1,Θ

ε
j ) ∈ ∂ Bε

i j we glue
the bubbles Bε

i j to the perforated domain Ωε and obtain an n-dimensional manifold Mε:

Mε = Ωε ∪
( ⋃

i∈Rn

m⋃
j=1

Bε
i j

)
. (2.1)

The manifold Mε is presented on Fig. 1. By x̃ we denote the points of Mε . If the point x̃ belongs to
Ωε sometimes we will write x instead of x̃ having in mind a corresponding point in Rn .
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Clearly Mε can be covered by a system of charts and suitable local coordinates (x1, . . . , xn) �→
x̃ ∈ Mε can be introduced. In particular in a small neighbourhood of ∂ Bε

i j we introduce them in the
following way (below by U ε

i j we denote this neighbourhood):

xk = θk, k = 1, . . . ,n − 1,

xn =
{

r − dε
j , x̃ = (θ1, . . . , θn−1, r) ∈ Ωε ∩ U ε

i j,

−bε
j (θn − Θε

j ), x̃ = (θ1, . . . , θn−1, θn) ∈ Bε
i j ∩ U ε

i j
(2.2)

(that is ∂ Bε
i j = {(x1, . . . , xn): xn = 0}).

We equip Mε with the Riemannian metric gε that coincides with the flat Euclidean metric on
Ωε and coincides with the spherical metric on the bubbles Bε

i j . This last means that in the spherical
coordinates (θ1, . . . , θn) the components gε

αβ of the metric gε have the form

gε
αβ = δαβ

(
bε

j

)2 n∏
k=α+1

sin2 θk, α,β = 1,n

(for α = n we set
∏n

k=α+1 sin2 θk := 1). Here δαβ is the Kronecker delta.
The metric gε is continuous and piecewise smooth: in the coordinates (x1, . . . , xn), which are in-

troduced above in the neighbourhood of ∂ Bε
i j by formulae (2.2), the components gε

αβ = gε
αβ(x1, . . . , xn)

of the metric gε have the form:

gε
αβ =

{
gε+αβ

, xn � 0,

gε−αβ
, xn < 0,

α,β = 1,n − 1, gnβ = δnβ (2.3)

where

gε+αβ
= δαβ

(
xn + dε

j

)2 n−1∏
k=α+1

sin2 θk,

gε−αβ
= δαβ

(
bε

j

)2
sin2

( |xn|
bε

j

+ Θε
j

) n−1∏
k=α+1

sin2 θk. (2.4)

It is clear that as xn = 0 (i.e. on ∂ Bε
i j) the coefficients gε

αβ lose smoothness.
Remark that gε can be approximated by a smooth metric gερ that differs from gε only in a small

ρ-neighbourhood of ∂ Bε
i j , moreover when ρ = ρ(ε) is sufficiently small then the spectra σ(−�Mε )

and σ(−�(Mε,gερ )) have the same limit as ε → 0 (for more precise statement see Remark 4.2). How-
ever in order to omit cumbersome calculations further we will work with the metric gε .

Remark 2.1. It is easy to see that the manifold Mε can be immersed into the space Rn+1 via the
following map F̂ ε : Mε → M̂ε ⊂ Rn+1 (below x ∈ Rn , z ∈ R, (x, z) ∈ Rn+1):

– if x̃ = x ∈ Ωε then F̂ ε(x̃) = (x,0),
– if x̃ = (θ1, . . . , θn) ∈ Bε

i j then F̂ ε(x̃) = (x1, . . . , xn, z), where

x1 = (xε
i j

)
1 + bε

j

n∏
l=1

sin θl, xk = (xε
i j

)
k + bε

j cos θk−1

n∏
l=k

sin θl (k = 2,n),

z = bε
j

(
cosΘε

j − cos θn
)
.
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Note: one should not confuse (x1, . . . , xn) with the local coordinates introduced above in a neighbour-
hood of ∂ Bε

i j .

Thus, F̂ ε maps Bε
i j onto the surface B̂ε

i j which is obtained by removing from the sphere B̂ ε
i j =

{(x, z) ∈ Rn+1: |x − xε
i j|2 + (z − bε

j cosΘε
j )

2 = (bε
j )

2} the segment {(x, z) ∈ B̂ ε
i j : z < 0}.

The map F̂ ε is a local homeomorphism, i.e. for any x̃ ∈ Mε there is a neighbourhood U (x̃) ⊂ Mε

such that F̂ ε|U (x̃) is a homeomorphism (and even diffeomorphism if x̃ /∈⋃i, j ∂ Bε
i j). If the surfaces B̂ε

i j

(i ∈ Zn , j = 1, . . . ,m) are pairwise disjoint (e.g. if bε
j < dε

j +κε/2) then F̂ ε is a global homeomorphism.

Furthermore F̂ ε is an isometric map: if ĝε is a metric on M̂ε which is generated by the Euclidean
metric in Rn+1 then gε coincides with the pull-back ( F̂ ε)∗ ĝε .

Let the group Γ ε ∼= Zn act on Mε by the following rule (below by γ ε
k , k ∈ Zn we denote the

elements of Γ ε):

– if x̃ = x ∈ Ωε then γ ε
k maps x̃ into the point γkx̃ = x + kε ∈ Ωε ,

– if x̃ = (θ1, . . . , θn) ∈ Bε
i j then γ ε

k maps x̃ into the point γ ε
k x̃ ∈ Bi+k, j with the same angle coordi-

nates (θ1, . . . , θn).

Obviously Mε is Γ ε-periodic Riemannian manifold. For an arbitrary i ∈ Zn the set

Mε
i = F ε

i ∪
(

m⋃
j=1

Bε
i j

)
, where F ε

i =
{

x̃ ∈ Ωε: x − εi ∈ �ε
0 \
(

m⋃
j=1

Dε
0 j

)}
(2.5)

is a period cell.
We assume that the radii of the holes and bubbles are the following:

dε
j =
{

d jε
n

n−2 , n > 2,

exp(− 1
d jε2 ), n = 2,

(2.6)

bε
j = b jε (2.7)

where d j , b j ( j = 1, . . . ,m) are some positive constants (we choose them later in Section 4).
We will use the following notations:

Rε
i j =

{
x̃ ∈ Ωε: dε

j �
∣∣x − xε

i j

∣∣< dε
j + κε

2

}
,

Gε
i j = Rε

i j ∪ Bε
i j,

Sε
i j =

{
x̃ ∈ Ωε:

∣∣x − xε
i j

∣∣= dε
j + κε

2

}
≡ ∂Gε

i j,

ωn is the volume of n-dimensional unit sphere.

According to the notations introduced above in Section 1 we denote by {λD
k (Gε

i j)}k∈N the sequence

of the eigenvalues of the operator −�D
Gε

i j
which is the Laplace–Beltrami operator in Gε

i j with Dirichlet

boundary conditions on Sε
i j . It is clear that {λD

k (Gε
i j)}k∈N depends only on the index j.

One can prove (see Lemma 3.2 below) that

∀ j = 1, . . . ,m: lim λ1
(
Gε

i j

)= σ j

ε→0
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where

σ j =

⎧⎪⎨⎪⎩
d j

4b2
j
, n = 2,

n−2
2 · dn−2

j ωn−1

bn
j ωn

, n > 2.

(2.8)

Note that in spite of the fact that the diameter of Gε
i j converges to zero as ε → 0, λ1(Gε

i j) does not
blow up as ε → 0. This is due to a weak connection between Bε

i j and Rε
i j .

We assume that the coefficients d j and b j are such that σi �= σ j if i �= j. For definiteness we
suppose that σ j < σ j+1, j = 1, . . . ,n − 1.

We introduce the Hilbert space

H = L2
(
Rn) ⊕

j=1,m

L2
(
Rn,ρ j dx

)
where by dx we denote the density of the Lebesgue measure, the constant weights ρ j , j = 1, . . . ,m
are defined by the formula

ρ j = (b j)
nωn. (2.9)

Since limε→0(dε
j /bε

j ) = 0, then ρ j = limε→0 ε−n|Bε
i j| (here by | · | we denote the Riemannian volume).

And, finally, let us consider the following equation (with unknown λ ∈ R):

F (λ) ≡ 1 +
m∑

j=1

σ jρ j

σ j − λ
= 0. (2.10)

It is easy to obtain (see the proof of Theorem 2.1) that this equation has exactly m roots μ j ( j =
1, . . . ,m), moreover one can renumber them in such a way that

σ j < μ j < σ j+1, j = 1,m − 1, σm < μm < ∞.

