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We have calculated six-locus high resolution HLA A�C�B�DRB3/4/5�DRB1�DQB1 haplotype frequen-
cies using all Be The Match� Registry volunteer donors typed by DNA methods at recruitment. Mixed res-
olution HLA typing data was inputted to a modified expectation–maximization (EM) algorithm in the
form of genotype lists generated by interpretation of primary genomic typing data to the IMGT/HLA
v3.4.0 allele list. The full cohort consists of 6.59 million subjects categorized at a broad race level. Overall
25.8% of the individuals were typed at the C locus, and 5.2% typed at the DQB1 locus, while all individuals
were typed for A, B, DRB1. We also present a subset of 2.90 million subjects with detailed race/ethnic
information mapped to 21 population subgroups, 64.1% of which have primary DNA typing data across
at least A, B, and DRB1 loci. Sample sizes at the detailed race level range from 1,242,890 for European Cau-
casian to 1,376 Alaskan Native or Aleut. Genetic distance measurements show high levels of HLA genetic
divergence among the 21 detailed race categories, especially among the eight Asian–American popula-
tions. These haplotype frequencies will be used to improve match predictions for donor selection algo-
rithms for hematopoietic stem cell transplantation and improve the accuracy in modeling registry
match rates.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

The National Marrow Donor Program (NMDP) manages a regis-
try of volunteer donors, the Be The Match Registry�, to facilitate
unrelated hematopoietic stem cell transplantation (HSCT), a cura-
tive therapy for blood malignancies and other disorders. Donors
are selected based on matching alleles with the recipient for sev-
eral human leukocyte antigen (HLA) genes. Transplants that are
HLA-matched have the best outcome because they prevent im-
mune rejection of foreign tissue and facilitate immune reconstitu-
tion [1]. HLA genes are highly polymorphic, located in the major
histocompatibility complex (MHC) on chromosome 6, with fre-
quency of alleles and linkage of alleles into haplotypes varying
widely among human populations.

Identification of alleles in registry HLA typing produces a typing
result which relies on DNA-based assays that are not always able to
precisely identify the alleles present (i.e. allelic ambiguity). Typing
methodology has evolved over time, with earlier low resolution
methods such as serology resulting in thousands of potential geno-
types, while newer technology has reduced this ambiguity signifi-
cantly. These mixed resolution HLA assignments have been a
challenge to efforts at characterizing HLA haplotypic diversity from
registry data.

The expectation–maximization (EM) algorithm takes in HLA
genotypes as input to estimate population haplotype frequencies.
Early implementations of the EM algorithm resolved only phase
ambiguity, or linkage of alleles along a chromosome [2,3], but
could not handle HLA assignments with allelic ambiguity, where
some alleles are not distinguished from one another. We have pre-
viously presented high resolution HLA A�C�B�DRB1�DQB1 hap-
lotype frequency data from four US population categories
(Caucasian, African American, Asian or Pacific Islander, and His-
panic) [4]. The study population was limited by including only
individuals typed without allelic ambiguity, and used broad race/
ethnic categorization that did not distinguish among genetically
distinct subpopulations. While the minority populations were
typed in randomized prospective studies, the Caucasian HLA typ-
ings were performed on behalf of patient searches, which may
have biased results towards HLA alleles commonly found in
searching patients.

Kollman et al. has since implemented an EM algorithm that
simultaneously resolves both phase and allelic ambiguity seen in
mixed-resolution assignments [5]. Kollman estimated A�B�DRB1
frequencies with high resolution typings calculated only for the
DRB1 locus, because of computational limitations. High resolution
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estimates incorporating more loci using HLA assignments with
allelic ambiguity becomes exponentially more difficult [6].

Significant limitations of previous frequency studies remain in
terms of sample size, the number of HLA loci, and coverage of di-
verse world populations. These limitations manifest themselves
in the performance of NMDP’s matching algorithm, HapLogic™,
which uses haplotype frequencies to predict the likelihood of al-
lele-level matches between patient and donor. Since the initial re-
lease of HapLogic™, matched donors are now more rapidly
identified; however, further improvements could be realized with
utilization of the full complement of registry HLA data.

