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“Space”, “map”, “(para)compactum”, “fo” will be used instead of “topological space”, “continuous mapping between
spaces”, “(para)compact Hausdorff space”, “functionally open”, respectively. Only the covering dimension dim defined by
means of finite fo covers is considered. Below r=0,1, ..., cc and for a set .A, A* and A} denote the sets of all finite and,
respectively, of all finite non-empty subsets of A.

In [4] and [5], a subspace X of a space Y was called d-right (in Y) if, for any fo subset U of X, there exists a o -locally
finite and fo in X family v such that U =(Jv and any V € v has a fo piecewise extension W =W (V) in Y, ie, W is fo
in Y and V is closed-open in W N X.

It was announced in [4] and proved [5] that

dim X <dimY (%)

if X is d-rightin Y.

In [1], the d-rightness and the cited result were generalized in the following way (note that, for a map f:X — [0, 1],
coz f = f~1(0, 11).

A subspace X of a space Y is called countable accessible if for every fo set G of X there exists a system [f] of maps
fis:X—[0,1], i €N, s €S, such that each fis|co f;, has a continuous extension over Y (to [0, 1]), {coz fis: s € S} is locally
finite in X for each i, and G is open in the topology T on X generated by [f], i.e., all sets fl.;l 0, where O is open in [0, 1],
ieN, sesS, is a subbase for .

It was shown in [1] that (x) is true if X is a countable accessible subspace of Y.

In our paper this result will be generalized.
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1. Topology generated by a family of subspaces

Recall one definition and some assertions.
Let we have a space (Z, T) and its cover Q by its subspaces.
A subset O of Z will be called Q-open if for any Q € Q, the set 0 N Q is open in Q. Evidently,

the family tg of all Q-open sets is a topology on the set Z called the topology generated by Q;
the identical mapping idg of (Z, Tg) onto (Z, T) is continuous;

for any Q € Q, the identical map idgq of Q C (Z,7g) onto Q C (Z, T) is a homeomorphism;
aset FC Zisclosed in (Z, 1) iff FN Q is closed in Q C (Z, ) for any Q € Q; and

if (Z, T) is Hausdorff then (Z, o) is also Hausdorff.

Since idgq is a homeomorphism for any Q € Q we have the following lemma.

Lemma 1.1. Letamap f : X — (Z, t) be such that for any x € X, there exist a neighborhood Ox of x and Q € Q with fOx C Q. Then
the mapping fo : X — (Z, tg) such that f =idg o fg is continuous.

Proposition 1.2. Let (Z, T) be Hausdorff; all Q € Q be perfectly normal and closed in (Z,t); Q = J{Qn: n=0,1,...}; Zn=J On
be closed in (Z,7t); Zn C Zp+1; (%) forany Q € Qn and k <n, Q N Zy be contained in the union of finite many elements of Qk;
the family (Qp) = Qo be disjoint and open in Zo and the families (Qny1) = {{(Q) = Q \ Zn: Q € Qu41} be disjoint and open in
Zny1C(Z,T),n=0,1,....

Then all Q € Q and all Z,, are closed in (Z, tg); (x%) F C Z, is closed in Z, C (Z,tg) (and in (Z,t0)) iff F N Q is closed in
QC(Z.v)forany Q € J{Qi: i=0,1,...,n}; (Z, Tg) is perfectly normal.

If

(xxx) dimQ <rforany Q € Qg and dim(Q) <rforanyQ € Q,, n=1,2,...,
thendim(Z, 7o) <r,r=0,1,....

Proof. Since all idgq are homeomorphisms, all Q C (Z, o) are perfectly normal.

Since idg is a condensation, all Q and Z, are closed in (Z, 7g); the family (Qp) is disjoint and open (and so discrete)
in Zg C (Z,79); and the family (Qy41) is disjoint and open in Z,4+1 C (Z, 7o) (and so it is discrete in its own union as
a subspace of (Z,79)), n=0,1,.... Hence (Zg) = Zo C (Z,71g) and (Z,) = J(Qn) C (Z,Tg), n=1,2,..., are perfectly
normal.