By the way if m = 1 then μ1 = σ1 + σ1ρ1 (cf. Remark 0.3).
Now we are able to formulate the theorem describing the behaviour of σ(−�Mε ).

Theorem 2.1. The spectrum σ(−�Mε ) of the operator −�Mε has the following structure when ε is small
enough (i.e. when ε < ε0):

σ(−�Mε ) = [0,∞) \
[(

m⋃
j=1

(
σε

j ,με
j

))∪ J ε

]
. (2.11)

Here J ε is a union of some open finite intervals (possibly J ε = ∅) and

0 < σε
1 , σ ε

j < με
j < σε

j+1, j = 1,m − 1, σ ε
m < με

m < inf J ε.

Moreover

∀ j = 1, . . . ,m: lim
ε→0

σε
j = σ j, lim

ε→0
με

j = μ j, (2.12)

lim inf J ε = ∞. (2.13)

ε→0
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The set [0,∞) \ (
⋃m

j=1(σ j,μ j)) coincides with the spectrum σ(A) of the self-adjoint operator A which
acts in H and is defined by the formulae

AU =

⎛⎜⎜⎜⎝
−�Rn u +∑m

j=1 σ jρ j(u − u j)

σ1(u1 − u)

σ2(u2 − u)

· · ·
σm(um − u)

⎞⎟⎟⎟⎠ , U =

⎛⎜⎜⎜⎝
u
u1
u2
· · ·
um

⎞⎟⎟⎟⎠ ∈ dom(A), (2.14)

dom(A) = dom(�Rn )
⊕

j=1,m

L2
(
Rn,ρ j dx

)
. (2.15)

We prove this theorem in the next section. In the last section we present the formulae for d j , b j
which will ensure the fulfilment of the equalities (0.8).

3. Proof of Theorem 2.1

Before we prove the result in full detail we will sketch the main ideas of the proof.
At first (Section 3.1) we prove the equality

σ(A) = [0,∞) \
(

m⋃
j=1

(σ j,μ j)

)
. (3.1)

In the main part of the proof (Sections 3.2–3.3) we show that

for an arbitrary L > 0, L /∈⋃m
j=1{μ j} the set σ(−�Mε )∩ [0, L] converges in the Hausdorff sense to the set

σ(A) ∩ [0, L] as ε → 0.

Let us recall the definition of Hausdorff convergence.

Definition 3.1. The set Bε ⊂ R converges in the Hausdorff sense to the set B ⊂ R as ε → 0 if the
following conditions (A) and (B) hold:

if λε ∈ Bε and lim
ε→0

λε = λ then λ ∈ B, (A)

for any λ ∈ B there exists λε ∈ Bε such that lim
ε→0

λε = λ. (B)

Property (A) is verified in Section 3.2, property (B) is verified in Section 3.3.
In the last part of the proof (Section 3.4) we show that within an arbitrary finite interval [0, L]

the spectrum σ(−�Mε ) has at most m gaps when ε is small enough (i.e. when ε < ε0). This fact and
the Hausdorff convergence of σ(−�Mε ) ∩ [0, L] to σ(A) ∩ [0, L] = [0, L] \ (

⋃m
j=1(σ j,μ j)) imply the

properties (2.11)–(2.13). Indeed one can easily prove the following simple proposition.

Proposition 3.1. Let Bε = [0, L] \ (
⋃mε

j=1(α
ε
j , β

ε
j )), B = [0, L] \ (

⋃m
j=1(α j, β j)), where L < ∞ and

0 � αε
1 , αε

j < βε
j � αε

j+1, j = 1,mε − 1, αε
mε � L,

0 < α1, α j < β j < α j+1, j = 1,m − 1, αm < L,

mε � m.

Suppose that the set Bε converges to the set B in the Hausdorff sense as ε → 0.
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Then mε = m when ε becomes small (i.e. when ε is less than some ε0) and

∀ j = 1, . . . ,m: lim
ε→0

αε
j = α j, lim

ε→0
βε

j = β j .

3.1. Structure of σ(A)

Let λ ∈ C \⋃m
j=1{σ j}. Let

F =
⎛⎜⎝

f
f1
· · ·
fm

⎞⎟⎠ ∈ im(A − λI),

i.e. there is

U =
⎛⎜⎝

u
u1
· · ·
um

⎞⎟⎠ ∈ dom(A)

satisfying AU − λU = F . Then u j = σ j u+ f j
σ j−λ

and

−�Rn u − λF (λ)u = f +
m∑

j=1

σ jρ j f j

σi − λ
(3.2)

where F (λ) is defined by (2.10). Equality (3.2) implies that

λ ∈ σ(A) \
m⋃

j=1

{σ j} ⇐⇒ λF (λ) ∈ σ(−�Rn ) = [0,∞). (3.3)

At first we study the function λF (λ) on the real line. It is easy to see that λF (λ) is a strictly in-
creasing function on the intervals (−∞, σ1), (σm,∞), (σ j, σ j+1), j = 1, . . . ,m − 1, limλ→±∞ λF (λ) =
±∞, limλ→σ j±0 λF (λ) = ∓∞, furthermore there are the points μ j , j = 1, . . . ,m, such that

F (μ j) = 0, j = 1, . . . ,m − 1,

σ j < μ j < σ j+1, j = 1, . . . ,m, σm < μm < ∞,{
λ ∈ R \

m⋃
j=1

{σ j}: λF (λ) � 0

}
= [0,σ1) ∪

(
m−1⋃
j=1

[μ j,σ j+1)

)
∪ [μm,∞).

Let us consider the equation λF (λ) = a, where a ∈ [0,∞). One the one hand it is equivalent to
the equation (

∏m
j=1(σ j − λ))−1 Pm+1(λ) = 0, where Pm+1 is a polynomial of the degree m + 1, and,

therefore, in C this equation has at most m + 1 roots. On the other hand it is easy to see that on
[0,∞) the equation λF (λ) = a has m + 1 roots (if a = 0 then these roots are 0,μ1, . . . ,μm). Hence
we obtain that the set {λ ∈ C: λF (λ) � 0} belongs to [0,∞).

The graph of the function λF (λ), λ ∈ R is presented on Fig. 2.
Thus, we conclude that λ ∈ σ(A) \⋃m

j=1{σ j} iff λ ∈ [0, σ1) ∪ (
⋃m−1

j=1 [μ j, σ j+1)) ∪ [μm,∞). Since
the spectrum σ(A) is a closed set, then the points σ j ( j = 1, . . . ,m) also belong to σ(A). Equality
(3.1) is proved.
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Fig. 2. The graph of the function λF (λ) (for m = 3). The bold intervals are the components of σ(A).

3.2. Property (A) of Hausdorff convergence

We present the proof for the case n � 3 only. For the case n = 2 the proof is repeated word-by-
word with small modifications in some estimates.

Let λε ∈ σ(−�Mε ) ∩ [0, L] and limε→0 λε = λ. Obviously λ ∈ [0, L], thus, we have to prove that λ

belongs to σ(A). If λ ∈⋃m
j=1{σ j} then this statement follows from (3.1). Therefore, we can focus on

the case λ /∈⋃m
j=1{σ j}.

Let us consider the sequence εN ⊂ ε, where εN = 1
N , N = 1,2,3, . . . . For convenience we preserve

the same notation ε having in mind the sequence εN .
We introduce the following cubes in Rn:

� = {x ∈ Rn: 0 � xα � 1, ∀α
}
,

�ε
i = {x ∈ Rn: εiα � xα � ε(iα + 1), ∀α

}
, i = (i1, . . . , in) ∈ Zn.

Since ε−1 ∈ N, then � =⋃i∈Iε �ε
i , where

Iε = {i ∈ Zn: 0 � iα �
(
ε−1 − 1

)
, ∀α

}
.

Also we introduce the following set in Mε:

Mε =
⋃

i∈Iε

Mε
i

where Mε
i is defined by formulae (2.5).

In Section 2 we concluded that Mε is Γ ε-periodic manifold, the set Mε
i is a corresponding periodic

cell. On the other hand since ε−1 ∈ N, then Mε is also Γ -periodic manifold on which the group
Γ ∼= Zn acts by the following rule (below by γk , k ∈ Zn we denote the elements of Γ ):

– if x̃ = x ∈ Ωε then γk maps x̃ into the point γkx̃ = x + k ∈ Ωε ,
– if x̃ = (θ1, . . . , θn) ∈ Bε

i j then γk maps x̃ into the point γkx̃ ∈ Bi+kε−1, j with the same angle coor-
dinates (θ1, . . . , θn).