Here we describe a haplotype frequency estimation method
that can process millions of mixed resolution typed samples and
addresses previous limitations. We calculated high resolution
haplotype frequencies at six loci (HLA-A�C�B�DRB3/4/
5�DRB1�DQB1) in 21 populations, including all DNA typed donors
in the registry. Because HLA frequencies can differ substantially be-
tween subpopulations, this expansion of population categories im-
proved the accuracy of allele predictions in matching algorithms.
Match likelihood estimates are also improved as frequency gener-
ating population sample size is increased, because the fraction of
multilocus genotypes that cannot be explained by any pair of high
resolution haplotypes is decreased.
2. Materials and methods

2.1. HLA typing methods and primary data interpretation

The NMDP collects donor HLA typing from laboratories includ-
ing primary data which contain extensive details on the exact tests
performed and the presence and absence of specific oligonucleo-
tide sequences. Alleles are described with the first two fields of
HLA allele nomenclature, representing protein level assignment.
We combine alleles with amino acids identical in the antigen rec-
ognition site (ARS) since these sets of alleles (listed in Supplemen-
tary Table 1) are often not distinguished by current typing systems,
and genomic regions are not defined outside the ARS for many of
the alleles [7].

For sequence specific oligonucleotide (SSO) and sequence spe-
cific primer (SSP) methods, primary data consists of a list of the
probes used in the kit and their sequences, and the positive or neg-
ative result for each probe. For sequence based typing (SBT) meth-
ods, primary data includes the annealing location of the
amplification primers, the diploid sequence read and any hemizy-
gous reads resulting from group specific PCR or group specific
sequencing primers (GSSP). Primary data are transmitted electron-
ically to NMDP in an XML-based message format for interpretation
[8].

Given the primary HLA typing data and the list of all described
alleles for the IMGT/HLA database version 3.4.0, we calculated a
genotype list for each locus of all possible allelic combinations that
were consistent with the typing result for each subject for input
into EM [9]. Primary typing data have been reported only by labo-
ratories that have typed newly recruited donors since 1997. Of the
remaining HLA typings, those that were reported as unambiguous
alleles or in the NMDP allele code format were converted to geno-
type list format [9]. The typings reported in allele code format only
include alleles that existed when the typing was performed, and do
not consider newly described alleles that would have been consis-
tent with the result obtained.

We were unable to test for Hardy–Weinberg equilibrium (HWE)
on these samples because there are no methods to test for HWE
using ambiguous HLA typing data. We also could not calculate
HWE at the allele family level because many HLA typings contain
possible genotypes that include more than two allele families.
2.2. Ambiguity reduction and haplotype frequency estimation

Haplotype frequencies were calculated from genotype list data
using the expectation–maximization (EM) algorithm [2,3,5,10].
Some HLA typings have extremely high ambiguity, with as many
as 1022 possible six-locus haplotype pairs in the genotype list. Be-
cause of the computational challenges inherent in calculating hap-
lotype frequencies from these long genotype lists, we applied some
methods to reduce ambiguity of the genotype list input to EM.

We first calculated a minimum set of alleles that explain all
HLA typings in a population. Because many vanishingly rare al-
leles have been described in IMGT/HLA [11,12], and many ambig-
uous HLA typings contain possible alleles have never been
reported unambiguously to NMDP for a given population, we re-
moved these unlikely alleles from consideration. Our algorithm
started with a set of common alleles (frequency> = 1/2000) for
each broad race category [4] and attempted to interpret all pri-
mary data. During each iteration, we calculated which allele(s) al-
lowed the most previously uninterpretable HLA typings to be
assigned, then all genotype lists in the population sample were
reinterpreted with the addition of the new allele(s). Only haplo-
type pairs containing alleles in the abridged allele list were in-
cluded in the new genotype lists. Alleles removed from
consideration are very unlikely to exist in the population because
they are not required to interpret any of the HLA typings in the
large population sample.