Take F C Z,. If F is closed in Z, C (Z,7tg) and Q € |J{Q;: i=0,1,...,n} then FN Q is closed in Q as a subspace of
(Z,79). Since idgq is a homeomorphism, F N Q is closed in Q as a subspace of (Z, 7). Let FN Q be closed in Q as a
subspace of (Z, 1) for any Q € | J{Q;: i=0,1,...,n}. Take Q € Qy for k > n. Then there exist Q; € Qn, i=1,...,p, such
that Q NZ, C Q1 U---U Q. It follows from this that FNQ =FNQNZ,=FNQN(Q1U---UQp)=(FNQiNQ)U---U
(FNQpNQ).Since (FNQ;)NQ,i=1,...,p,areclosed in (Z,7), FN Q is closed in (Z, tg) and in Z;, C (Z, 7).

Fixn=1,2,.... The set (Q) € (Qy) is open in the perfectly normal space Q. Hence it is the union of closed in Q (and
so in (Z,tg)) sets Fqpui, i € N. Take Q' € Qk, k<n.If k <n then F;; N Q" =@. If k=n then Fp; N Q' = Fgy. Hence, by
(sx), Fp; is closed in Z, C (Z, Tg) and so in (Z, Tg). Thus (Z;) is the union of countably many closed in (Z, tg) perfectly
normal subspaces and so (Z, Tg) also is the union of countably many closed and perfectly normal subspaces. Hence every
open in (Z, Tg) set is of type Fy.

Let us prove that (Z, Tg) is normal.

Take a closed in (Z, Tg) set F and a map f of F to the unite segment I =[O0, 1].

Since every Q € Qp is perfectly normal, there exists a continuous extension fq : Q — I of f|rnq. Let f} be equal to fq
on every Q € Qo. Then, f is continuous on Zp C (Z, Tg). Let fo be equal to f on F and to f] on Zg. Since Zp is closed in
(Z,79), fo is continuous on F U Zg C (Z, tg). Take Q € Q;. Since Q N (F U Zp) is closed in Q and Q is perfectly normal,
there exists a continuous extension fq :Q — I of folgn(Fuzy). Let fl/ be equal to fq on every Q € Q;. Evidently, f{ is
defined correctly. Since Zo C Z1, as above, f] is continuous on Z; C (Z, 7). If f; is equal to f on F and to f] on Z; then,
also as above, fi is continuous on F U Z; C (Z, tg). Evidently, fi|r = f and fi1|z, = fo. In the same way we can define
maps f, of FUZ, C(Z,tg) toI,n=2,3,...,such that fy|r = f, and fulz, , = fu—1.If foc:(Z,T0) — I is equal to f, on
FUZ,,n=0,1,..., then fy is continuous on every Q € Q and so is continuous. Thus (Z, tg) is normal (and Hausdorff).
Hence (Z, o) is perfectly normal.

If we have (xxx) for any Q € Q then dimZy <r and dimFq,; <r for any Q € Oy, n,i €N, Since the family {Fqni: Q €
On} is discrete in Fy; C (Z, Tg) we have that dim Fy; <r. By the sum theorem, dim(Z, 79) <r. O

The following is evident.
Lemma 1.3. Let a map g: (Y, t') — (Z, v) and families Q' and Q of subsets of Y and Z, respectively, be such that for any F' € Q/,

we have gF' C F forsome F = F(F') € Q.Ifgo o : (Y, To) = (Z, To) is such that for the identical maps idg' : (Y, o) — (Y, T')
andidg: (Z,19) — (Z, 1), we have idg og o0 = g 0 idgr then ggr g is continuous.
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2. o -products

If Z is a subset of the Cartesian product of sets Zy, @ € A, and z € Z then z, denotes the ath coordinate of z.

We shall consider pointed spaces, i.e., spaces with a fixed point. For a space Z with a fixed point, if this point is not
denoted specially it will be denoted by 0, (note that always Ojg 1} = 0) and the set Z \ {0z} will be denoted by co0z. For
a space Z with a fixed point and a map f:X — Z, the set f~1co0; will be denoted by coz f. For a system of maps
[f1={f«: @ € A} of a space X to pointed spaces Z,, a € A, coz[ f] will denote the family {coz fy: o € A}.

Let we have a system [Z] of pointed spaces Zy, o € A. The subspace (0jzj =0Z) =0{Zy: o € A} of the Tychonoff
product IT of all Z, consisting of all points z € IT such that |{o € A: zy4 # 0z,}| < w is called the o-product of the
system [Z]. The point z of o' Z such that zy = 0z, for any « will be denoted by Og,, =0sz or Ofz].

If for a system of maps [f]={f4: o € A} of a space X to pointed spaces Z,, « € A, the family coz[ f] is point-finite (in
particular, locally finite) then, evidently, A[f]X C o7z for the diagonal product A[f] of all fy. In such situations, we shall
suppose that A[f] is the map to oyz).