The set Mε is a period cell. The boundary of Mε is independent of ε: ∂Mε = {x̃ ∈ Ωε: x ∈ ∂�}.
Roughly speaking if ε−1 ∈ N then Mε is not only “ε-periodic” manifold but also “1-periodic” man-

ifold. To prove property (A) of the Hausdorff convergence it is more convenient to look at Mε as
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Γ -periodic manifold (and to work with period cell Mε) since in this case we are able to utilize some
ideas and methods developed in [2,3,17,19,20].

By Mα (α = 1, . . . ,2n) we denote the components of ∂Mε:

Mα = {x̃ ∈ Ωε: xα = 0 and 0 � xβ � 1, ∀β �= α
}

if α = 1, . . . ,n,

Mα = {x̃ ∈ Ωε: xα−n = 1 and 0 � xβ � 1, ∀β �= α − n
}

if α = n + 1, . . . ,2n.

The faces Mα and Mα+n (α = 1, . . . ,n) are parallel to each other and

γeα Mα = Mα+n, α = 1, . . . ,n, where eα = (0,0, . . . ,1, . . . ,0).
↑

α-th place

(3.4)

Also we denote by Mα the corresponding faces of ∂�.
Since λε ∈ σ(−�Mε ), then there exists θε ∈ Γ̂ such that λε ∈ σ(−�θε

Mε ). Since Γ is isomorphic

to Zn , then the dual group Γ̂ is isomorphic to Tn = {θ = (θ1, . . . , θr) ∈ Cr: ∀α, |θα | = 1}. For conve-
nience hereafter by θε we will understand a corresponding element (θε

1 , . . . , θε
n ) ∈ Tn .

We extract a subsequence (still denoted by ε) such that

θε →
ε→0

θ = (θ1, . . . , θn) ∈ Tn.

Let uε ∈ dom(�θε

Mε ) be the eigenfunction corresponding to λε , i.e. −�θε

Mε uε = λεuε , uε �= 0. We nor-
malize uε by the condition ‖uε‖L2(Mε) = 1, then ‖∇uε‖2

L2(Mε) = λε .
In order to describe the behaviour of uε as ε → 0 we need some special operators. From now on

by C we denote a generic constant independent of ε.
We denote

Ωε
� =

{
x̃ ∈ Ωε: x ∈ � \

( ⋃
i∈Iε

m⋃
j=1

Dε
i j

)}

and introduce an extension operator Πε : H1(Mε) → H1(�) such that for each u ∈ H1(Mε):

Πεu(x) = u(x̃) for x̃ ∈ Ωε
�, (3.5)∥∥Πεu

∥∥
H1(�)

� C‖u‖H1(Ωε
�). (3.6)

It is known (see e.g. [22, Chapter 4]) that such an operator exists.
By 〈u〉B we denote the average value of the function u over the domain B ⊂ Mε (|B| �= 0), i.e.

〈u〉B = 1
|B|
∫

B u dV ε , where dV ε is the density of the Riemannian measure on Mε . The same notation
remains for B ⊂ Rn .

If Σ ⊂ Mε is a (n − 1)-dimensional submanifold then gε induces on Σ the Riemannian metric and
measure. We denote by dSε the density of this measure. Again by 〈u〉Σ we denote the average value
of the function u over Σ , i.e. 〈u〉B = 1

|Σ |
∫
Σ

u dSε (here |Σ | = ∫
Σ

dSε).
We introduce the operators Πε

j : L2(Mε) → L2(�) ( j = 1, . . . ,m) by the formula:

i ∈ Iε, x ∈ �ε
i : Πε

j u(x) = 〈uε
〉
Bε .
i j
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Recall that � =⋃i∈Iε �ε
i . Using the Cauchy inequality and (2.7) we obtain

∥∥Πε
j u
∥∥

L2(�)
� C‖u‖L2(

⋃
i∈Iε

⋃m
j=1 Bε

i j)
. (3.7)

In view of (3.6), (3.7) the norms ‖Πεuε‖H1(�) , ‖Πε
j uε‖L2(�) ( j = 1, . . . ,m) are bounded uniformly

in ε. Using the embedding theorem (see e.g. [28, Chapter 4]) we obtain that the sub-sequence (still
denoted by ε), the functions u ∈ H1(�), u j ∈ L2(�), j = 1, . . . ,m exist such that

Πεuε →
ε→0

u weakly in H1(�) and strongly in L2(�), Πε
j uε →

ε→0
u j weakly in L2(�).

Moreover due to the trace theorem (see e.g. [28, Chapter 4]) Πεuε , u ∈ L2(∂�) and

Πεuε →
ε→0

u strongly in L2(∂�). (3.8)

Since uε ∈ dom(�θε

Mε ), then in view of (3.4)

uε(x + eα) = θε
αuε(x), x̃ ∈ Mα, α = 1, . . . ,n.

Therefore,

u(x + eα) = θαu(x), x ∈ Mα, α = 1, . . . ,n.

Thus, u ∈ dom(η̄θ
�). Recall (see Section 1) that η̄θ

� is the sesquilinear form which generates the oper-

ator −�θε

Mε .
We also need some auxiliary lemmas.

Lemma 3.1. For any j = 1, . . . ,m:

lim
ε→0

εn
∑
i∈Iε

∣∣〈uε
〉
Sε

i j

∣∣2 = ‖u‖2
L2(�). (3.9)

Proof. We denote R̂ε
i j = {x̃ ∈ Ωε: dε

j + κε
4 � |x − xε

i j | < dε
j + κε

2 }. One has the inequalities:

0 �
∥∥Πεuε

∥∥2
L2(�ε

i )
− εn

∣∣〈Πεuε
〉
�ε

i

∣∣2 � Cε2
∥∥∇Πεuε

∥∥2
L2(�ε

i )
, i ∈ Iε, (3.10)∣∣〈Πεuε

〉
�ε

i
− 〈uε

〉
R̂ε

i j

∣∣2 � C
∥∥∇Πεuε

∥∥2
L2(�ε

i )
ε2−n, i ∈ Iε, (3.11)∣∣〈uε

〉
Sε

i j
− 〈uε

〉
R̂ε

i j

∣∣2 � C
∥∥∇uε

∥∥2
L2(R̂ε

i j)
ε2−n, i ∈ Iε, (3.12)

which are valid for any uε ∈ H1(Ωε
�), j = 1, . . . ,m. Inequality (3.10) is the Poincaré inequality, the

inequality (3.11) follows directly from [19, Lemma 2.1], and the inequality (3.12) can be proved in the
same way as inequality (2.2) from [20].1

Equality (3.9) follows directly from (3.10)–(3.12). The lemma is proved. �
1 In [20] inequality (3.12) with ∂ R̂ε

i j \ Sε
i j instead of Sε

i j was proved. For Sε
i j the proof is similar. We remark that in the case

n = 2 inequality (3.12) is valid with | lnε| instead of ε2−n .
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Lemma 3.2. 2 For j = 1, . . . ,m:

lim
ε→0

λD
1

(
Gε

i j

)= σ j

where σ j is defined by formula (2.8).

Proof. Let vε
i j ∈ dom(�D

Gε
i j
) be the eigenfunction corresponding to λ1(Gε

i j) such that 〈vε
i j〉Bε

i j
= 1. In-

stead of calculating vε
i j in the exact form we construct a convenient approximation vε

i j for it.
We introduce the notations:

B̂ε
i j = {x̃ = (θ1, . . . , θn) ∈ Bε

i j: θn ∈ [Θε
j ,π/2

]}
,

Ĝε
i j = B̂ε

i j ∪ Rε
i j,

Ŝε
i j = {x̃ = (θ1, . . . , θn) ∈ Bε

i j: θn = π/2
}= ∂ B̂ε

i j \ ∂ Bε
i j.

Let the function v̂ε
i j be the solution of the following boundary value problem:

−�Ĝε
i j

v̂ε
i j = 0 in Ĝε

i j, (3.13)

v̂ε
i j

∣∣
Sε

i j
= 0, v̂ε

i j

∣∣
Ŝε

i j
= 1. (3.14)

Here by −�Ĝε
i j

we denote the operator which is defined by the operation (1.2) and the definitional

domain dom(�Ĝε
i j
) = {u: u = v|Ĝε

i j
, v ∈ dom(�Mε )}. For convenience from now on we use the nota-

tion −� instead of −�Ĝε
i j

. It is easy to see that the function v̂ε
i j is smooth in Rε

i j and Bε
i j , the limiting

values of v̂ε
i j in the domains Rε

i j and B̂ε
i j coincide on ∂ Bε

i j , the normal derivatives satisfy the condition
∂ v̂ε

i j
∂r + 1

bε
j

∂ v̂ε
i j

∂θn
= 0.