After reducing the allele list, the HLA typing data were still far
too ambiguous to compute six-locus haplotype frequencies in a
single EM run, so we broke up the calculations into tractable
sub-problems. We ran EM on two-locus blocks beginning with
C�B and DRB3/4/5�DRB1 loci where linkage disequilibrium was
highest [13]. Using these haplotype frequencies, each subject in
the sample is imputed to get a list of their possible haplotype
pairs and probabilities up to a threshold of 99% cumulative prob-
ability. Next these reduced C�B and DRB3/4/5�DRB1 genotype
lists were treated as a single locus, or block, for the next EM step
where the A�(C�B) and (DRB3/4/5�DRB1)�DQB1 frequencies are
calculated. The final two-locus EM step combined the class I and
class II blocks to calculate six-locus haplotype frequencies
(A�(C�B))�((DRB3/4/5�DRB1)�DQB1). This blocks/imputation
approach significantly reduced the number of possible haplotype
pairs as haplotype blocks were extended, so only unlikely haplo-
type pairs were removed from consideration Using 16 3.0 GHz In-
tel Xeon CPUs, haplotype frequencies for the entire Be The Match
registry, consisting of 6.59 million donors, was completed within
one week.

Copy-number variation in HLA for DRB3/4/5 loci presents diffi-
culties for HLA haplotype analysis. DRB1 can be found on the same
chromosome as either DRB3, DRB4, DRB5, or none of the DRB3/4/5
genes [14]. Typings at these loci may have ambiguity for implicit
possible heterozygosity, where it is unknown if a subject is homo-
zygous for the DRB3/4/5 allele, or if they are heterozygous and lack
a DRB3/4/5 gene. In the NMDP registry, we roughly estimate that
25% of donors are typed for the DRB3 and DRB5 loci, and 5% for
the DRB4 locus; these estimates are inexact because reporting of
typing for the DRB3/4/5 genes is not routinely carried out by HLA
laboratories. DRB4 was inconsistently typed in our sample, with
some labs typing only for DRB1, DRB3 and DRB5, resulting in com-
plex heterogeneity in both typing methods and data. To generate
haplotype frequencies, the expectation–maximization (EM) algo-
rithm was modified to account for the structural and allelic ambi-
guity of DRB3/4/5 loci. In the EM algorithm we treated DRB3/4/5 as
a single locus since a maximum of one of these genes occurs per
chromosome.

Because no DRB3/4/5 typing intent was available, we developed
a novel method for practical calculation of haplotype frequencies
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that include DRB3/4/5. We restricted DRB3/4/5�DRB1 genotype
lists to only include DRB3/4/5 genes in associations that agreed
with the common DRB3/4/5�DRB1 linkages listed in Supplemen-
tary Table 2 [14]. The small fraction (<0.1%) of donors with HLA
typings that could not possibly align with the common linkage
rules were kept in with the fully enumerated genotype list, as
exceptions to these linkage rules have been described, for example
Tautz et al. [15].

2.3. Evaluation of genetic variation and population categories

We chose 21 population categories for analysis with the goal of
reflecting the genetic diversity of the populations in the USA regis-
try and to have adequate sample size to characterize the HLA
genetics of each category. Over the history of NMDP donor recruit-
ment, three different race/ethnicity questionnaires were used, with
49 race categories and three ethnic categories (Hispanic, Not His-
panic, and Ethnicity Not Asked) that totaled 147 race/ethnic com-
binations. To reduce this number of combinations to categories
that were distinct and statistically relevant, several techniques
based on Nei’s genetic distance [16], sample size, and population
definitions were applied. Subjects who self described in a way that
was too general or not widely applicable were included in the
broad categories (European American, African American, Asian or
Pacific Islander, Hispanic, and Native American). Because donors
from international donor centers are also listed in the US registry,
international donors were included in the broad categories. Indi-
viduals who indicated multiple race/ethnic categories were put
in a single Multiple Race category in the broad study, and were
not assigned to any of the detailed race categories.