Let we have a system [Z] of pointed spaces Zy, o € A. For ojz) and a € A%, let (Qoza = Qzja) = {Z €012} Za =
0z, for any @ € A\ a} (thus Q(zjp = {00z }).

Then (Qozx = Qzix) ={Q(z1a: a € A*} and (Qiz1n = {Qz1a € Qiz1x: lal <n}, n=0,1,..., will be called, respec-
tively, the canonical family of subsets of the o -product [Z] and the nth part, of this family. (Note that (Q[z1y)o = {Q[z1s}.)

If ZcC 0(7] then QZ)( ={Zs: a e A*}, where Zy = Qz» and Zg=27ZnN Q(z1a for Q(za € Q[Z]Xv la] > 0, and (QZX)H =
{Zq: ae A*, Ja|<n},n=0,1,..., will be called, respectively, the canonical family of subsets of Z C o1z} and the nth part of
this family.

Corollary 2.1. Let (Z, T) be a subspace of the o -product o|z) of spaces Z, with fixed points 0, =0z, o € A; Qzy be the canonical
family of subsets of (Z, T) C 0(z); (Qzx)n be its nth part. Let also all finite products of spaces Zy be perfectly normal.

Then, for Q = Qzy, Qn=(Qzy)nand Z, = JQn,n=0,1, ..., the space (Z, o) is perfectly normal and if dim(Q \ Z,_1) <r
forany Q € Qp,n=1,2,..., thendim(Z,tg) <r,r=0,1,....

Since dim Zy < dim Qg = 0 < r, the formulated corollary follows from Proposition 1.2.
3. Formulation of the main theorem

From this place of the paper P is a class of perfectly normal spaces such that

(1) P is hereditary, ie., if X€P and A C X then A €P;

(2) P is finitely productive, i.e., finite topological products of elements of P are again elements of P;

(3) the weak factorization theorem for maps to elements of P holds, i.e., for a map f of a space X to a space Z € P there exist
aspace YePand maps g: X — Y, h:Y — Z such that, f =hog and dimY < dim X; and

(4) for any X € P and any open in X set U, there exist a pointed space R € P and a map g: X — R such that U =g~ ! co0g
and the corestriction of g|y to coOg is a homeomorphism.

Since the subset theorem is true for the dimension dim in the class of perfectly normal spaces, we can suppose that
g in point (3) is an onto map.

Let we have a system [Z] of pointed spaces Z, and a system [f] of maps f, of a space X to Zy, o € A.
Suppose that coz[ f] is locally finite,
Let (Z = Zf)) = A[f]X. Since Z C o1z}, we have the canonical family (Q = Q) = Qzy of subsets of Z, its nth parts

(@n = (QrfPn) = (Lzy)n, the space Zifig = (Zi), (Tgrf) = TQ[“)) and the identical map idgf) of (Zjf, To[f)) onto the
subspace Z of oyz).
Lemma 1.1 implies the following assertion.

Proposition 3.1. If f|fy is the corestriction of A[f] to Z;y) then the mapping fir10 : X — Z{f1o such that

fin=1idgisofine

is continuous.

Definition 3.1. For a space X, we shall say that systems [Z 4(;] of pointed spaces Z, € P, a € A(i), and systems of maps
[fain]l={(fa:X = Zy): a € A(i)}, i €N, are P-selecting (or they P-select) a subset G of X if all systems coz[f 4] are
locally finite and, for Q; = Qy 1, [fil = [fa@] and the diagonal product f:X — (Z¢ =[[{Z[f1g;: i € N} of all fis10;
we have that G = f~'H for some open set H in Z¢.
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Definition 3.2. For a subspace X of a space Y, we shall say that systems [Z 4(;] of pointed spaces Zy € P, o € A(i), and
systems of maps [fai]={(fa: X = Zg): a € A(i)}, i €N, are piecewise P-selecting (or they P-select piecewise) a subset G
of X in Y if these systems P-select the subset G of X and, for any o € A = J{A(i): i € N}, there exists a continuous
extension f}, of fyl|coz s, OverY.

Note that for Wy = coz f, and W/, = coz f},, W is closed-open in W, N X.

Definition 3.3. A subspace X of a space Y will be called Pd-right (in Y) if, for any fo subset G of X, there exist piecewise
P-selecting G in Y systems [Z(i)]¢ of pointed spaces and systems [ f(i)]¢ of maps of X to elements of [Z(i)]¢, i € N.

