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“Space”, “map”, “(para)compactum”, “fo” will be used instead of “topological space”, “continuous mapping between
spaces”, “(para)compact Hausdorff space”, “functionally open”, respectively. Only the covering dimension dim defined by
means of finite fo covers is considered. Below r = 0,1, . . . ,∞ and for a set A, A∗ and A∗

∅ denote the sets of all finite and,
respectively, of all finite non-empty subsets of A.

In [4] and [5], a subspace X of a space Y was called d-right (in Y ) if, for any fo subset U of X , there exists a σ -locally
finite and fo in X family ν such that U = ⋃

ν and any V ∈ ν has a fo piecewise extension W = W (V ) in Y , i.e., W is fo
in Y and V is closed–open in W ∩ X .

It was announced in [4] and proved [5] that

dim X � dim Y (∗)

if X is d-right in Y .
In [1], the d-rightness and the cited result were generalized in the following way (note that, for a map f : X → [0,1],

coz f = f −1(0,1]).
A subspace X of a space Y is called countable accessible if for every fo set G of X there exists a system [ f ] of maps

f is : X → [0,1], i ∈ N, s ∈ S , such that each f is|coz f is has a continuous extension over Y (to [0,1]), {coz f is: s ∈ S} is locally
finite in X for each i, and G is open in the topology τ on X generated by [ f ], i.e., all sets f −1

is O , where O is open in [0,1],
i ∈ N, s ∈ S , is a subbase for τ .

It was shown in [1] that (∗) is true if X is a countable accessible subspace of Y .
In our paper this result will be generalized.
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1. Topology generated by a family of subspaces

Recall one definition and some assertions.
Let we have a space (Z , τ ) and its cover Q by its subspaces.
A subset O of Z will be called Q-open if for any Q ∈ Q, the set O ∩ Q is open in Q . Evidently,

the family τQ of all Q-open sets is a topology on the set Z called the topology generated by Q;
the identical mapping idQ of (Z , τQ) onto (Z , τ ) is continuous;
for any Q ∈ Q, the identical map idQ Q of Q ⊂ (Z , τQ) onto Q ⊂ (Z , τ ) is a homeomorphism;
a set F ⊂ Z is closed in (Z , τQ) iff F ∩ Q is closed in Q ⊂ (Z , τ ) for any Q ∈ Q; and
if (Z , τ ) is Hausdorff then (Z , τQ) is also Hausdorff.

Since idQ Q is a homeomorphism for any Q ∈ Q we have the following lemma.

Lemma 1.1. Let a map f : X → (Z , τ ) be such that for any x ∈ X, there exist a neighborhood O x of x and Q ∈ Q with f O x ⊂ Q . Then
the mapping f Q : X → (Z , τQ) such that f = idQ ◦ f Q is continuous.

Proposition 1.2. Let (Z , τ ) be Hausdorff ; all Q ∈ Q be perfectly normal and closed in (Z , τ ); Q = ⋃{Qn: n = 0,1, . . .}; Zn = ⋃
Qn

be closed in (Z , τ ); Zn ⊂ Zn+1; (∗) for any Q ∈ Qn and k � n, Q ∩ Zk be contained in the union of finite many elements of Qk;
the family 〈Q0〉 = Q0 be disjoint and open in Z0 and the families 〈Qn+1〉 = {〈Q 〉 = Q \ Zn: Q ∈ Qn+1} be disjoint and open in
Zn+1 ⊂ (Z , τ ), n = 0,1, . . . .

Then all Q ∈ Q and all Zn are closed in (Z , τQ); (∗∗) F ⊂ Zn is closed in Zn ⊂ (Z , τQ) (and in (Z , τQ)) iff F ∩ Q is closed in
Q ⊂ (Z , τ ) for any Q ∈ ⋃{Qi: i = 0,1, . . . ,n}; (Z , τQ) is perfectly normal.

If

(∗∗∗) dim Q � r for any Q ∈ Q0 and dim〈Q 〉 � r for any Q ∈ Qn, n = 1,2, . . . ,

then dim(Z , τQ) � r, r = 0,1, . . . .

Proof. Since all idQ Q are homeomorphisms, all Q ⊂ (Z , τQ) are perfectly normal.
Since idQ is a condensation, all Q and Zn are closed in (Z , τQ); the family 〈Q0〉 is disjoint and open (and so discrete)

in Z0 ⊂ (Z , τQ); and the family 〈Qn+1〉 is disjoint and open in Zn+1 ⊂ (Z , τQ) (and so it is discrete in its own union as
a subspace of (Z , τQ)), n = 0,1, . . . . Hence 〈Z0〉 = Z0 ⊂ (Z , τQ) and 〈Zn〉 = ⋃〈Qn〉 ⊂ (Z , τQ), n = 1,2, . . . , are perfectly
normal.

Take F ⊂ Zn . If F is closed in Zn ⊂ (Z , τQ) and Q ∈ ⋃{Qi: i = 0,1, . . . ,n} then F ∩ Q is closed in Q as a subspace of
(Z , τQ). Since idQ Q is a homeomorphism, F ∩ Q is closed in Q as a subspace of (Z , τ ). Let F ∩ Q be closed in Q as a
subspace of (Z , τ ) for any Q ∈ ⋃{Qi: i = 0,1, . . . ,n}. Take Q ∈ Qk for k > n. Then there exist Q i ∈ Qn , i = 1, . . . , p, such
that Q ∩ Zn ⊂ Q 1 ∪ · · · ∪ Q p . It follows from this that F ∩ Q = F ∩ Q ∩ Zn = F ∩ Q ∩ (Q 1 ∪ · · · ∪ Q p) = (F ∩ Q 1 ∩ Q ) ∪ · · · ∪
(F ∩ Q p ∩ Q ). Since (F ∩ Q i) ∩ Q , i = 1, . . . , p, are closed in (Z , τ ), F ∩ Q is closed in (Z , τQ) and in Zn ⊂ (Z , τQ).

Fix n = 1,2, . . . . The set 〈Q 〉 ∈ 〈Qn〉 is open in the perfectly normal space Q . Hence it is the union of closed in Q (and
so in (Z , τQ)) sets F Q ni , i ∈ N. Take Q ′ ∈ Qk , k � n. If k < n then Fni ∩ Q ′ = ∅. If k = n then Fni ∩ Q ′ = F Q ′ni . Hence, by
(∗∗), Fni is closed in Zn ⊂ (Z , τQ) and so in (Z , τQ). Thus 〈Zn〉 is the union of countably many closed in (Z , τQ) perfectly
normal subspaces and so (Z , τQ) also is the union of countably many closed and perfectly normal subspaces. Hence every
open in (Z , τQ) set is of type Fσ .