We calculated pairwise Nei’s genetic distance on each race/eth-
nic combination using population haplotype frequencies. To visu-
alize the genetic distance between all population samples, we
created a population dendrogram using the nearest neighbor algo-
rithm in PHYLIP [17]. Populations that were highly similar to each
other genetically were grouped together, for example ‘‘North
American White’’ and ‘‘Western European’’ were grouped into
‘‘European Caucasian’’.

Another method we applied to visualize population variation
was principal component analysis (PCA), which summarizes fre-
quencies differences among thousands individual haplotypes into
a smaller number of dimensions. PCA was performed on the entire
haplotype frequency distribution of each population using MATLAB
R2011b [18]. 2-D plots were created using the principal compo-
nent pairs to display major trends of haplotype variation among
populations.

2.4. Sample populations

Table 1 lists the sample sizes (number of individuals) for the 21
populations used for the detailed race analysis, while Table 2 lists
the sample sizes for the broad race analysis. Samples in the de-
tailed population analysis are also included in the broad analysis,
as indicated by the ‘‘Broad race code’’ column in Table 2.
3. Results

High resolution HLA A�C�B�DRB3/4/5�DRB1�DQB1 haplo-
type frequencies were estimated for 21 detailed and five
broad populations and are available online (http://bioinformatics.
nmdp.org/haplotype2011). Allele frequencies for each of the six
HLA loci are also provided. We have also developed an online tool,
HaploStats, that can predict the haplotypes contributing to an
unphased HLA genotype based on these haplotype frequencies
(http://www.haplostats.org).
The most common haplotype observed within any population
was A�24:02 g�C�12:02�B�52:01 g�DRB5�01:02 g�DRB1�15:02
�DQB1�06:01, found in Japanese (JAPI) at a frequency of 7.8%. While
also seen in Koreans (KORI) at 1.9%, this haplotype was uncommon
in other populations, even among other Asian/Pacific Islanders.
The haplotype A�01:01 g�C�07:01 g�B�08:01 g�DRB3�01:01�DRB1�
03:01�DQB1�02:01 g was the next most common within popula-
tion haplotype at 6.5% in European Caucasians (EURCAU), but was
also common across other populations except Asians. Supplemen-
tary Table 3 summarizes frequencies for the 100 most common hap-
lotypes across populations.

The HLA-B locus had the highest allelic diversity ranging from
89 alleles observed in Alaskan Natives or Aleuts (ALANAM) to
530 in European Caucasians (EURCAU), while the DRB3/4/5 super-
locus had the least diversity (Table 3). A large fraction of the alleles
described in the IMGT/HLA database version 3.4.0 at the protein le-
vel were never seen in any of the 21 populations (510 of 1253 al-
leles observed in IMGT/HLA for A, 461 of 833 for C, 646 of 1703 for
B, 32 of 75 for DRB3/4/5, 228 of 714 for DRB1, and 35 of 107 for
DQB1). A more detailed summary of the number of common (fre-
quency of >1/2000), rare (<1/2000), and alleles not observed by
population is found in Supplementary Table 4. We also compare al-
lele frequencies across populations by locus in Supplementary
Table 5.

The number of haplotypes with an estimated count of greater
than one varied from 627 in Alaskan Natives or Aleuts (ALANAM)
to 37,215 in European Caucasians (EURCAU) (Table 3). Populations
with larger sample sizes tended to have more alleles and haplo-
types observed. The number of haplotypes required to reach a
cumulative 50% frequency varied from 88 in Vietnamese to 871
in African Americans (AAFA), keeping in mind this metric is also
sample size dependent. More isolated and more narrowly defined
populations had fewer common haplotypes (1/2000 in frequency
or greater), while populations with high genetic diversity and high
admixture [19,20] had haplotype frequency distributions with
more rare HLA haplotypes. A spreadsheet containing the ten most
common haplotypes from the perspective of each population is
available in Supplementary Table 6.