Theorem 3.2 (The main theorem). If a subspace X of a space Y is Pd-right then
dimX <dimY.

The proof of the theorem is a complicated variant of the proofs of Theorem 17 from [3] and Theorem 1 from [5]. It will
be given below.

Let us indicate one possible variant of the class P.

Recall that p-spaces are (topologically) subspaces of the countable products of F,-metrizable paracompacta. All p-spaces
are perfectly normal and paracompact. Let P, be the class of all p-spaces.

Evidently, the class P, of all p-spaces is hereditary and finitely (even countably) productive. The factorization (and so
the weak factorization) theorem for maps to elements of P, is proved in [2]. Pass to property 4 of P.

First, let X be an F,-metrizable paracompactum, F be its closed subset and U = X \ F. Let X/F be the disjoint union
of U and a one-point set {Ox} and qr: X — X/F be equal to idy on U and qr(F) = {Ox}. Take on X/F the topology so that
qr will become quotient. It is not difficult to prove that the corestriction of gr|y to U C X/F is a homeomorphism and that
X/F is an F,-metrizable paracompactum.

Now let X e P, F be its closed subset and U = X\ F. Then we can suppose that X is a subspace of the Tychonoff product
IT" of Fy-metrizable paracompacta X(i), i € N. Let pr; be the projection of [T’ to X(i). Take a map f:X — I =0, 1] such
that F = f~10. Then for the diagonal product g; of prilx and f, F = (g) (X (i) x {0}), the set X (i) x {0} is closed in X (i) x I
and X(i) x I is an Fy-metrizable paracompactum. Hence, without loss of generality, we can suppose that pr; X = X(i) and
there exists a closed set F(i) in X(i) such that F = pri’1 F(i) and so for U(i) = X(i) \ F(i), U = pr,.’1 U (i). Take spaces
X(i)/F(i) and maps qf. Then the diagonal product A:X — ([T =[[{X(i)/F(i): i € N}) of all g o pr;|x is such that
A(F) = {0g = (Oxi))ien} and Ay is a topological embedding. Let R = A(X), V =R\ {Og} and g be the corestriction of
Alx to R. Then R as a subspace of IT is a p-space, U =g 'V = g 1co0Og and the corestriction of g|y to coOg is a
homeomorphism.

Corollary 3.3. If a subspace X of a space Y is (P, )d-right then dim X < dimY.

Let us prove that the Pd-rightness is a generalization of the countable accessibility of X in Y.

In the definition of the countable accessibility cited in the beginning of the paper, the openness of G in the topology
means that there exists an open set H’ in the Tychonoff product /T =[]{lis =[0,1]: i € N, s € S} such that G = f-1H,
where f is the diagonal product A[f] of the system [f] of all fi;. We can consider IT as the Tychonoff product of the
Tychonoff products I7; = [[{lis: s € S}, i € N. Then f is the diagonal product of the diagonal products f; = A[f;] of the
systems of maps [fi] = {fis: s€ S}, i eN. Let Z; = Zj5,; = fiX and id; be the identical embedding of Z; in I7;. Then (see
Proposition 3.1 and Definition 3.1), for Q; = Qyf;, fi is the composition of maps (g = fif10,): X — Zif10; and (h; =
idjoido,r): Zifi10; = i If h:(Zg =[[{Z150,: i € N}) — IT is the product of maps h;, i € N, and g is the diagonal
product of g;, i€ N, then f=hog, H=h"'H’ is open in Zg and g~'H = G. It follows from this that, for example, the
P, -rightness is a generalization of the countable accessibility.

It was proved in [5] that for a space Y with dimY =0 and its subspace X, dim X < dimY iff X is d-right in Y. Hence
in this case i.e., for dimY = 0, the countable accessibility of X in Y and the Pd-rightness of X in Y are equivalent to the
d-rightness of X in Y.

Problem 3.4. For what X and Y (and various P) are the d-rightness, the countable accessibility and the Pd-rightness or
some of these properties of X in Y equivalent?

Problem 3.5. When, for Tychonoff X and Y (and various P), are some of the following properties:

X x Y is piecewise rectangular (see [4,5]),
X x Y is countably accessible in 8X x BY,
X x Y is Pd-right in BX x BY

equivalent?