Let us prove that (Z , τQ) is normal.
Take a closed in (Z , τQ) set F and a map f of F to the unite segment I = [0,1].
Since every Q ∈ Q0 is perfectly normal, there exists a continuous extension f Q : Q → I of f |F∩Q . Let f ′

0 be equal to f Q
on every Q ∈ Q0. Then, f ′

0 is continuous on Z0 ⊂ (Z , τQ). Let f0 be equal to f on F and to f ′
0 on Z0. Since Z0 is closed in

(Z , τQ), f0 is continuous on F ∪ Z0 ⊂ (Z , τQ). Take Q ∈ Q1. Since Q ∩ (F ∪ Z0) is closed in Q and Q is perfectly normal,
there exists a continuous extension f Q : Q → I of f0|Q ∩(F∪Z0) . Let f ′

1 be equal to f Q on every Q ∈ Q1. Evidently, f ′
1 is

defined correctly. Since Z0 ⊂ Z1, as above, f ′
1 is continuous on Z1 ⊂ (Z , τQ). If f1 is equal to f on F and to f ′

1 on Z1 then,
also as above, f1 is continuous on F ∪ Z1 ⊂ (Z , τQ). Evidently, f1|F = f and f1|Z0 = f0. In the same way we can define
maps fn of F ∪ Zn ⊂ (Z , τQ) to I , n = 2,3, . . . , such that fn|F = f , and fn|Zn−1 = fn−1. If f∞ : (Z , τQ) → I is equal to fn on
F ∪ Zn , n = 0,1, . . . , then f∞ is continuous on every Q ∈ Q and so is continuous. Thus (Z , τQ) is normal (and Hausdorff).
Hence (Z , τQ) is perfectly normal.

If we have (∗∗∗) for any Q ∈ Q then dim Z0 � r and dim F Q ni � r for any Q ∈ Qn , n, i ∈ N, Since the family {F Q ni: Q ∈
Qn} is discrete in Fni ⊂ (Z , τQ) we have that dim Fni � r. By the sum theorem, dim(Z , τQ) � r. �

The following is evident.

Lemma 1.3. Let a map g : (Y , τ ′) → (Z , τ ) and families Q′ and Q of subsets of Y and Z , respectively, be such that for any F ′ ∈ Q′ ,
we have g F ′ ⊂ F for some F = F (F ′) ∈ Q. If gQ′ Q : (Y , τQ′ ) → (Z , τQ) is such that for the identical maps idQ′ : (Y , τQ′ ) → (Y , τ ′)
and idQ : (Z , τQ) → (Z , τ ), we have idQ ◦gQ′ Q = g ◦ idQ′ then gQ′ Q is continuous.
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2. σ -products

If Z is a subset of the Cartesian product of sets Zα , α ∈ A, and z ∈ Z then zα denotes the αth coordinate of z.
We shall consider pointed spaces, i.e., spaces with a fixed point. For a space Z with a fixed point, if this point is not

denoted specially it will be denoted by 0z (note that always 0[0,1] = 0) and the set Z \ {0Z } will be denoted by co 0Z . For
a space Z with a fixed point and a map f : X → Z , the set f −1 co 0Z will be denoted by coz f . For a system of maps
[ f ] = { fα: α ∈ A} of a space X to pointed spaces Zα , α ∈ A, coz[ f ] will denote the family {coz fα: α ∈ A}.

Let we have a system [Z ] of pointed spaces Zα , α ∈ A. The subspace (σ[Z ] ≡ σ Z) = σ {Zα: α ∈ A} of the Tychonoff
product Π of all Zα consisting of all points z ∈ Π such that |{α ∈ A: zα �= 0Zα }| < ω is called the σ -product of the
system [Z ]. The point z of σ Z such that zα = 0Zα for any α will be denoted by 0σ[Z ] ≡ 0σ Z or 0[Z ] .

If for a system of maps [ f ] = { fα: α ∈ A} of a space X to pointed spaces Zα , α ∈ A, the family coz[ f ] is point-finite (in
particular, locally finite) then, evidently, �[ f ]X ⊂ σ[Z ] for the diagonal product �[ f ] of all fα . In such situations, we shall
suppose that �[ f ] is the map to σ[Z ] .

Let we have a system [Z ] of pointed spaces Zα , α ∈ A. For σ[Z ] and a ∈ A∗ , let (Q σ[Z ]a ≡ Q [Z ]a) = {z ∈ σ[Z ]: zα =
0Zα for any α ∈ A \ a} (thus Q [Z ]∅ = {0σ[Z ] }).

Then (Qσ[Z ]χ ≡ Q[Z ]χ ) = {Q [Z ]a: a ∈ A∗} and (Q[Z ]χ )n = {Q[Z ]a ∈ Q[Z ]χ : |a| � n}, n = 0,1, . . . , will be called, respec-
tively, the canonical family of subsets of the σ -product [Z ] and the nth part, of this family. (Note that (Q[Z ]χ )0 = {Q [Z ]∅}.)

If Z ⊂ σ[Z ] then Q Zχ = {Za: a ∈ A∗}, where Z∅ = Q [Z ]∅ and Za = Z ∩ Q [Z ]a for Q [Z ]a ∈ Q[Z ]χ , |a| > 0, and (Q Zχ )n =
{Za: a ∈ A∗, |a| � n}, n = 0,1, . . . , will be called, respectively, the canonical family of subsets of Z ⊂ σ[Z ] and the nth part of
this family.

Corollary 2.1. Let (Z , τ ) be a subspace of the σ -product σ[Z ] of spaces Zα with fixed points 0α = 0Zα , α ∈ A; Q Zχ be the canonical
family of subsets of (Z , τ ) ⊂ σ[Z ]; (Q Zχ )n be its nth part. Let also all finite products of spaces Zα be perfectly normal.

Then, for Q = Q Zχ , Qn = (Q Zχ )n and Zn = ⋃
Qn, n = 0,1, . . . , the space (Z , τQ) is perfectly normal and if dim(Q \ Zn−1) � r

for any Q ∈ Qn, n = 1,2, . . . , then dim(Z , τQ) � r, r = 0,1, . . . .

Since dim Z∅ � dim Q ∅ = 0 � r, the formulated corollary follows from Proposition 1.2.