To validate the performance of our haplotype frequency estima-
tion method, we compared five-locus A�C�B�DRB1�DQB1 haplo-
type frequencies in European Caucasians from our full registry
dataset with a previous study of 12,768 Caucasian registry volun-
teers [4]. We found a very similar frequency distribution, indicat-
ing that our method is able resolve both phase and allelic
ambiguity well for common haplotypes (Fig. 1). However, fre-
quency estimates derived from the entire registry for a given hap-
lotype were always somewhat lower, primarily because of much
larger sample sizes. As sample size increases, newly observed hap-
lotypes decrease the frequency of common haplotypes. Another
contributor to the differences is that allelic ambiguity in the full
registry typings also could not be resolved for all rare haplotypes,
just as some phase ambiguity cannot be resolved in high resolution
typings.

HLA polymorphism was studied for all 21 populations within
and among the five major broad population categories. The dis-
tribution of haplotype frequencies by race/ethnicity is shown in
Supplementary Fig. 7A–E. The height of each curve denotes the
percentage of HLA haplotypes in the population with frequency
less than the value on the horizontal axis. The median haplotype
frequency (the value at which there is a 50% chance that a ran-
domly selected haplotype would have a greater frequency) var-
ied from 1.7E-3 in Alaskan Natives or Aleuts to 1.9E-4 in
African-Americans. On average the HLA polymorphism is highest
among African–Americans and lowest among Native Americans
with Asian, European Caucasian and Hispanic populations falling
at intermediate frequencies. The differences in polymorphism
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Table 1
Size of haplotype frequency-generating samples by detailed race category. The ‘‘Count’’ column indicates the number of A, B, DRB1-typed samples, and the ‘‘Typed C’’, ‘‘Typed
DQB1’’; ‘‘Typed DRB3/4/5’’ columns indicate the number of those individuals with typing at those loci.

Race code Detailed race/ethnic description Broad race group Count Typed C Typed DQB1 Typed DRB3/4/5

AAFA African American AFA 416581 99946 16178 134076
AFB African AFA 28557 6975 1488 8516
AINDI South Asian Indian API 185391 29635 8409 44484
AISC American Indian – South or Central Am. NAM 5926 1255 228 894
ALANAM Alaska native or Aleut NAM 1376 288 100 347
AMIND North American Indian NAM 35791 7006 2398 13821
CARB Caribbean black AFA 33328 10012 1856 9115
CARHIS Caribbean hispanic HIS 115374 21286 4420 31097
CARIBI Caribbean Indian NAM 14339 5631 937 1372
EURCAU European caucasian CAU 1242890 395676 81106 212472
FILII Filipino API 50614 15272 1919 14738
HAWI Hawaiian or other Pacific Islander API 11499 3110 505 3355
JAPI Japanese API 24582 3552 852 7886
KORI Korean API 77584 11656 2107 25082
MENAFC Middle Eastern or N. Coast of Africa CAU 70890 22337 4415 17609
MSWHIS Mexican or Chicano HIS 261235 50875 12721 85021
NCHI Chinese API 99672 16621 3753 23569
SCAHIS Hispanic – South or Central American HIS 146714 31446 5764 29331
SCAMB Black – South or Central American AFA 4889 927 203 1677
SCSEAI Southeast Asian API 27978 5579 1321 3946
VIET Vietnamese API 43540 10511 1032 2446

Table 2
Size of haplotype frequency-generating samples by broad race category. The ‘‘Count’’ column indicates the number of A, B, DRB1-typed samples, and the ‘‘Typed C’’, ‘‘Typed
DQB1’’; ‘‘Typed DRB3/4/5’’ columns indicate the number of those individuals with typing at those loci.