Due to the symmetry of Ĝε
i j one can easily calculate v̂ε

i j (recall that we consider the case n � 3):

v̂ε
i j(x̃) =

{
Aε

j |x − xε
i j|2−n + Bε

j , x̃ ∈ Rε
i j,

Cε
j F (θn) + 1, x̃ = (θ1, . . . , θn) ∈ B̂ε

i j

(3.15)

where F (θn) = ∫ θn
π/2(sin1−n ψ)dψ and the constants Aε

j , Bε
j , Cε

j are defined by the formulae

Aε
j = (dε

j )
n−2

1 − (
2dε

j
κε )n−2 − (n − 2)F (Θε

j )(
dε

j

bε
j
)n−2

,

Bε
j = − Aε

j

( κε
2 )n−2

, Cε
j = (n − 2)

Aε
j

(bε
j )

n−2
. (3.16)

We redefine v̂ε
i j by 1 in Bε

i j \ B̂ε
i j preserving the same notation.

2 This result was given in [17] without a justification. In the current work we present a complete proof.
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Direct calculations lead to the following asymptotics as ε → 0:∥∥∇ v̂ε
i j

∥∥2
L2(Gε

i j)
∼ σ jρ jε

n,
∥∥v̂ε

i j

∥∥2
L2(Gε

i j)
∼ ρ jε

n (3.17)

where σ j , ρ j are defined by formulae (2.8), (2.9).
We define the function vi j ∈ dom(�D

Gε
i j
) by the formula

vε
i j(x̃) =

⎧⎪⎨⎪⎩
v̂ε

i j x̃ ∈ Rε
i j,

1 + (v̂ε
i j(x̃) − 1)Φ(θn), x̃ = (θ1, . . . , θn) ∈ B̂ε

i j,

1, x̃ ∈ Bε
i j \ B̂ε

i j .

(3.18)

Here Φ(θn) is a twice continuously differentiable non-negative function on [0,∞) equal to 1 as 0 �
θn � π/4 and equal to 0 as θn � π/2. We have the following asymptotics as ε → 0:∥∥∇vε

i j

∥∥2
L2(Gε

i j)
∼ ∥∥∇ v̂ε

i j

∥∥2
L2(Gε

i j)
,

∥∥vε
i j

∥∥2
L2(Gε

i j)
∼ ∥∥v̂ε

i j

∥∥2
L2(Gε

i j)
,

∥∥�vε
i j

∥∥2
L2(Gε

i j)
= O

(
εn), (3.19)

lim
ε→0

ε−n(∥∥vε
i j − 1

∥∥2
L2(Bε

i j)
+ ∥∥vε

i j

∥∥2
L2(Rε

i j)

)= 0. (3.20)

It follows from the min–max principle (see e.g. [26]) that

λ1
(
Gε

i j

)= ‖∇vε
i j‖2

L2(Gε
i j)

‖vε
i j‖2

L2(Gε
i j)

�
‖∇vε

i j‖2
L2(Gε

i j)

‖vε
i j‖2

L2(Gε
i j)

. (3.21)

Note, that this automatically gives the inequality limε→0 λ1(Gε
i j) � σ j .

We present the eigenfunction vε
i j in the form

vε
i j = vε

i j + wε
i j . (3.22)

Let us estimate the remainder wε
i j . One has the following estimates for the eigenfunction vε

i j (for the
proof see [3, Lemma 4.2]):∥∥vε

i j

∥∥2
L2(Gε

i j)
= ∥∥vε

i j

∥∥2
L2(Bε

i j)
+ O

(
εn+2)= ∣∣Bε

i j

∣∣+ O
(
εn+2), (3.23)∥∥vε

i j

∥∥2
L2(Rε

i j)
� Cεn+2. (3.24)

Using (3.20), (3.23), (3.24) we obtain

ε−n
∥∥wε

i j

∥∥2
L2(Gε

i j)
� 2ε−n(∥∥vε

i j

∥∥2
L2(Rε

i j)
+ ∥∥vε

i j

∥∥2
L2(Rε

i j)

+ ∥∥1 − vε
i j

∥∥2
L2(Bε

i j)
+ ∥∥vε

i j − 1
∥∥2

L2(Bε
i j)

) →
ε→0

0. (3.25)

Substituting (3.22) into (3.21) and integrating by parts we get

∥∥∇wε
i j

∥∥2
L2(Gε

i j)
� 2
∣∣(�vε

i j, wε
)

L2(Gε
i j)

∣∣+ ∥∥∇vε
i j

∥∥2
L2(Gε

i j)

(‖vij‖2
L2(Gε

i j)

‖vε
i j‖L2(Gε )

− 1

)
. (3.26)
i j
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Taking into account (3.17), (3.19), (3.23), (3.25) we conclude that (3.26) implies

ε−n
∥∥∇wε

i j

∥∥2
L2(Gε

i j)
→
ε→0

0. (3.27)

It follows from (3.17), (3.19), (3.25), (3.27) that limε→0 λε
1(Gε

i j) = σ j . The lemma is proved. �
Lemma 3.3. For j = 1, . . . ,m:

lim
ε→0

λD
2

(
Gε

i j

)= ∞.

Proof. Let Gε
j be an n-dimensional surface embedded into Rn+1 (below x ∈ Rn , z ∈ R):

Gε
j = Rε

j ∪ Bε
j

where

Rε
j = {(x, z) ∈ Rn+1: ε−1dε

j � |x| < κ/2, z = 0
}
,

Bε
j = {(x, z) ∈ Rn+1: |x|2 + (z − b j cosΘε

j

)2 = (b j)
2, z � 0

}
.

We equip Gε
j with the Riemannian metric induced by the Euclidean metric in Rn+1. By dV we denote

the density of the Riemannian measure on Gε
j . Thus, Gε

j is the ε−1-homothetic image of Gε
i j .

Evidently one has the following relation between the spectra of −�D
Gε

i j
and −�D

Gε
j
:

∀k ∈ N: λD
k

(
Gε

i j

)= ε−2λD
k

(
Gε

i j

)
. (3.28)

We denote

R = {(x, z) ∈ Rn+1: |x| < κ/2, z = 0
}
, B j = {(x, z) ∈ Rn+1: |x|2 + z2 = (b j)

2}.
Further we will prove that

∀k ∈ N: λD
k

(
Gε

j

) →
ε→0

λk (3.29)

where {λk}k∈N are the eigenvalues of the operator L j which acts in the space L2(R) ⊕ L2(B j) and is
defined by the formula

L j = −
(

�D
R 0

0 �B j

)
.

Here the eigenvalues are renumbered in the increasing order and with account of their multiplicity.
One has λ1 = λ1(B j) = 0, λ2 = min{λD

1 (R), λ2(B j)} > 0. Therefore, in view of (3.28)–(3.29)
limε→0 λD

2 (Gε
i j) = ∞. Thus, to complete the proof of the lemma we have to prove (3.29). For that

we use the abstract scheme proposed in the work [16].

Theorem. (See [16].) Let Hε , H0 be separable Hilbert spaces, let Aε : Hε → Hε , A0 : H0 → H0 be linear
continuous operators, im A0 ⊂ V ⊂ H0 , where V is a subspace in H0 .
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Suppose that the following conditions C1–C4 hold:

C1. The linear bounded operators Rε : H0 → Hε exist such that ‖Rε f ‖2
Hε →

ε→0
γ ‖ f ‖2

H0 for any f ∈ V . Here

γ > 0 is a constant.
C2. Operators Aε , A0 are positive, compact and self-adjoint. The norms ‖Aε‖L(Hε) are bounded uniformly

in ε.
C3. For any f ∈ V : ‖Aε Rε f − Rε A0 f ‖Hε →

ε→0
0.

C4. For any sequence f ε ∈ Hε such that supε ‖ f ε‖Hε < ∞ the subsequence ε′ ⊂ ε and w ∈ V exist such
that ‖Aε f ε − Rε w‖Hε −→

ε=ε′→0
0.

Then for any k ∈ N

με
k →

ε→0
μk

where {με
k }∞k=1 and {μk}∞k=1 are the eigenvalues of the operators Aε and A0 , which are renumbered in the

increasing order and with account of their multiplicity.