3. Formulation of the main theorem

From this place of the paper P is a class of perfectly normal spaces such that

(1) P is hereditary, i.e., if X ∈ P and A ⊂ X then A ∈ P;
(2) P is finitely productive, i.e., finite topological products of elements of P are again elements of P;
(3) the weak factorization theorem for maps to elements of P holds, i.e., for a map f of a space X to a space Z ∈ P there exist

a space Y ∈ P and maps g : X → Y , h : Y → Z such that, f = h ◦ g and dim Y < dim X ; and
(4) for any X ∈ P and any open in X set U , there exist a pointed space R ∈ P and a map g : X → R such that U = g−1 co 0R

and the corestriction of g|U to co 0R is a homeomorphism.

Since the subset theorem is true for the dimension dim in the class of perfectly normal spaces, we can suppose that

g in point (3) is an onto map.

Let we have a system [Z ] of pointed spaces Zα and a system [ f ] of maps fα of a space X to Zα , α ∈ A.
Suppose that coz[ f ] is locally finite,
Let (Z ≡ Z[ f ]) = �[ f ]X . Since Z ⊂ σ[Z ] , we have the canonical family (Q ≡ Q[ f ]) = Q Zχ of subsets of Z , its nth parts

(Qn ≡ (Q[ f ])n) = (Q Zχ )n , the space Z[ f ]Q = (Z[ f ], (τQ[ f ] ≡ τQ[ f ] )) and the identical map idQ[ f ] of (Z[ f ], τQ[ f ]) onto the
subspace Z of σ[Z ] .

Lemma 1.1 implies the following assertion.

Proposition 3.1. If f[ f ] is the corestriction of �[ f ] to Z[ f ] then the mapping f[ f ]Q : X → Z[ f ]Q such that

f[ f ] = idQ[ f ] ◦ f[ f ]Q

is continuous.

Definition 3.1. For a space X , we shall say that systems [Z A(i)] of pointed spaces Zα ∈ P, α ∈ A(i), and systems of maps
[ f A(i)] = {( fα : X → Zα): α ∈ A(i)}, i ∈ N, are P-selecting (or they P-select) a subset G of X if all systems coz[ f A(i)] are
locally finite and, for Qi = Q[ f A(i)] , [ f i] = [ f A(i)] and the diagonal product f : X → (ZG = ∏{Z[ f i ]Qi : i ∈ N}) of all f[ f i ]Qi ,

we have that G = f −1 H for some open set H in ZG .



1912 B.A. Pasynkov / Topology and its Applications 155 (2008) 1909–1918
Definition 3.2. For a subspace X of a space Y , we shall say that systems [Z A(i)] of pointed spaces Zα ∈ P, α ∈ A(i), and
systems of maps [ f A(i)] = {( fα : X → Zα): α ∈ A(i)}, i ∈ N, are piecewise P-selecting (or they P-select piecewise) a subset G
of X in Y if these systems P-select the subset G of X and, for any α ∈ A = ⋃{A(i): i ∈ N}, there exists a continuous
extension f ′

α of fα |coz fα over Y .

Note that for Wα = coz fα and W ′
α = coz f ′

α , Wα is closed–open in W ′
α ∩ X .

Definition 3.3. A subspace X of a space Y will be called Pd-right (in Y ) if, for any fo subset G of X , there exist piecewise
P-selecting G in Y systems [Z(i)]G of pointed spaces and systems [ f (i)]G of maps of X to elements of [Z(i)]G , i ∈ N.

Theorem 3.2 (The main theorem). If a subspace X of a space Y is Pd-right then

dim X � dim Y .

The proof of the theorem is a complicated variant of the proofs of Theorem 17 from [3] and Theorem 1 from [5]. It will
be given below.

Let us indicate one possible variant of the class P.
Recall that μ-spaces are (topologically) subspaces of the countable products of Fσ -metrizable paracompacta. All μ-spaces

are perfectly normal and paracompact. Let Pμ be the class of all μ-spaces.
Evidently, the class Pμ of all μ-spaces is hereditary and finitely (even countably) productive. The factorization (and so

the weak factorization) theorem for maps to elements of Pμ is proved in [2]. Pass to property 4 of P.
First, let X be an Fσ -metrizable paracompactum, F be its closed subset and U = X \ F . Let X/F be the disjoint union

of U and a one-point set {0X } and qF : X → X/F be equal to idU on U and qF (F ) = {0X }. Take on X/F the topology so that
qF will become quotient. It is not difficult to prove that the corestriction of qF |U to U ⊂ X/F is a homeomorphism and that
X/F is an Fσ -metrizable paracompactum.

Now let X ∈ Pμ , F be its closed subset and U = X \ F . Then we can suppose that X is a subspace of the Tychonoff product
Π ′ of Fσ -metrizable paracompacta X(i), i ∈ N. Let pri be the projection of Π ′ to X(i). Take a map f : X → I = [0,1] such
that F = f −10. Then for the diagonal product gi of pri |X and f , F = (gi)

−1(X(i)×{0}), the set X(i)×{0} is closed in X(i)× I
and X(i) × I is an Fσ -metrizable paracompactum. Hence, without loss of generality, we can suppose that pri X = X(i) and
there exists a closed set F (i) in X(i) such that F = pr−1

i F (i) and so for U (i) = X(i) \ F (i), U = pr−1
i U (i). Take spaces

X(i)/F (i) and maps qF (i) . Then the diagonal product � : X → (Π = ∏{X(i)/F (i): i ∈ N}) of all qF (i) ◦ pri |X is such that
�(F ) = {0R = (0X(i))i∈N} and �|U is a topological embedding. Let R = �(X), V = R \ {0R} and g be the corestriction of
�|X to R . Then R as a subspace of Π is a μ-space, U = g−1 V = g−1 co 0R and the corestriction of g|U to co 0R is a
homeomorphism.

Corollary 3.3. If a subspace X of a space Y is (Pμ)d-right then dim X � dim Y .