Broad race code Race/ethnic description Count Typed C Typed DQB1 Typed DRB3/4/5

AFA African American 505 250 123 871 21 408 156 764
API Asian or Pacific Islander 568 597 104 027 21 814 142 755
CAU Caucasian 3 912 440 1 808 061 502 117 1 596 577
HIS Hispanic 712 764 166 192 31 700 163 539
NAM Native American 46 148 9 533 2 977 15 469

Table 3
Number of haplotypes and alleles observed in 21 detailed populations. ‘‘Haplos’’ – Number of estimated haplotypes, ‘‘Haplos > 1’’ – Number of haplotypes with an estimated count
of greater than 1, ‘‘HaplosTo50’’ – Number of haplotypes required to reach 50% frequency.

Race code Haplos Haplos > 1 HaplosTo50 Number of alleles observed

A C B DRB3/4/5 DRB1 DQB1

AAFA 167349 32976 871 200 119 328 24 181 25
AFB 41256 8595 829 150 64 197 12 102 20
AINDI 64210 15594 318 167 70 242 15 160 23
AISC 15717 2415 279 77 39 194 10 77 16
ALANAM 6616 627 95 59 27 89 10 47 16
AMIND 27470 6193 238 123 60 211 15 113 20
CARB 45617 9004 721 133 59 191 14 110 19
CARHIS 54190 13975 295 156 55 243 16 145 19
CARIBI 18606 4253 265 91 46 170 10 88 18
EURCAU 132724 37215 203 317 184 530 32 278 41
FILII 26035 5722 98 101 63 173 13 106 18
HAWI 15903 2621 110 89 37 160 10 83 15
JAPI 18329 3301 104 92 37 147 12 73 15
KORI 30070 6713 141 127 47 174 15 93 18
MENAFC 53507 13176 573 166 93 255 18 157 17
MSWHIS 103378 21423 381 211 97 305 21 169 25
NCHI 48794 9557 169 131 57 228 14 135 17
SCAHIS 98162 20101 671 203 82 327 16 161 22
SCAMB 17566 2493 619 72 35 166 10 61 16
SCSEAI 34633 6716 414 92 54 175 14 113 18
VIET 28544 5186 88 87 47 150 11 76 17
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can be attributed to a combination of sample size and the HLA
diversity of the population being sampled. For smaller popula-
tion samples such as Alaskan Natives or Aleuts, there were pla-
teaus in frequency for haplotypes with a count of one or two,
while for larger populations the frequency distribution is
smoother at this scale. Because of the paucity of complete HLA
typing, 6-locus estimates have lower accuracy when sample size
is small, however the 3-locus A�B�DRB1 estimates may be more
robust.

Fig. 2 shows the Nei’s genetic distance using haplotype frequen-
cies obtained by the nearest neighbor approach. Major continental
groups tended to appear in separate branches of the tree, while ad-
mixed Hispanics are in intermediate levels. The longer length of
the branches of the tree between the Asian populations shows



Fig. 1. Comparison of top 40 5-locus A�C�B�DRB1�DQB1 haplotype frequencies between Caucasians from the full registry dataset and the 2007 high resolution dataset [1].
‘‘Freqdiff’’ is the difference in frequency between the 2 datasets.

Fig. 2. Nei’s Genetic Distance calculated using haplotype frequencies for 21
populations. Corresponding broad race categories for subtrees are shown. Popula-
tions are described in Table 1.
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more dramatic HLA variation within Asia, while other populations
are more similar to one another within broad race categories.

We used principal components to visualize haplotype fre-
quency variation among the 21 populations in Fig. 3A and B. The
first three principal components represent 29%, 19%, and 12% of
the total variation in frequency. The first principal component does
well at distinguishing between continental groups. The second
principal component only separates Asian populations from Japa-
nese on one end to Vietnamese on the other, again illustrating
the relatively high level of population differentiation among the
Asian–American groups.