Note that as variants of P may be taken the class P, of all metrizable spaces and the class P, of all separable metrizable spaces.
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4. Inverse superspectra, their graphs, maps of spaces to superspectra and to their graphs

A system [R] = {(Rq, Oq, Uqa), Pbq: B}, where

B is a directed set,

R, is a space, 0, is its fixed point, U; =co0, = Rq \ {Og}, a € B,
maps ppq :Up — Uq are defined for b,ae B, a<b,

will be called an inverse superspectrum (with the finite precedence if L(a) = {a’ € A: a’ < a} is finite for each a € B) if

Paq = idy,, Pba©Peh =Pca fa<b<ec. (1)

Remark 4.1. For an inverse superspectrum [R] = {(Rg, Og, Uq), Ppa; B} the system {Uq, ppq; B} is an inverse spectrum (= an
inverse system) of spaces.

If we have an inverse superspectrum [R] = {(Rq, Og, Uq), Ppq; B} then the o -product o(r) = 0 {(Rq, 0q): a € B} is defined.
Let (see Section 2), for A € B*, Qra = QoA (in particular, Qrg = ({O[r] = Ogm})), ra be the projection of og; to the
face Qra (in particular, gy (o1r)) = {O(r)}); TrEA be the projection of Qrp to Qra for A C B € B*. Let Qry = Qoygx- Thus
QRry is the canonical family of subsets of the o -product o).

Suppose now that [R] is a superspectrum with the finite precedence.

Take (I'ra) = {t € QRrL(@): th = Paptq for any b <a}, ae B.

The subspaces I'1gr) = {0} U (U{(I'ra): a € B}) and (I1rPn = {Or)} YU ((U{{I'ra): a € B, |L(a)| < n}) of orr; will be called
the graph of [R] and the n-graph of [R], respectively, n=1,2,...; (I7r))o = {O[r;} will be called the 0-graph of [R].

Note that for any t € (I'rq), we have that t, € Uy (and so t, #0p) if b<a (and t, =04 if b ¢ L(a)); (I'ra) N {(Irp) =9
if a#b. Since pqq =idy,, the diagonal product of all pgp,, b <a, is a homeomorphism of U, onto (I'rq) and the restriction
to (I'rq) of the projection of the product Qgr) onto its factor Ry is a homeomorphism of (I'rq) onto Ug. (Note that for
|[L(a)| > 1, (I'rq) coincides with the graph of the diagonal product of all pgp, b <a, b #a.) Hence

dim(Irq) = dim Uy. (2)
If, additionally, R, is perfectly normal then
dim(Ike) = dim U, < dim Ry 3)

Put I'ra = IR N QRrL(a), @ € B. Evidently, I'rg = {Ofr1} U (U{(I'rp): b < a}); all I'gq are closed in Ifgy; and for b > a and
TTRba = TRL(b)L(a), the following holds

TTRba 'R = T Ras (4)

Nry=U{Tre: a€ BY; (Irpn =U{Trat a € B, |L(@)| <n},n=0,1,..., and (I{ry)n is closed in I{g; and for |L(a)| =n > 0,
the sets (I'rqg) = I'ra \ (/TR])n—1 are open in (I{g)n.
Note that I'g, are perfectly normal (even I'rg C Qrr €P) if Ra P for all a e B.

Corollary 4.1. Let we have an inverse superspectrum [R] = {(Rq, Oq, Ug), Ppa; B} with the finite precedence and with R, € P, a € B.
Ifdim Ry <71 forany a € B thendim I'gq <1 foranya e B.
IfSC Itgyand QS = {(Sq = SN IRq): a € B*}, then (S, tgs) is a perfectly normal space with dim(S, Tgs) <T.

Proof. Follows from Proposition 1.2 and (2). O

Proposition 4.2. Let we have a set A, an inverse superspectrum [R] = {(Rq, Oq, Ua), Pba; Aj;} and a system [h] of maps hy of spaces
Ryq} to spaces Z, with fixed points 0;, and open sets Vo = co0,, such that (ho)"'Vqo = Uy, a € A. Then for [Z]1 = {Zy: o € A},
there exists a map (h = ([R], [h])) : I'1r) — 0(z) Such that

Pl‘ngJQOh:ha o TR}l R, X €A, 5)
where pr,, ,  is the projection of o{z) to its factor Zy and

h(©Orry) =0z, h(I're) C Qpz1a, a € Aj. 6)
Let, additionally, S C gy, QS = {(Sa = SN I'kg): a € A*}, Z =hS, hs be the corestriction of h|s to Z and Q = Qz,. Then