Let us prove that the Pd-rightness is a generalization of the countable accessibility of X in Y .
In the definition of the countable accessibility cited in the beginning of the paper, the openness of G in the topology τ

means that there exists an open set H ′ in the Tychonoff product Π = ∏{Iis = [0,1]: i ∈ N, s ∈ S} such that G = f −1 H ′ ,
where f is the diagonal product �[ f ] of the system [ f ] of all f is . We can consider Π as the Tychonoff product of the
Tychonoff products Πi = ∏{Iis: s ∈ S}, i ∈ N. Then f is the diagonal product of the diagonal products f i = �[ f i] of the
systems of maps [ f i] = { f is: s ∈ S}, i ∈ N. Let Zi = Z[ f i ] = f i X and idi be the identical embedding of Zi in Πi . Then (see
Proposition 3.1 and Definition 3.1), for Qi = Q[ f i ] , f i is the composition of maps (gi = f[ f i ]Qi ) : X → Z[ f i ]Qi and (hi =
idi ◦ idQi [ f i ]) : Z[ f i ]Qi → Πi . If h : (ZG = ∏{Z[ f i ]Qi : i ∈ N}) → Π is the product of maps hi , i ∈ N, and g is the diagonal
product of gi , i ∈ N, then f = h ◦ g , H = h−1 H ′ is open in ZG and g−1 H = G . It follows from this that, for example, the
Pμ-rightness is a generalization of the countable accessibility.

It was proved in [5] that for a space Y with dim Y = 0 and its subspace X , dim X � dim Y iff X is d-right in Y . Hence
in this case i.e., for dim Y = 0, the countable accessibility of X in Y and the Pd-rightness of X in Y are equivalent to the
d-rightness of X in Y .

Problem 3.4. For what X and Y (and various P) are the d-rightness, the countable accessibility and the Pd-rightness or
some of these properties of X in Y equivalent?

Problem 3.5. When, for Tychonoff X and Y (and various P), are some of the following properties:

X × Y is piecewise rectangular (see [4,5]),
X × Y is countably accessible in β X × βY ,
X × Y is Pd-right in β X × βY

equivalent?

Note that as variants of P may be taken the class Pρ of all metrizable spaces and the class Pρω of all separable metrizable spaces.
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4. Inverse superspectra, their graphs, maps of spaces to superspectra and to their graphs

A system [R] = {(Ra,0a, Ua), pba; B}, where

B is a directed set,
Ra is a space, 0a is its fixed point, Ua = co 0a = Ra \ {0a}, a ∈ B,
maps pba : Ub → Ua are defined for b,a ∈ B, a � b,

will be called an inverse superspectrum (with the finite precedence if L(a) = {a′ ∈ A: a′ � a} is finite for each a ∈ B) if

paa = idUa , pba ◦ pcb = pca if a � b � c. (1)

Remark 4.1. For an inverse superspectrum [R] = {(Ra,0a, Ua), pba; B} the system {Ua, pba; B} is an inverse spectrum (≡ an
inverse system) of spaces.

If we have an inverse superspectrum [R] = {(Ra,0a, Ua), pba; B} then the σ -product σ[R] = σ {(Ra,0a): a ∈ B} is defined.
Let (see Section 2), for A ∈ B∗ , Q R A = Q σ[R] A (in particular, Q R∅ = ({0[R] = 0σ[R] })), πR A be the projection of σ[R] to the
face Q R A (in particular, πR∅(σ[R]) = {0[R]}); πR B A be the projection of Q R B to Q R A for A ⊂ B ∈ B∗ . Let Q Rχ = Qσ[R]χ . Thus
Q Rχ is the canonical family of subsets of the σ -product σ[R] .

Suppose now that [R] is a superspectrum with the finite precedence.
Take 〈ΓRa〉 = {t ∈ Q RL(a): tb = pabta for any b � a}, a ∈ B.
The subspaces Γ[R] = {0[R]}∪ (

⋃{〈ΓRa〉: a ∈ B}) and (Γ[R])n = {0[R]}∪ (
⋃{〈ΓRa〉: a ∈ B, |L(a)| � n}) of σ[R] will be called

the graph of [R] and the n-graph of [R], respectively, n = 1,2, . . .; (Γ[R])0 = {0[R]} will be called the 0-graph of [R].
Note that for any t ∈ 〈ΓRa〉, we have that tb ∈ Ub (and so tb �= 0b) if b � a (and tb = 0b if b /∈ L(a)); 〈ΓRa〉 ∩ 〈ΓRb〉 = ∅

if a �= b. Since paa = idUa , the diagonal product of all pab , b � a, is a homeomorphism of Ua onto 〈ΓRa〉 and the restriction
to 〈ΓRa〉 of the projection of the product Q RL(a) onto its factor Ra is a homeomorphism of 〈ΓRa〉 onto Ua . (Note that for
|L(a)| > 1, 〈ΓRa〉 coincides with the graph of the diagonal product of all pab , b � a, b �= a.) Hence

dim〈ΓRa〉 = dim Ua. (2)

If, additionally, Ra is perfectly normal then

dim〈ΓRa〉 = dim Ua � dim Ra. (3)

Put ΓRa = Γ[R] ∩ Q RL(a) , a ∈ B. Evidently, ΓRa = {0[R]} ∪ (
⋃{〈ΓRb〉: b � a}); all ΓRa are closed in Γ[R]; and for b � a and

πRba = πRL(b)L(a) , the following holds

πRbaΓRb = ΓRa; (4)

Γ[R] = ⋃{ΓRa: a ∈ B}; (Γ[R])n = ⋃{ΓRa: a ∈ B, |L(a)| � n}, n = 0,1, . . . , and (Γ[R])n is closed in Γ[R]; and for |L(a)| = n > 0,
the sets 〈ΓRa〉 = ΓRa \ (Γ[R])n−1 are open in (Γ[R])n .

Note that ΓRa are perfectly normal (even ΓRa ⊂ Q RL(a) ∈ P) if Ra ∈ P for all a ∈ B.

Corollary 4.1. Let we have an inverse superspectrum [R] = {(Ra,0a, Ua), pba; B} with the finite precedence and with Ra ∈ P, a ∈ B.
If dim Ra � r for any a ∈ B then dimΓRa � r for any a ∈ B.

If S ⊂ Γ[R] and Q S = {(Sa = S ∩ ΓRa): a ∈ B∗}, then (S, τQ S ) is a perfectly normal space with dim(S, τQ S ) � r.