The summed pairwise Kendall rank correlations of haplotype
frequencies measures the similarity of each population against all
others. This is illustrated by a depiction of pairwise correlations
among haplotype frequencies (Fig. 4). Populations with high levels
of admixture or European populations who are the ancestral sources
Fig. 3. (A) First two principal components of haplotype frequencies for 21
populations. (B) First and third principal components of haplotype frequencies for
21 populations.



Fig. 3 (continued)
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of admixture, on the right and bottom of the figure, have relatively
high frequency correlation with other populations. The Middle East-
ern/North Coast of Africa population was the most similar to the
others in terms of haplotype frequencies. Meanwhile, more isolated
Asian populations and Alaskan Natives or Aleuts on the top and left
of the figure were the most dissimilar from one another.

4. Discussion

The six-locus HLA A�C�B�DRB1�DRB3/4/5 haplotype frequen-
cies of populations described here improve upon previous HLA
Fig. 4. Heat map of Kendall rank correlation of population haplotype frequencies ordered
haplotype studies in the dimensions of sample size, number of loci,
population specificity, and in the comprehensive use of available
typing data. Because of the large sample size, it is possible to eval-
uate the relative frequencies of many rare alleles and haplotypes
for the first time. Interestingly, hundreds of alleles described in
the IMGT/HLA database were not seen in our population study con-
sisting of 6.59 million individuals, suggesting that they are unlikely
to be seen again.

The accuracy of HLA haplotype frequency estimates depends on
the typing method employed. Early HLA typing based on serology
had high levels of mistyping and therefore was not deemed ade-
quate for this study, which utilized only donors typed by DNA
based methods. A large fraction of recruitment typing used oligo-
nucleotide probe hybridization, which provides limited coverage
of polymorphic sites in the HLA genes. As a result, we observed that
some alleles were never distinguished from one another in any
individual within a given population, for example DRB1�03:18
and DRB1�03:28 in European Caucasians. DNA sequencing based
methods have lower ambiguity, although some genotypic ambigu-
ity remains in diploid sequences. Higher resolution typing identi-
fies alleles to the specific protein level, but still does not give
haplotype phase information. As ambiguity decreases, ascertain-
ment of haplotype frequencies improves.

One barrier to calculating haplotype frequencies has been vari-
ation in the form of HLA typing data due to changes in typing
methods and reagents. HLA data representation also impacts the
amount of information derived from an HLA assignment. Unfortu-
nately, the NMDP allele letter code system [9], commonly used to
compress lists of alternative genotypes, can result in inclusion of
genotypes that were excluded by the typing method. To counter
this we used HLA typings in genotype list format computed from
re-interpreted primary data when available. Furthermore, without
by the sum correlation ranging from high correlation (red) to low correlation (blue).
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primary typing data, the only allelic possibilities considered in the
laboratory assignment are those alleles described at the time the
typing was performed, even though new alleles are constantly dis-
covered, so should be included as possibilities. We encourage the
use of HLA data standards, such as the genotype list format, that
transmit the maximum amount of information about the tests per-
formed [21].

The runtime of frequency estimation algorithms is sensitive to
population sample size, genetic diversity, and HLA typing ambigu-
ity. Because of extensive computational challenges in estimating
haplotype frequencies from highly ambiguous typing data, heuris-
tics were required to reduce the amount of ambiguity. Abridging
the allele list to only the alleles required to describe all subjects
may result in a slight bias towards common alleles. To achieve
computational tractability, low probability haplotype pairs were
explicitly removed from consideration by EM as haplotype blocks
were extended, which also biased the frequencies slightly towards
common haplotypes.