Let us apply this theorem. We set Hε = L2(Gε
j ), H0 = L2(R) ⊕ L2(B j), Aε = (−�D

Gε
j
+ I)−1, A0 =

(L j + I)−1, V = H0. We introduce the operator Rε : H0 → Hε by the formula:

[
Rε f

]
(x, z) =

{
f R(x), (x,0) ∈ Rε

j ,

f B(x, z − bε
j cosΘε

j ), (x, z) ∈ Bε
j ,

f = ( f R , f B) ∈ H0 = L2(R) ⊕ L2(B j).

We also denote H1
0(R) = {u ∈ H1(R): u|∂R = 0}, H1

0(Gε
j ) = {u ∈ H1(Gε

j ): u|∂Gε
j
= 0}, H1 = H1

0(R) ⊕
H1(B j) ⊂ H0 and introduce the operator Q ε : H1

0(Gε
j ) → H1 satisfying the properties that are similar

to those of the operator Πε (see above):

∀ε > 0, ∀v ∈ H1
0

(
Gε

j

): Rε Q ε v = v,
∥∥Q ε v

∥∥
H1 � C‖v‖H1

0(Gε
j )
. (3.30)

Evidently conditions C1 (with γ = 1) and C2 hold. We verify condition C3. Let f ∈ Hε . We set
f ε = Rε f , vε = Aε f ε , v̂ε = Q ε vε . One has∫

Gε
j

((∇vε,∇wε
)+ uε wε − f ε wε

)
dV = 0, ∀wε ∈ H1

0

(
Gε

j

)
. (3.31)

Clearly the norms ‖vε‖2
H1

0(Gε
j )

are bounded uniformly in ε. Taking into account (3.30) we conclude

that the subsequence (still denoted by ε) and v = (v R , v B) ∈ H1 exist such that

v̂ε = (v̂εR , v̂εB) →
ε→0

v weakly in H1 and strongly in H0.

Let w ∈ Ĥ1 = {w = (w R , w B) ∈ H1: supp f R ⊂ R \ {(0,0)}, supp f B ⊂ B j \ {(0,−b j)}}, i.e. w R = 0
in a neighbourhood of {(0,0)}, w B = 0 in a neighbourhood of {(0,−b j)}. We set wε = Rε w . Then,
when ε is small enough, wε = 0 in some neighbourhood of ∂Bε

j and wε ∈ H1
0(Gε

j ). Substituting wε

into (3.31) we obtain (ε is small enough):
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∫
R

((∇ v̂εR ,∇w R)+ v̂εR w R − f R w R)dx

+
∫
B j

((∇ v̂εB ,∇w B)+ v̂εB w B − f B w B)dV = 0. (3.32)

Passing to the limit in (3.32) as ε → 0 and taking into account that the space Ĥ1 is dense in H1 (see
e.g. [25]), we obtain the equality A0 f = v that obviously implies the fulfilment of C3.

Finally, condition C4 follows from the fact that if supε ‖ f ε‖Hε < ∞ then the norms ‖Q ε Aε f ε‖H1

are bounded uniformly in ε and, therefore, the subsequence ε′ ⊂ ε and w ∈ H1 exist such that

Q ε Aε f ε −→
ε=ε′→0

w weakly in H1 and strongly in H0.

Thus, the eigenvalues με
k of the operator Aε converge to the eigenvalues μk of the operator A0

as ε → 0. But λD
k (Gε

i j) = (με
k )−1 − 1, λk = (μk)

−1 − 1 that implies (3.29). The lemma is proved. �
Lemma 3.4. For j = 1, . . . ,m:

lim
ε→0

∑
i∈Iε

∥∥uε
∥∥2

L2(Bε
i j)

= ρ j

(
σ j

σ j − λ

)2

‖u‖2
L2(�). (3.33)

Proof. For x̃ ∈ Gε
i j we denote lε(x̃) = distgε (x̃, Sε

i j), where by distgε (·,·) we denote the distance with
respect to the metric gε . We introduce the set

Sε
i j[x̃] = { ỹ ∈ Gε

i j: lε( ỹ) = lε(x̃)
}
.

Obviously Sε
i j[x̃] is a (n − 1)-dimensional sphere (in particular if x̃ ∈ ∂ Bε

i j then lε(x̃) = κε/2 and
Sε

i j[x̃] = ∂ Bε
i j ).

We define the function uε
i j(x̃) by the formula:

uε
i j(x̃) = 〈uε

〉
Sε

i j[x̃], x̃ ∈ Gε
i j.

Using the Poincaré inequality (for the spheres Sij[x̃]) we get∑
i∈Iε

∥∥uε − uε
i j

∥∥2
L2(Gε

i j)
� C

∑
i∈Iε

max
x̃∈Gε

i j

(
diam Sε

i j[x̃]
)2∥∥∇uε

∥∥2
L2(Gε

i j)
� Cε2

∥∥∇uε
∥∥2

L2(Mε)
. (3.34)

We denote uε
i j = uε

i j − 〈uε〉Sε
i j

. Clearly uε
i j ∈ dom(�D

Gε
i j
) and

−�D
Gε

i j
uε

i j − λεuε
i j = λε

〈
uε
〉
Sε

i j
.

In view of Lemmas 3.2, 3.3 and since λ /∈⋃m
j=1{σ j}, λε /∈ σ(−�D

Gε
i j
) when ε is small enough. Therefore,

the following expansion is valid:

uε
i j =

∞∑
k=1

Ik
i j(ε), where Ik

i j(ε) = v D
k (Gε

i j)

‖v D
k (Gε

i j)‖2
L2(Gε )

·
( f ε

i j , v D
k (Gε

i j))L2(Gε
i j)

(λD
k (Gε

i j) − λε)
. (3.35)
i j
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Here f ε
i j = λε〈uε〉Sε

i j
, {v D

k (Gε
i j)}m

k=1 is a system of the eigenfunctions of −�D
Gε

i j
corresponding to

{λD
k (Gε

i j)}m
k=1 and such that (v D

k (Gε
i j), v D

l (Gε
i j))L2(Gε

i j)
= 0 if k �= l.

We denote Λε = max j=1,m maxk=2,∞ |λε − λD
k (Gε

i j)|−2. Thus, it follows from Lemma 3.3 that
limε→0 Λε = 0. Therefore, taking into account (2.7) and using Lemma 3.1 we obtain

∑
i∈Iε

∥∥∥∥∥
∞∑

k=2

Ik
i j(ε)

∥∥∥∥∥
2

L2(Bε
i j)

� Λε
∑
i∈Iε

∥∥ f ε
i j

∥∥2
L2(Gε

i j)
� C

(
λε
)2

Λε
∑
i∈Iε

∣∣〈uε
〉
Sε

i j

∣∣2εn →
ε→0

0. (3.36)

As in Lemma 3.2 we denote vε
i j = v D

1 (Gε
i j). We normalize vε

i j by the condition 〈vε
i j〉Bε

i j
= 1. Using

the estimates (3.23), (3.24) and Lemma 3.2 we obtain that

∑
i∈Iε

∥∥I1
i j(ε)

∥∥2
L2(Bε

i j)
∼
∑
i∈Iε

λ2ρ jε
n|〈uε〉Sε

i j
|2

(σ j − λ)2
∼ λ2ρ j‖u‖2

L2(�)

(σ j − λ)2
(3.37)

as ε → 0. Thus, it follows from (3.35)–(3.37) that

lim
ε→0

∑
i∈Iε

∥∥uε
i j

∥∥2
L2(Bε

i j)
= λ2ρ j‖u‖2

L2(�)

(σ j − λ)2
. (3.38)

Finally, using (3.35), (3.36), (3.38) and Lemma 3.1 we get

∑
i∈Iε

∥∥uε
i j

∥∥2
L2(Bε

i j)
=
∑
i∈Iε

(∥∥uε
i j

∥∥2
L2(Bε

i j)
+ 2
〈
uε
〉
Sε

i j

∫
Bε

i j

uε
i j(x̃)dV ε + ∣∣〈uε

〉
Sε

i j

∣∣2 · ∣∣Bε
i j

∣∣)

→
ε→0

[
λ2ρ j

(σ j − λ)2
+ 2λρ j

σ j − λ
+ ρ j

]
‖u‖2

L2(�) = ρ j

(
σ j

σ j − λ

)2

‖u‖2
L2(�). (3.39)

Then (3.33) follows from (3.34) and (3.39). The lemma is proved. �
Lemma 3.5. For any w ∈ C∞

θ (�) the function ŵε ∈ C∞(�) exists such that:

w + ŵε ∈ C∞
θε (�), (3.40)

max
x∈�

∣∣ŵε(x)
∣∣+ max

x∈�

∣∣∇ ŵε(x)
∣∣ →
ε→0

0. (3.41)

Proof. We define the function 1ε ∈ C∞(Rn) by the following recurrent formulae:

1ε(x1, . . . , xn) = An(x1, . . . , xn−1)xn + Bn(x1, . . . , xn−1),

α = 2, . . . ,n:
{

Bα(x1, . . . , xα−1) = Aα−1(x1, . . . , xα−2)xα−1 + Bα−1(x1, . . . , xα−2),

Aα(x1, . . . , xα−1) = (θε
α/θα − 1

)
Bα(x1, . . . , xα−1),

B1 = 1, A1 = θε
1 /θ1 − 1.
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It is easy to see that maxx∈� |1ε(x) − 1| + maxx∈� |∇1ε(x)| →
ε→0

0 and 1ε ∈ C∞
θε/θ (�), where θε/θ :=

(θε
1 /θ1, . . . , θ

ε
n /θn). Then we set

ŵε = (1ε − 1
)

w.