Proof. Follows from Proposition 1.2 and (2). �
Proposition 4.2. Let we have a set A, an inverse superspectrum [R] = {(Ra,0a, Ua), pba; A∗

∅} and a system [h] of maps hα of spaces

R{α} to spaces Zα with fixed points 0′
α and open sets Vα = co 0′

α such that (hα)−1 Vα = Uα , α ∈ A. Then for [Z ] = {Zα: α ∈ A},
there exists a map (h = ([R], [h])) :Γ[R] → σ[Z ] such that

prσ[Z ]α ◦h = hα ◦ πR{α}|Γ[R] , α ∈ A, (5)

where prσ[Z ]α is the projection of σ[Z ] to its factor Zα and

h(0[R]) = 0[Z ], h(ΓRa) ⊂ Q [Z ]a, a ∈ A∗
∅. (6)

Let, additionally, S ⊂ Γ[R] , Q S = {(Sa = S ∩ ΓRa): a ∈ A∗}, Z = hS, hS be the corestriction of h|S to Z and Q = Q Zχ . Then

prσ[Z ]α ◦hS = hα ◦ πR{α}|S , α ∈ A, (7)

and there exists a map h(Q S)Q : (S, τQ S ) → (Z , τQ) such that

hS ◦ idQ S = idQ ◦ h(Q S)Q. (8)



1914 B.A. Pasynkov / Topology and its Applications 155 (2008) 1909–1918
Proof. For any t ∈ Γ[R] , put h(t) = {hα(πR{α}(t))}α∈A . It is easy to verify that this h and the correspondent hS are the
desired maps.

The rest follows from Lemma 1.3. �
For a space X , a system [g] of maps ga : X → Ra , a ∈ B, will be called a map of X to the superspectrum [R] if, for the sets

Wa = g−1
a Ua , we have the following

Wb ⊂ Wa and pba ◦ gb|Wb = ga|Wb if a � b. (9)

Recall that

if the family ν = coz[g] = {Wa = g−1
a Ua: a ∈ B} is point-finite then the diagonal product �[g] = �{ga: a ∈ B} : X → ∏{Ra: a ∈

B} is a map to σ[R] .
In this case the corestriction of �[g] to �[g](X) will be denoted by g = g([g]).

Proposition 4.3. Let we have a space X, a system [Z ] of spaces Zα with fixed points 0′
α and open sets Vα = Zα \ {0′

α}, a system
[ f A] of maps fα : X → Zα , α ∈ A, an inverse superspectrum [R A] = {(Ra,0a, Ua), pba; A∗

∅}, a system [hA] of maps hα : R{α} → Zα ,
α ∈ A, and a map [gA] = {(ga : X → Ra): a ∈ A∗

∅} of X to [R A] such that

fα = hα ◦ g{α}, α ∈ A;
U {α} = (hα)−1 Vα, α ∈ A; and

the family ν = {
Wα = ( fα)−1 Vα: α ∈ A

}
is locally finite.

Let C ⊂ A. Then we have the inverse superspectrum [R C ] = {(Ra,0a, Ua), pba; C∗
∅}, the system [Z C ] of spaces Zα , α ∈ C , the systems

[ f C ] of maps fα : X → Zα and [hC ] of maps hα : R{α} → Zα , α ∈ C , and the map [gC ] = {(ga : X → Ra): a ∈ C∗
∅} of X to [R C ];

(
S C = �[gC ](X)

) ⊂ Γ[R C ]; (10)

for gC = gC ([gC ]) and any α ∈ C ,

π(R C ){α}|S C ◦ gC = g{α}; (11)

for Q S C = {(S Ca = S C ∩ ΓRa): a ∈ C∗}, there exists a map gQ S C : X → (S C , τQ S C ) such that

gC = idQ S C ◦gQ S C ; (12)

there exists a map hC of S C onto a subspace Z C of the σ -product σ[Z C ] = σ {(Zα,0′
α): α ∈ C} such that

pr(σZ C )α ◦hC = hα ◦ πR C {α}|S C , α ∈ C, (13)

and, for QC = (QC )Z C χ , there exists a map h(Q S C )Q C : (S C , τQ S C ) → (Z C , τQ C ) such that

hC ◦ idQ S C = idQ C ◦h(Q S C )Q C ; (14)

for (�[ f C ]X = X[ f C ]) = Z C and the corestriction f C of �[ f C ] to Z C ,

f C = hC ◦ gC ; (15)

there exists a map f Q C : X → (Z C , τQ C ) such that

f C = idQ C ◦ f Q C ; (16)

f Q C = h(Q S C )Q C ◦ gQ S C . (17)

For the projection πR A C of σ[R A] onto σ[R C ] ,

πR A C S A = S C ; (18)

for the corestriction ψS A C of πR A C |S A to S C ,

gC = ψS A C ◦ gA; (19)

there exists a map ψQ S A C : (S A, τQ S A ) → (S C , τQ S C ), such that

ψS A C ◦ idQ S A = idQ S C ◦ψQ S A C (20)

and

gQ S C = ψQ S A C ◦ gQ S A , (21)

f Q C = h(Q S C )Q C ◦ ψQ S A C ◦ gQ S A . (22)
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Proof. Take x ∈ X . Put a(xC) = {α ∈ C : x ∈ Wα}. Then �[gC ](x) = 0σ [R C ] if a(xC) = ∅. Let a(xC) �= ∅. Then
�[gC ](x) ∈ Q RL(a(xC)) , (�[gC ](x))a(xC) = π(R C )a(xC)(�[gC ](x)) = ga(xC)x ∈ Ua(xC) and, for any b ∈ L(a(xC)), we have
pa(xC)b((�[gC ](x))a(xC)) = pa(xC)b(ga(xC)x) = gbx = (�[gC ](x))b . Hence �[gC ](x) ∈ Γ[R C ]a(xC) . Thus (S C = �[gC ](X)) ⊂ Γ[R C ] ,
we can consider the corestriction gC of �[gC ] to S C and, evidently, π(R C ){α}|S C ◦ gC = g{α} .

For the family Q S C indicated above, the existence of the required map gQ S C follows from the local finiteness of ν and
Lemma 1.1.

The existence of the required maps hC and h(Q S C )Q C follows from Proposition 4.2.
Take x ∈ X . Then �[ f C ]x = { fα(x)}α∈C = {hα ◦ g{α}(x)}α∈C = {hα ◦ π(R C ){α} ◦ gC (x)}α∈C = {pr(σ[Z C ])α ◦hC ◦ gC (x)}α∈C =

hC ◦ gC (x). Hence f C = hC ◦ gC and �[ f C ]X = Z C .
It follows from Lemma 1.1 that there exists a map f Q C : X → (Z C , τQ C ) such that f C = idQ C ◦ f Q C . Hence idQ C ◦ f Q C =

f C = hC ◦ gC = hC ◦ idQ S C ◦ gQ S C = idQ C ◦h(Q S C )Q C ◦ gQ S C and so f Q C = h(Q S C )Q C ◦ gQ S C .
Relations (18) and (19) are evident. Also it is evident that there exists a not necessary continuous mapping

ψQ S A C : (S A, τQ S A ) → (S C , τQ S C ), such that (20) is true. If 0[R A] ∈ S A then ψQ S A B 0[R A] = 0[R C ] . Let gA x ∈ 〈ΓR Aa〉 and
b = a ∩ C . If b = ∅ then ψQ S A C ◦ gA x = gC x = 0[R C ] . If b �= ∅ then ψQ S A C ◦ gA x = gC x ∈ 〈ΓR C b〉 ∩ S Cb ⊂ S Cb . By Lemma 1.3,
ψQ S A C is continuous.