Improved haplotype frequencies aid in donor selection pro-
cesses, shortening the time-to-transplant from preliminary search,
and reducing the number of samples fruitlessly tested for a match
with extended typing. We observed such improvements after the
HapLogic™ III matching algorithm, released in 2011, began utilizing
the frequencies described here. This matching algorithm orders the
list of potentially matched donors in a search report for a given pa-
tient by the donor’s likelihood of being allele matched. HapLogic’s™

match probability calculations begin with imputation, which pro-
duces a list of a subject’s possible most likely phased multilocus
genotypes and their corresponding genotype probabilities, given
the HLA typing and population haplotype frequencies. Using more
population categories gives more accurate predictions because HLA
frequencies can vary dramatically within the broader race/ethnic
categories [22]. Using haplotype frequency distributions calculated
from more subjects decreases sampling error and results in fewer
cases where no possible haplotype pairs can explain a subject’s
HLA typing. Typing information at the DRB3/4/5 locus, while not
often considered in clinical matching between donor and recipient,
can help infer alleles present at DRB1 and DQB1 loci. The practical
operational use of these frequencies is being realized today.

Modeling of HLA match rates can be performed using HLA hap-
lotype frequencies [23]. A population genetic model incorporating
registry size and assuming random assortment of haplotypes in
individuals is an effective predictor of match rates for a given pa-
tient population, assuming haplotype frequencies adequately re-
flect the overall population. Large population samples in the
range of tens of thousands per population are required for model-
ing match rates because the shape of the haplotype frequency dis-
tribution in a large part determines the match rate, and poor
sampling can truncate this distribution relative to the true
population.

Many disease association and other research studies of large
populations are limited by the high cost of HLA typing, the com-
plexity of the data, and thus may only analyze the data at low
resolution. Applying HLA imputation using haplotype frequencies
can inexpensively reduce HLA typing ambiguities post hoc [24],
providing high resolution associations. In addition, algorithms
that have been developed to infer HLA by linkage with other
SNPs in genome wide studies where HLA is not specifically typed
can benefit from improved haplotype frequency reference data
[25].

We plan on making regular public updates to these frequency
estimates over time. While HLA frequencies would ideally change
very little over time, continued accumulation of volunteer donors
and higher resolution HLA typing methods will yield continually
improving haplotype estimates, especially for rare types in minor-
ity populations. These frequencies complement a prior analysis in
which each HLA allele was categorized as common or rare based
on observations in laboratories around the world [11]. A larger pro-
portion of high resolution or sequence based typing would give
more accurate allelic determination within allele families. Because
of the high level of allelic ambiguity in the input data, a large num-
ber of haplotypes had estimated fractional counts compared to
what would be seen for high resolution typed datasets where only
phase is estimated. Most donors lacked typing at HLA-C, HLA-
DQB1, and HLA-DRB3/4/5, so more comprehensive typing could
improve allelic determination especially at these loci. The DQ mol-
ecule also consists of the polymorphic DQA1 gene product, which
is not considered here. Similarly inclusion of the rarely typed
DPA1 and DPB1 genes would give complete extended haplotypes
for these polymorphic HLA loci [26]. Public accessibility to the best
available HLA data has significant benefits to the immunogenetics
community.

The number of specific population categories may change over
time as sample size increases and volunteer donor race/ethnicity
information is improved. For example, the current race/ethnic
categories in the recruitment questionnaire may not adequately
capture the individual’s ancestry. For this study we also did not
address the issue of individuals listing more than one race, which
are becoming increasingly common in the US [27]. Multi-race
individuals are complex to analyze because the number of differ-
ent population combinations reduces sample size and high pro-
portions of first generation admixture leads to divergence from
Hardy–Weinberg equilibrium assumed by the EM algorithm.
Cryptic population substructure, such as the Ashkenazi Jewish
subpopulation within Europeans, also confounds this analysis
[28]. As improved methods for self reporting population identity
and measuring genetic ancestry are applied to donor registries,
more distinct subpopulations can be captured. Analyzing world
populations more comprehensively through application of our de-
scribed methods to the registries of Bone Marrow Donors World-
wide (BMDW) could substantially improve the global donor
search process [29].

We conclude that these reference haplotype frequencies are of
significant practical use in the hematopoietic stem cell registry,
clinical transplant, and other immunologic research settings.
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