Obviously the function ŵε satisfies the conditions (3.40), (3.41). The lemma is proved. �
We continue the proof of Theorem 2.1. For an arbitrary wε ∈ dom(η̄Mε ) we have

∫
Mε

((∇uε,∇wε
)
ε
− λεuε wε

)
dV ε = 0 (3.42)

where (∇uε,∇wε)ε is the scalar product of the vectors ∇uε and ∇wε with respect to the metric gε .
We substitute into (3.42) the test function wε of a special type. Namely, let w be an arbitrary

function from C∞
θ (�), ŵε ∈ C∞(�) be the function satisfying (3.40), (3.41). Let w j , j = 1, . . . ,m be

arbitrary functions from C∞(�). Let Φ(r) be a twice continuously differentiable non-negative function
equal to 1 as 0 � r � 1/4 and equal to 0 as r � 1/2. We set

Φ̂ε
i j = Φ

( |x − xε
i j| − dε

j

dε
j

)
, Φε

i j = Φ

( |x − xε
i j| − dε

j

κε

)
.

Then we set wε = wε + δε , where

wε(x̃) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w(x), x̃ ∈ Ωε

� \ (
⋃

i∈Iε

⋃m
j=1 Rε

i j),

w(x) + (w(xε
i j) − w(x))Φ̂ε

i j(x)

+ (w j(xε
i j) − w(xε

i j))vε
i j(x)Φε

i j(x), x̃ ∈ Rε
i j,

w j(xε
i j) + (w(xε

i j) − w j(xε
i j))(1 − vε

i j(x̃)), x̃ ∈ Bij,

δε(x̃) =

⎧⎪⎨⎪⎩
ŵ(x), x̃ ∈ Ωε

� \ (
⋃

i∈Iε

⋃m
j=1 Rε

i j),

ŵε(x) + (ŵε(xε
i j) − ŵε(x))Φ̂ε

i j(x), x̃ ∈ Rε
i j,

ŵε(xε
i j), x̃ ∈ Bε

i j .

(3.43)

Here the function vε
i j is defined by (3.18), (3.15), (3.16). It follows from (3.40) that wε ∈ dom(η̄Mε ).

Substituting this wε into (3.42) and integrating by parts we obtain

∫
Mε

(−uε�wε − λεuε wε
)

dV ε +
∫

∂Mε

ν
[
wε
]
uε dSε +

∫
Mε

((∇uε,∇δε
)
ε
− λεuεδε

)
dV ε = 0, (3.44)

where ν is the outward normal vector field on ∂Mε .
In view of (2.6)–(2.7) and the Cauchy inequality, the last term in (3.44) is estimated by

C‖uε‖H1(Mε)

√
maxx∈� |ŵ(x)|2 + maxx∈� |∇ ŵ(x)|2 and tends to zero as ε → 0 in view of (3.41).

In view of (3.8) the second term tends to
∫
∂� ν[w]u ds as ε → 0, where ν is the outward normal

vector field on ∂�, ds is the density of the Lebesgue measure on ∂�.
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Now let us investigate the first term. Firstly we study the integrals over Ωε
� . Integrating by parts

we get

∣∣∣∣∣∑
i∈Iε

m∑
j=1

∫
Rε

i j

−�
{(

w
(
xε

i j

)− w(x)
)
Φ̂ε

i j(x)
}

uε(x)dV ε

∣∣∣∣∣
=
∣∣∣∣∣∑
i∈Iε

m∑
j=1

( ∫
Rε

i j∪Dε
i j

(∇{(w(xε
i j

)− w(x)
)
Φ̂ε

i j(x)
}
,∇εΠεuε(x)

)
dx −

∫
Dε

i j

�wΠεuε dx

)∣∣∣∣∣
� C(w) · ∥∥Πεuε

∥∥
H1(�)

·
√√√√∑

i∈Iε

m∑
j=1

∣∣Dε
i j ∪ supp

[∇Φ̂ε
i j

]∣∣ →
ε→0

0. (3.45)

Hereafter by C(w) we denote a constant depending only on w .
Let us prove that the function ξε ∈ L2(�),

ξε(x) =
{∑

i∈Iε

∑m
j=1 −�{(wε

j (xε
i j) − w(xε

i j))vε
i j(x)Φε

i j(x)}, x ∈ Rε
i j,

0, x ∈ � \⋃i∈Iε

⋃m
j=1 Rε

i j

converges weakly in L2(�) to the function
∑m

j=1 σ jρ j(w − w j). Indeed using the properties of vε
i j

x ∈ Rε
i j: �vε

i j(x) = 0,
∣∣Dαvε

i j(x)
∣∣� Cεn

∣∣x − xε
i j

∣∣2−n−|a|
, α = 0,1

and the enclosure supp(DαΦε
j ) ⊂ {x ∈ Ωε

�: κε/4 � |x − xε
i j | � κε/2} (α �= 0) we obtain

∫
Rε

i j

∣∣−�
{(

w j
(
xε

i j

)− w
(
xε

i j

))
vε

i j(x)Φε
i j(x)

}∣∣2 dx < C(w)εn. (3.46)

Hence the norms ‖ξε‖L2(�) are bounded uniformly in ε. Taking into account (3.46) we obtain for an
arbitrary f ∈ C∞(�) (below νε is the normal vector field on ∂ Dε

i j directed outward Rε
i j ):

∑
i∈Iε

m∑
j=1

∫
Rε

i j

−�
{(

w j
(
xε

i j

)− w
(
xε

i j

))
vε

i j(x)Φε
i j(x)

}
f (x)dV ε

=
∑
i∈Iε

m∑
j=1

f
(
xε

i j

)(
w
(
xε

i j

)− w j
(
xε

i j

)) ∫
∂ Dε

i j

νε
[
vε

i j

]
dSε + ō(1)

=
∑
i∈Iε

m∑
j=1

f
(
xε

i j

)(
w
(
xε

i j

)− w j
(
xε

i j

))
σ jρ jε

n

+ ō(1) →
ε→0

m∑
j=1

σ jρ j

∫
f (x)

(
w(x) − w j(x)

)
dx. (3.47)
�
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Here we have used the following computations (below r = |x − xε
i j|):

∫
∂ Dε

i j

νε
[
vε

i j

]
dSε = −∂vε

i j

∂r

∣∣∣∣
r=dε

j

(
dε

j

)n−1
ωn−1 ∼ 1

2
ωn−1(n − 2)dn−2

j εn = σ jρ jε
n, ε → 0. (3.48)

Since C∞(�) = L2(�), then ξε converges weakly in L2(�) to
∑m

j=1 σ jρ j(w − w j) as ε → 0.
Using this, (3.5), (3.6) and (3.45) we conclude that

lim
ε→0

∫
Ωε

�

−�wεuε dV ε =
∫
�

(
−�wu +

m∑
j=1

σ jρ j(w − w j)u

)
dx. (3.49)

In the same way (using the estimate (3.20)) one can prove that

lim
ε→0

∫
Ωε

�

λε wεuε dV ε =
∫
�

λwu dx. (3.50)

Now, we investigate the behaviour of the integrals in (3.42) over
⋃

i, j Bε
i j . Using (3.19) (the last

asymptotics), (3.48) and the Poincaré inequality we get

∑
i∈Iε

m∑
j=1

∫
Bε

i j

−�
[(

w
(
xε

i j

)− w j
(
xε

i j

))(
1 − vε

i j(x̃)
)]

uε(x̃)dV ε

=
∑
i∈Iε

m∑
j=1

〈
uε
〉
Bε

i j

(
w
(
xε

i j

)− w j
(
xε

i j

)) ∫
∂ Dε

i j

−νε
[
vε

i j

]
dSε + ō(1)