At last, (21) is a simple consequence of (19) and f Q C = h(Q S C )Q C ◦ gQ S C = h(Q S C )Q C ◦ ψQ S A C ◦ gQ S A . �
Corollary 4.4. Let we have a space X, a system [Z A] of spaces Zα with fixed points 0′

α and open sets Vα = Zα \ {0′
α}, α ∈ A, a system

[ f A] of maps fα : X → Zα , α ∈ A, an inverse superspectrum [R A] = {(Ra,0′
a, Ua), pba; A∗

∅}, a system [hA] of maps hα : R{α} → Zα ,
α ∈ A, and a map [gA] = {(ga : X → Ra): a ∈ A∗

∅} of X to [R A] such that:

fα = hα ◦ g{α}, α ∈ A;
U {α} = (hα)−1 Vα, α ∈ A; and

the family ν = {
Wα = ( fα)−1 Vα: α ∈ A

}
is the union of locally finite families νi = {

Wα: α ∈ A(i)
}
, i ∈ N.

Then, for any N ∈ N
∗
∅ and B(N) = ⋃{A(i): i ∈ N}, the family νN = ⋃{νi: i ∈ N} is locally finite; we have the inverse superspectrum

[R B(N)] = {(Ra,0a, Ua), pba; B(N)∗∅}, the system [Z B(N)] of spaces Zα , α ∈ B(N), the systems [ f B(N)] of maps fα : X → Zα and
[hB(N)] of maps hα : R{α} → Zα , α ∈ B(N); the map [gB(N)] = {(ga : X → Ra): a ∈ B(N)∗∅} of X to [R B(N)];

(
S B(N) = �[gB(N)](X)

) ⊂ Γ[R B(N)]; (10′)

for gB(N) = gB(N)([gB(N)]) and any α ∈ B(N),

π(R B(N)){α}|S B(N)
◦ gB(N) = g{α}; (11′)

for Q S B(N) = {(S B(N)a = S B(N) ∩ ΓRa): a ∈ B(N)∗}, there exists a map gQ S B(N)
: X → (S B(N), τQ S B(N)

) such that

gB(N) = idQ S B(N)
◦ gQ S B(N)

; (12′)

there exists a map hB(N) of S B(N) onto a subspace Z B(N) of the σ -product σ[Z B(N)] = σ {(Zα,0′
α): α ∈ B(N)} such that

pr(σ[Z B (N)])α ◦hB(N) = hα ◦ πR B(N){α}|S B(N)
, α ∈ B(N), (13′)

and, for QB(N) = (QB(N))Z B(N)χ , there exists a map h(Q S B(N))Q B(N)
: (S B(N), τQ S B(N)

) → (Z B(N), τQ B(N)
) such that

hB(N) ◦ idQ S B(N)
= idQ B(N)

◦h(Q S B(N))Q B(N)
; (14′)

for (�[ f B(N)]X = Z[ f B(N)]) = Z B(N) and the corestriction f B(N) of �[ f B(N)] to Z B(N) ,

f B(N) = hB(N) ◦ gB(N); (15′)

there exists a map f Q B(N)
: X → (Z B(N), τQ B(N)

) such that

f B(N) = idQ B(N)
◦ f Q B(N)

; (16′)

f Q B(N)
= h(Q S B(N))Q B(N)

◦ gQ S B(N)
. (17′)

For N ⊂ M ∈ N
∗
∅ and the projection πMN of σ[R B(M)] onto σ[R B(N)] ,

πMN S B(M) = S B(N); (18′)

for the corestrictions ψMN of πMN |S B(M)
to S B(N) ,

gB(N) = ψMN ◦ gB(M); (19′)

there exists a map ψQMN : (SM = (S B(N), τQ S B(M)
)) → (SN = (S B(N), τQ S B(N)

)) such that

ψMN ◦ idQ S = idQ S ◦ψQMN , (20′)
B(M) B(N)
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and

gQ S B(N)
= ψQMN ◦ gQ S B(M)

, (21′)

f Q B(N) = h(Q S B(N))Q B(N)
◦ ψQMN ◦ gQ S B(M)

. (22′)

For N ⊂ M ⊂ L ∈ N
∗
∅ ,

ψQMN ◦ ψQLM = ψQLN . (23)

For the limit S of the countable inverse spectrum Sp = {SN ,ψQMN ; N ∈ N
∗
∅}, its projections ΨN : S → SN , the limit g : X → S of

maps gQ S B(N)
(i.e., gQ S B(N)

= ΨN ◦ g, N ∈ N
∗
∅), and (hi = h(Q S B({i}))Q B({i}) ◦ ΨB({i}) = h(Q S A(i))Q A(i) ◦ ΨA(i)) : S → ((Z B({i}) =

Z[ f B({i})], τQ B({i}) ) = (Z[ f A(i)], τQ A(i) ) = Z[ f A(i)]Q A(i) ),

hi ◦ g = f[ f A(i)]Q[ f A(i)] , i ∈ N. (24)

If Ra ∈ P and dim Ra � r, a ∈ A∗
∅ , then Si and S are perfectly normal spaces with dim Si � r and dim S � r, i ∈ N.

Proof. Relations (10′)–(22′) follow from the previous proposition and (23) follows from the equality πMN ◦ πLM = πLN .
Note that f Q B({i}) coincides with f[ f A(i)]Q[ f A(i)] and hi ◦ g = h(Q S B({i}))Q B({i}) ◦ ΨB({i}) ◦ g = h(Q S B({i}))Q B({i}) ◦ g(Q S B({i})) =

f Q B({i}) . This implies (24).
It follows from Corollary 4.1 that all spaces SN are perfectly normal and dim SN � r, N ∈ N

∗
∅ . Since the spectrum Sp has

a cofinal part that is an inverse sequence, we have that S , by Charalambous’s theorem on covering dimension of the limit
of an inverse sequence of perfectly normal spaces, is a perfectly normal space with dim S � r. �
Proposition 4.5. Let we have a space Y ; its subspace X ; spaces Zα with fixed points 0α and open sets Vα = co 0α and a system [ f ′

A]
of maps f ′

α : Y → Zα , α ∈ A; an inverse superspectrum [R A] = {(Ra,0a, Ua), pba; A∗
∅}; a system [hA] of maps hα : R{α} → Zα ,

α ∈ A; a map [g′
A] = {(g′

a : Y → Ra): a ∈ A∗
∅} of Y to [R A]; open–closed subsets Wα of X ∩ (W ′

α = ( f ′
α)−1 Vα), α ∈ A, such that

f ′
α = hα ◦ g′{α}, α ∈ A;

U {α} = (hα)−1 Vα

(
and so W ′

α = (g′{α})−1U {α}
)
, α ∈ A; and

(
W ′

a =
⋂

{W ′
α: α ∈ a}

)
= (g′

a)
−1Ua, a ∈ A∗

∅.

Let fα : X → Zα be equal to f ′
α on Wα and to 0α on X \ Wα ; ga : X → Ra be equal to g′

a on Wa = ⋂{Wα: α ∈ a} and to 0a on
X \ Wa.

Then

Wα = ( fα)−1 Vα, α ∈ A;
fα = hα ◦ g{α}, α ∈ A;
Wα = g−1

{α}U {α}, α ∈ A;
Wa = (ga)

−1Ua and Wa is open–closed in W ′
a, a ∈ A∗

∅;
the system [gA] = {

(ga : X → Ra}: a ∈ A∗
∅
}

is a map of X to [R A].

Proof. The proof is simple. �
5. Factorization of systems of maps by means of superspectra

We shall start with some preliminary considerations.
First we shall obtain the following (“pointed”) version of the weak factorization theorem.

Proposition 5.1. For any map f of a space X with dim X = r to a pointed space Z ∈ P, there exist a pointed space Y ∈ P and maps
g : X → Y , h : Y → Z such that f = h ◦ g, dim Y � r, g(coz f ) = co 0Y and h−10Z = {0Y }, h−1 co 0Z = co 0Y .

Lemma 5.2. Let f be a map of a space X with dim X = r to a pointed perfectly normal space Z . Then there exist a pointed space Y and
maps g : X → Y , h : Y → Z such that f = h ◦ g, dim Y � r, g(coz f ) = co 0Y and h−10Z = {0Y }, h−1 co 0Z = co 0Y .

Proof. Let F = f −10Z , W = f −1 co 0Z and Y be the disjoint union of W and a one-point set {0Y }. Take mappings g : X →
Y and h : Y → Z such that g|W = idW and g F ⊂ {0Y }, h|W = f |W and h0Y = 0Z . Evidently, f = h ◦ g , g(coz f ) = co 0Y

and h−10Z = {0Y }, h−1 co 0Z = co 0Y . Take the topology τ on Y with the subbase consisting of all open subsets of W as
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a subspace of X and all sets h−1 O , where O is open in Z . Then mappings g : X → (Y , τ ) and h : (Y , τ ) → Z are continuous
and the corestriction of g|W to W ⊂ Y is a homeomorphism.

Let us prove that dim Y � r.
Take a finite fo cover ν = {O 1, . . . , O k} of Y . Without loss of generality we can suppose that there exists a neighbor-

hood G of 0Z such that (V = h−1G) ⊂ O k and V ∩ O i = ∅, i < k. There exists a finite fo refinement μ of g−1ν = {g−1 O i: i =
1, . . . ,k} of order � r. Again without loss of generality we can suppose that μ = {U1, . . . , Uk} and Ui ⊂ g−1 O i , i = 1, . . . ,k.
Evidently, g−1 V ⊂ Uk . Since G is fo in Z , we have that V is fo in Y . Hence we can take a zero-set F in Y such that
0Y ∈ int F , F ⊂ V . Then the set (U ′

k = Uk \ g−1 F ) ≡ gU ′
k is fo in Y and so (U ′′

k = U ′
k ∪ V ) = gUk ∪ {0y} is fo in Y too.

Evidently, all gUi ≡ Ui , i < k, are also fo in Y and {Ui: i < k} ∪ {U ′′
k } is a refinement of ν of order � r. �

Proof of Proposition 5.1. Let we have a map f of a space X to a pointed space Z ∈ P. By the previous lemma, there
exist a pointed space Y ′ , a map g′ : X → Y ′ and a map h′ : Y ′ → Z such that f = h′ ◦ g′ , dim Y ′ � r, g′ coz f = co 0Y ′ and
(h′)−10Z = {0Y ′ }, (h′)−1 co 0Z = co 0Y ′ . By property 3 of P, there exist a space Y ∈ P and maps g′′ : Y ′ → Y and h : Y → Z
such that h′ = h ◦ g′′ and dim Y � dim Y ′ � r. Since P is hereditary, we can suppose that g′′ is an onto map. Evidently, for
g = g′′ ◦ g′ , we have that f = h ◦ g , g(coz f ) = co 0Y and h−10Z consists of one point. Let it be 0Y . Then h−10Z = {0Y } and
h−1 co 0Z = co 0Y . �
Lemma 5.3. Let we have a space Y of dimension dim Y = r; a finite set a with |a| > 1; a space Rb ∈ P with a fixed point 0b and
Ub = co 0b and a map g′

b : Y → Rb with g′
b(W ′

b = coz g′
b) = Ub and W ′

b = (g′
b)

−1Ub for any b ⊂ a, ∅ �= b �= a; maps pbc : Ub → Uc

for c ⊂ b such that

pbb = idUb , pbd = pcd ◦ pbc for d ⊂ c ⊂ b;
W ′

b =
⋂{

W ′
c: c ⊂ b, |c| = 1

}
and g′

c|W ′
b
= pbc ◦ g′

b|W ′
b
.

Then there exist Ra ∈ P of dimension dim Ra � r with a fixed point 0a and Ua = co 0a; a map g′
a : Y → Ra with g′

a(W ′
a = coz g′

a) = Ua

and W ′
a = (g′

a)
−1Ua; maps pab : Ua → Ub for b ⊂ a such that

paa = idUa and pac = pbc ◦ pab for c ⊂ b ⊂ a;
W ′

a =
⋂{

W ′
b: b ⊂ a, |b| = 1

}
and g′

b|W ′
a
= pab ◦ g′

a|W ′
a
.