=
m∑

j=1

σ jρ j

∫
�

̂[w j − w](x)Πε
j uε(x)dx

+ ō(1) →
ε→0

m∑
j=1

σ jρ j

∫
�

(
w j(x) − w(x)

)
u j(x)dx, (3.51)

where ̂[w j − w] ∈ L2(�) is a step function: ̂[w j − w](x) = w j(xε
i j) − w(xε

i j), x ∈ �ε
i , i ∈ I ε; it is clear

that ̂[w j − w] converges to w j − w strongly in L2(�) as ε → 0.
In a similar manner we obtain

lim
ε→0

∑
i∈Iε

m∑
j=1

∫
Bε

i j

λε wεuε dV ε = λ

m∑
j=1

ρ j

∫
�

w ju j dx. (3.52)

Thus, from (3.49)–(3.52) we obtain that the functions u ∈ dom(η̄θ
�), u j ∈ L2(�) ( j = 1, . . . ,m)

satisfy the equality:
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∫
�

[
−�wu +

m∑
j=1

σ jρ ju(w − w j) +
m∑

j=1

σ jρ ju j(w j − w)

]
dx

+
∫

∂�

ν[w]uds − λ

∫
�

[
uw +

m∑
j=1

ρ ju j w j

]
dx = 0 (3.53)

for arbitrary w ∈ C∞
θ (�), w j ∈ C∞(�) ( j = 1, . . . ,m).

Substituting w ≡ 0, w j ≡ 0, j �= k into (3.53) we obtain

uk = σku

σk − λ
, k = 1, . . . ,m. (3.54)

Then substituting into (3.53) w j ≡ 0 (∀ j), integrating by parts and taking into account (3.54), we
conclude that u ∈ dom(η̄θ

�) satisfies the equality∫
�

[
(∇u,∇w) − λF (λ)uw

]
dx = 0, ∀w ∈ C∞

θ (�)

where F (λ) is defined by (2.10). Hence u ∈ dom(�θ
�) and

−�θ
�u = λF (λ)u.

In view of Lemma 3.4 u �= 0. Then λF (λ) ∈ σ(−�Rn ) and, therefore, due to (3.3) λ ∈ σ(A)\⋃m
j=1{σ j}.

The fulfilment of property (A) is proved.

3.3. Property (B) of Hausdorff convergence

Let λ ∈ σ(A)∩[0, L], L /∈⋃m
j=1{μ j}. We have to prove that there exists λε ∈ σ(−�Mε )∩[0, L] such

that λε →
ε→0

λ.

At first we prove property (B) for the case λ < L.
We assume the opposite: the subsequence (still denoted by ε) and δ > 0 exist such that

dist
(
λ,σ (−�Mε )

)
> δ. (3.55)

Since λ ∈ σ(A), then the function

F =
⎛⎜⎝

f
f1
· · ·
fm

⎞⎟⎠ ∈ H

exists such that

F /∈ im(A − λI), where I is the identity operator. (3.56)

Let f ε(x̃) ∈ L2(Mε) be defined by the formula

f ε(x̃) =
{

f (x), x̃ ∈ Ωε,

〈 f j〉�ε , x̃ ∈ Bε .

i i j



2364 A. Khrabustovskyi / J. Differential Equations 252 (2012) 2339–2369
It follows from the Cauchy inequality and (2.7) that the norms ‖ f ε‖L2(Mε) are bounded uniformly
in ε.

Inequality (3.55) implies that λ ∈ R \ σ(−�Mε ). Then im(−�Mε − λI) = L2(Mε) and thus, the
unique uε ∈ dom(�Mε ) exists satisfying

−�Mε uε − λuε = f ε. (3.57)

In consequence of (3.55) uε satisfies the inequality∥∥uε
∥∥

L2(Mε)
� δ−1

∥∥ f ε
∥∥

L2(Mε)
� C .

Furthermore ∥∥∇uε
∥∥2

L2(Mε)
�
∥∥ f ε

∥∥
L2(Mε)

· ∥∥uε
∥∥

L2(Mε)
+ |λ| · ∥∥uε

∥∥2
L2(Mε)

� C .

Then there exists a subsequence (still denoted by ε) such that

Πεuε → u ∈ H1(Rn)weakly in H1(Rn) and strongly in L2(G) for any compact set G ⊂ Rn,

Πε
j uε → u j ∈ L2

(
Rn)weakly in L2

(
Rn) ( j = 1, . . . ,m)

where Πε , Πε
j ( j = 1, . . . ,m) are the extension operators introduced in the previous subsection.

For an arbitrary function wε ∈ C∞
0 (Mε) we have∫

Mε

((∇εuε,∇εwε
)
ε
− λuεwε − f εwε

)
dV ε = 0. (3.58)

Let w ∈ C∞
0 (Rn), w j ∈ C∞

0 (Rn) ( j = 1, . . . ,m) be arbitrary functions. Using them we construct the
test-function wε by formula (3.43) (but with Rn instead of Ωε

� and with Zn instead of I ε) and
substitute it into (3.58). Performing the same calculations as in the previous subsection we obtain

∫
Rn

[
(∇u,∇w) +

m∑
j=1

σ jρ ju(w − w j) +
m∑

j=1

σ jρ ju j(w j − w)

− λ

(
uw +

m∑
j=1

ρ ju j w j

)
−
(

f w +
m∑

j=1

ρ j f j w j

)]
dx = 0 (3.59)

for arbitrary w ∈ C∞
0 (Rn), w j ∈ C∞

0 (Rn) ( j = 1, . . . ,m). It follows from (3.59) that

U =
⎛⎜⎝

u
u1
· · ·
um

⎞⎟⎠ ∈ dom(A) and AU − λU = F .

We obtain a contradiction with (3.56). Then there is λε ∈ σ(−�Mε ) such that limε→0 λε = λ. Since
λ < L, then λε < L when ε is small enough.

Finally, we verify the fulfilment of property (B) for the case λ = L. Since L /∈⋃m
j=1{με

j }, then (3.1)
implies that (L − δ, L − δ/2) ⊂ σ(A) when δ is small enough. Let λδ ∈ (L − δ, L − δ/2). We have just
proved that if ε < ε(δ) then λε ∈ σ(−�Mε ) exists such that |λε − λδ | < δ/2. Then λε ∈ (L − 3δ/2, L)

as ε < ε(δ) that obviously implies the fulfilment of property (B).
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3.4. End of the proof

In the proof of the Hausdorff convergence we used the fact that Mε is Γ -periodic manifold, Mε is
a period cell. Now let us recall that Mε is also Γ ε-periodic manifold, Mε

i is a corresponding period
cell (i is arbitrary, so from now on we consider i = 0). Then

σ(−�Mε ) =
∞⋃

k=1

[
aε

k ,bε
k

]
,

where [aε
k ,bε

k ] = {λθ
k (Mε

0), θ ∈ Tn}.

Lemma 3.6. limε→0 bε
m+1 = ∞.

Proof. As usual by λN
k (Mε

0) we denote the k-th eigenvalue of the operator −�N
Mε

0
, which is the

Laplace–Beltrami operator on Mε
0 with Neumann boundary conditions.

Using the same idea as in the proof of Lemma 3.3 (i.e. ε−1-homothetic image of Mε
0), we get

lim
ε→0

ε2λk
(
Mε

0

)= λk, k = 1,2,3, . . . , (3.60)

where {λk}k∈N are the eigenvalues of the operator L which acts in the space L2(�)
⊕

j=1,m L2(B j)

and is defined by the operation

L = −

⎛⎜⎜⎝
�N

� 0 · · · 0
0 �B1 · · · 0
...

...
. . .

...

0 0 · · · �Bm

⎞⎟⎟⎠ .

Recall that � is the unit cube in Rn , B j is the n-dimensional sphere of the radius b j ( j = 1, . . . ,m).
One has λ j = λ1(B j) = 0, j = 1, . . . ,m, λm+1 = λN

1 (�) = 0, and

λm+2 = min
{
λN

2 (�), λ2(B j), j = 1, . . . ,m
}

> 0.

Thus, in view of (3.60) limε→0 λN
m+2(Mε

0) = ∞. Due to inequality (1.3) λN
m+2(Mε

0) � aε
m+2. Thus,

limε→0 aε
m+2 = ∞.