Proof. Let
∏

a be the product of all Rb for b ⊂ a; prb be the projection of
∏

a to Rb; �a be the diagonal prod-
uct of all g′

b . Then
∏

a ∈ P and g′
b = prb ◦�a . Let V ′

a = ⋂{(prb)
−1Ub: b ⊂ a, |b| = 1} and W ′

a = (�a)
−1 V ′

a . Then
W ′

a = ⋂{(g′
b)

−1Ub: b ⊂ a, |b| = 1} = ⋂{W ′
b: b ⊂ a, |b| = 1}.

By property 3 of P, there exist a space R ′
a ∈ P of dimension dim R ′

a � r, a map g′′
a : Y → R ′

a and a map h′′
a : R ′

a → Πa such
that �a = h′′

a ◦ g′′
a . Since P is hereditary and the subset theorem is true for perfectly normal spaces, we can suppose that g′′

a
is an onto map. Let U ′

a = (h′′
a )−1 V ′

a . Evidently, U ′
a = g′′

a W ′
a and W ′

a = (g′′
a )−1U ′

a .
By property 4 of P, there exist a pointed space Ra ∈ P with a fixed point 0a and Ua = co 0a and a map ψ : R ′

a → Ra

such that U ′
a = ψ−1Ua and the corestriction χ of ψ |U ′

a
to Ua is a homeomorphism. Since dim Ua � dim R ′

a � r, we have
that dim Ra � r. Evidently, for g′

a = ψ ◦ g′′
a , coz g′

a = (g′
a)

−1Ua = W ′
a and g′

a W ′
a = Ua . It is easy to see that g′

a , paa = idUa ,
pab = prb ◦h′′

a ◦ χ−1 and W ′
a have the required properties. For example, for c ⊂ b ⊂ a, we have (because W ′

a ⊂ W ′
b ⊂ W ′

c)

pac ◦ g′
a|W ′

a
= prc ◦h′′

a ◦ g′′
a |W ′

a
= prc ◦�a|W ′

a
= g′

c|W ′
a
= pbc ◦ g′

b|W ′
a

= pbc ◦ prb ◦�a|W ′
a
= pbc ◦ prb ◦h′′

a ◦ g′′
a |W ′

a
= pbc ◦ pab ◦ g′

a|W ′
a
.

Since g′
a W ′

a = Ua , we have that pac = pbc ◦ pab . �
Proposition 5.4. Let we have spaces Zα ∈ P with fixed points 0α and Vα = co 0α , α ∈ A; a space Y with dim Y = r; and a system of
maps [ f ′] = { f ′

α : Y → Zα: α ∈ A}.
Then there exist an inverse superspectrum [R] = {(Ra,0a, Ua), pba; A∗

∅} a map [g′] = {(g′
a : Y → Ra): a ∈ A∗

∅} of Y to [R] and a

system [h] of maps hα : R{α} → Zα , α ∈ A, such that Ra ∈ P, dim Ra � r, a ∈ A∗
∅ , (U {α} = co 0{α}) = (hα)−1 Vα and f ′

α = hα ◦ g′{α} ,

α ∈ A. If W ′
α = coz( f ′

α) = ( f ′
α)−1 Vα and W ′

a = ⋂{W ′
α: α ∈ a} then W ′

a = coz(g′
a) = (g′

a)
−1Ua and g′

a W ′
a = Ua, a ∈ A∗

∅ .

Proof. By Proposition 5.1, there exist R{α} ∈ P of dimension dim R{α} � r with fixed points 0{α} and U {α} = co 0{α}; maps
g′{α} : Y → R{α} and hα : R{α} → Zα such that f ′

α = hα ◦ g′{α} , g′{α}W ′
α = U {α} , h−1

α 0α = {0{α}}, U {α} = h−1
α Vα . Then, for W ′{α} =

W ′
α , g′{α}W ′{α} = U {α} and W ′{α} = (g′{α})−1U {α} .
The required inverse superspectrum [R] is constructed using the previous lemma (induction on |a|, a ∈ A∗

∅). �
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6. Proof of the main theorem

Proposition 6.1. Let X be a subspace of a space Y and let, for any j ∈ N, systems [Z ji] of spaces Zα ∈ P with fixed points 0α and
Vα = co 0α , α ∈ A ji, and systems of maps [ f ji] = {( fα : X → Zα): α ∈ A ji}, i ∈ N, are piecewise P-selecting a subset G j of X .

Then there exists a perfectly normal space S, a map g : X → S and open subsets U j of S such that dim S � r and G j = g−1U j ,
j ∈ N.

Proof. Let A = ⋃{A ji: i, j ∈ N} and Wα = f −1
α Vα , α ∈ A.

By Definitions 3.1 and 3.2, for Q ji = Q[ f ji] and the diagonal product f j : X → (ZG j = ∏{Z[ f ji]Q ji: i ∈ N}) of all f ji =
f[ f ji]Q ji , we have that G j = f −1

j H j for some open set H j in ZG j ; there exists a system [ f ′
A] = {( f ′

α : Y → Zα): α ∈ A} of

continuous extensions f ′
α of fα |coz fα , and for any α, Wα is open–closed in (W ′

α = ( f ′
α)−1 Vα) ∩ X .

By Propositions 5.4 and 4.5, there exist an inverse superspectrum [R A] = {(Ra,0Ra, Ua), pba; A∗
∅}; a map [gA] =

{(ga : Y → Ra): a ∈ A∗
∅} of Y to [R A] and a system [hA] of maps hα : R{α} → Zα , α ∈ A, such that

dim Ra � r, a ∈ A∗
∅;

Wα = ( fα)−1 Vα, α ∈ A;
fα = hα ◦ g{α}, α ∈ A; and

U {α} = (hα)−1 Vα.

Since all families νi j = {Wα: α ∈ Ai j} are locally finite, by Corollary 4.4, there exist a perfectly normal space S with
dim S � r and maps g : X → S and h ji : S → Z[ f ji]Q ji such that f ji = h ji ◦ g , j, i ∈ N. Let h j be the diagonal product
�{h ji: i ∈ N}. Then f j = h j ◦ g and, for U j = (h j)

−1 H j , we have the relation g−1U j = G j , j ∈ N. �
Proof of the main theorem. Let dim Y = r. Take a finite fo cover ε = {G j: j = 1, . . . ,k} of X . By the previous proposition,
there exist a perfectly normal space S , a map g : X → S and open subsets U j of S such that dim S � r and G j = g−1U j ,
j = 1, . . . ,k. Since S is perfectly normal, we can suppose that S = g X . Then η = {U j: j = 1, . . . ,k} is a cover of S and so
there exists a finite refinement ζ of ε of order � r. Then δ = g−1ζ is a finite fo refinement of ε of order � r. �
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