Suppose that there exists a subsequence (still denoted by ε) such that the numbers bε
m+1 are

bounded uniformly in ε. Let L > max j=1,m μ j and L > bε
m+1. Let L1 > L. Since aε

m+2 →
ε→0

∞, then

aε
m+2 > L1 when ε is small enough. Hence σ(−�Mε ) ∩ [L, L1] = ∅ when ε is small enough. But

this contradicts to property (B) of the Hausdorff convergence. Hence bε
m+1 →

ε→0
∞. The lemma is

proved. �
It follows from Lemma 3.6 that within an arbitrary finite interval [0, L] the spectrum σ(−�Mε )

has at most m gaps when ε is small enough, i.e.

σ(−�Mε ) ∩ [0, L] = [0, L] \
mε⋃
j=1

(
σε

j ,με
j

)
(3.61)

where (σ ε
j ,με

j ) ⊂ [0, L] are some pairwise disjoint intervals, mε � m. Here we renumber the intervals
in the increasing order.
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Let L > max j=1,m μ j be arbitrarily large number. We have just proved that as ε → 0 the set

σ(−�Mε ) ∩ [0, L] converges to the set σ(A) ∩ [0, L] = [0, L] \ (
⋃m

j=1(σ j,μ j)) in the Hausdorff sense.
Then by Proposition 3.1 mε = m when ε is small enough and

∀ j = 1, . . . ,m: lim
ε→0

σε
j = σ j, lim

ε→0
με

j = μ j.

Finally, we denote by J ε the union of the remaining gaps (if any). Since bε
m+1 →

ε→0
∞ and bε

m+1 �
inf J ε , then

inf J ε > L

when ε is small enough. This concludes the proof of Theorem 2.1.

Remark 3.1. Actually, we have proved a slightly strong result: limε→0 aε
k+1 = μk , limε→0 bε

k = σk , k =
1, . . . ,m, limε→0 bε

m+1 = ∞, i.e. the first m gaps of the spectrum σ(−�Mε ) (ε is small enough) are
located exactly between the first (m + 1) bands.

4. End of the proof of Theorem 0.1: choice of the constants d j , b j and conclusive remarks

In order to complete the proof of Theorem 0.1, we have to choose the constants d j , b j in (2.6),
(2.7) such that equalities (0.8) hold.

Theorem 4.1. Let (α j, β j) ( j = 1, . . . ,m, m ∈ N) be arbitrary intervals satisfying (0.4). Let Mε (ε > 0) be an
n-dimensional periodic Riemannian manifolds of the form (2.1).

Then (0.8) holds if we choose

d j =
⎧⎨⎩ [ 2(β j−α j)

ωn−1(n−2)

∏
i=1,m|i �= j(

βi−α j
αi−α j

)] 1
n−2 , n > 2,

(β j−α j)

π

∏
i=1,m|i �= j(

βi−α j
αi−α j

), n = 2,
(4.1)

b j =
[

β j − α j

ωnα j

∏
i=1,m|i �= j

(
βi − α j

αi − α j

)] 1
n

. (4.2)

Remark 4.1. Since the intervals (α j, β j) satisfy (0.4), then

∀ j: α j < β j, ∀i �= j: sign(βi − α j) = sign(αi − α j) �= 0.

Therefore, the expressions (β j − α j)
∏

i=1,m|i �= j(
βi−α j
αi−α j

), j = 1, . . . ,m are positive and thus the choice

of d j and b j is correct.

Proof of Theorem 4.1. Substituting d j , b j (4.1), (4.2) into (2.8) we get

σ j = α j,

i.e. the first equality in (0.8) holds. Furthermore substituting b j (4.2) into (2.9) we obtain

ρ j = β j − α j

α j

∏
i=1,m|i �= j

(
βi − α j

αi − α j

)
. (4.3)
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It remains to prove that μ j = β j . Recall that the numbers μ j ( j = 1, . . . ,m) are the roots of
Eq. (2.10). Therefore, in order to prove the equality μ j = β j , we have to show that

∀k = 1, . . . ,m:
m∑

j=1

α jρ j

βk − α j
= 1. (4.4)

Let us consider (4.4) as the linear algebraic system of m equations with unknowns ρ j ( j =
1, . . . ,m). In order to end the proof of theorem we have to prove the following

Lemma 4.1. The system (4.4) has the unique solution ρ1, . . . , ρm which is defined by (4.3).

Proof. We prove the lemma by induction. For m = 1 its validity is obvious. Suppose that we have
proved it for m = N − 1 and let us prove it for m = N .

Multiplying the k-th equation in (4.4) (k = 1, . . . , N) by βk − αN and then subtracting the N-th
equation from the first N − 1 equations we obtain

∀k = 1, . . . , N − 1:
N−1∑
j=1

α jρ̂ j

βk − α j
= 1

where the new variables ρ̂ j , j = 1, . . . , N − 1 are expressed in terms of ρ j by the formula

ρ̂ j := ρ j
αN − α j

βN − α j
, j = 1, . . . , N − 1. (4.5)

Thus, the numbers ρ̂ j satisfy the system (4.4) with m = N − 1. Therefore, by the induction

ρ̂ j = β j − α j

α j

∏
i=1,N−1|i �= j

(
βi − α j

αi − α j

)
. (4.6)

It follows from (4.5), (4.6) that ρ j , j = 1, . . . , N − 1, satisfy formula (4.3). The validity of this formula
for ρN follows from the symmetry of the system.

Lemma 4.1 and Theorem 4.1 are proved. This completes the proof of the main theorem. �
Remark 4.2. We noted above that the metric gε of the manifold Mε is continuous but piecewise-
smooth (see formulae (2.3)–(2.4)). However one can approximate gε by a smooth metric gερ which
differs from gε only in small ρ-neighbourhoods of ∂ Bε

i j and moreover the corresponding Laplace–
Beltrami operator has the same spectral properties as ε → 0.

Namely, in a small neighbourhood U ε
i j of ∂ Bε

i j we introduce the local coordinates (x1, . . . , xn) by
formulae (2.2) and define gερ by the formula

gερ
αβ(x1, . . . , xn) = gε+αβ

(x1, . . . , xn)ϕ(xn/ρ) + gε−αβ
(x1, . . . , xn)

(
1 − ϕ(xn/ρ)

)
where ϕ(r), r ∈ R, is a smooth positive function equal to 1 as r � 1, equal to 0 as r � −1 and positive
as −1 < r < 1, the coefficients gε±αβ

are defined by (2.4). Outside
⋃

i, j U ε
i j we set gερ = gε .

It is easy to see that Aερ gε � gερ � Bερ gε , where Aερ , Bερ are positive constants depending on ε
and ρ in such a way that for fixed ε

lim
ρ→0

Aερ = lim
ρ→0

Bερ = 1. (4.7)
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Using the min–max principle one can obtain that

∀k ∈ N, ∀θ ∈ Tn: (Aερ)n/2

(Bερ)1+n/2
λθ

k

(
Mε

i

)
� λθ

k

(
Mε

i , gερ
)
� (Bερ)n/2

(Aερ)1+n/2
λθ

k

(
Mε

i

)
. (4.8)

Here λθ
k (Mε

i , gερ) is the k-th eigenvalue of the Laplace–Beltrami operator with θ -periodic boundary
conditions on the manifold Mε

i equipped with the metric gερ . This inequality is proved in [1, Chap-
ter A] for manifolds without a boundary, for our case the proof is completely analogous.

Let δ1 > 0, L1 > 0. We have just proved (see Theorems 2.1, 4.1) that there are such ε = ε(δ1, L1)

and such d j , b j that the manifold M = Mε satisfies (0.2)–(0.3) with δ = δ1, L = L1.
So let us fix ε = ε(L1, δ1). Then it follows from (4.7), (4.8) that

∀θ ∈ Tn, ∀k ∈ N: ∣∣λθ
k

(
Mε

i

)− λθ
k

(
Mε

i , gερ
)∣∣ →

ρ→0
0 (4.9)

uniformly in (θ,k) from Tn × G, where G is any compact subset of N. Then using (1.4), (4.9) and tak-
ing into account Remark 3.1 we conclude: there is such ρ = ρ(ε(δ1, L1)) that the manifold (Mε, gερ)

satisfies (0.2)–(0.3) with δ = 2δ1, L = L1 − δ1.
Now, let δ > 0, L > 0. Setting δ1 = δ/2, L1 = L + δ/2 we conclude that the manifold M = (Mε, gερ),

where ε = ε(δ1, L1), ρ = ρ(ε(δ1, L1)), satisfies (0.2)–(0.3).
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