Ploza Olls =ha 0 TTR(a)ls, €A, )
and there exists a map h(gsyg : (S, Tgs) = (Z, tg) such that

hsoidgs =idg o h(gs)0. (8)
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Proof. For any t € Iig), put h(t) = {ha(7TRia)(t))}aea. It is easy to verify that this h and the correspondent hg are the
desired maps.
The rest follows from Lemma 1.3. O

For a space X, a system [g] of maps g,: X — Rq, a € B, will be called a map of X to the superspectrum [R] if, for the sets
Wo = g;'Uq, we have the following
Wp CWo and ppgo gblw, = Zlw, ifa<bh. 9

Recall that

if the family v = coz[g] = (W, = g5 'U,: a € B} is point-finite then the diagonal product A[g] = A{ga: a€ B}: X — [[{Rq: a €
B} is a map to ofg).

In this case the corestriction of A[g] to A[g](X) will be denoted by g = g([g]).

Proposition 4.3. Let we have a space X, a system [Z] of spaces Z, with fixed points 0, and open sets Vo = Zy \ {0}, }, a system
[falofmaps fo: X — Zo, a € A, aninverse superspectrum [R 4] = {(Rq, Oa, Uq), Ppa; Aj}, asystem [h 4] of maps hy : Riay — Za,
aeA andamap [ga] ={(8: X — Ra): a € Aj} of X to [R 4] such that

fa=haoga), aeA;
U= (he)'Vo, a€A; and
the family v ={Wq = (fo) ™' Va: a € A} s locally finite.

Let C C A. Then we have the inverse superspectrum [Rc] = {(Rq, Og, Ua), Pba; Cj;}, the system [Zc] of spaces Zy, o € C, the systems
[fclof maps fo : X — Zo and [h¢e] of maps hy : Rigy — Zo, o € C, and the map [gc] = {(8a: X — Rq): a € Cj} of X to [Re];

(Sc = Algel(X)) C Tirey: (10)
for gc = ge(lgeD) andany a € C,

T(Ro)a}ISc © 8C = &la); (1)
for @S¢ ={(Sca = Sc N I'ka): a € C*}, there exists amap ggs.. : X — (Sc, Tgs,) such that

gc =idgs. 0ggscs (12)
there exists a map h¢ of Sc onto a subspace Z¢ of the o -product 017,71 = 0{(Z, 0,): a € C} such that

Plios e ©he =ha o TRe(ylsc. @ €C, (13)

and, for Q¢ = (Q¢)z. . there exists amap h(gs.yo. : (S¢, Tas.) = (Z¢, Tg.) such that

he oidgs. =idg. oh(gsc)ocs (14)
for (Al felX = Xif.1) = Z¢ and the corestriction fc of Al fe]to Ze,

fe=hcoge; (15)
there exists amap fg. : X — (Z¢, Tg.) such that

fe=idgcofoc: (16)

foc =h@sc)oc ©8ose- (17)

For the projection g 4c 0of O(r 41 ONtO OR.1,
TRACSA=Sc; (18)
for the corestriction ys ac of Tr Acls 4 t0 Sc,

8c=1YsAco8A; (19)
there exists a map ¥ os.ac : (SA,Tgs,) — (Sc, Tos. ), such that

Vsac oidgs , =idgs. oY gs.ac (20)
and

80Sc =¥ QsAC©8QS 4> (21)

foc =h@sc)0c ©¥asac o 8as 4- (22)
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Proof. Take x € X. Put a(xC) = {¢ € C: x € Wy}. Then A[gcl(X) = Og[r.) if a(xC) = @. Let a(xC) # ¢. Then
Algel(®) € Qrraiey, (Algcl®)axe) = TRe)axe)(Algel(X) = Zawc)X € Ugxcy and, for any b € L(a(xC)), we have
Paxc)b ((Algc1(®))axe)) = Paxe)b (axe)X) = &pX = (A[gc1(%))p. Hence A[gel(x) € Ircjaxe)- Thus (S¢ = Algel(X)) C I
we can consider the corestriction g¢ of A[gc] to S¢ and, evidently, 7(r.)a}lsc © 8¢ = &la)-

For the family QS¢ indicated above, the existence of the required map ggs,. follows from the local finiteness of v and
Lemma 1.1.

The existence of the required maps h¢ and h(gs,.)g. follows from Proposition 4.2.

Take x € X. Then A[felx = { fu(®acc = {ha © glo)W}aec = {ha © T(re)(@) © Ee®aee = (Pl a o he © g Wlaec =
hc o ge(x). Hence fe¢ =he o ge and A[felX = Zc.

It follows from Lemma 1.1 that there exists a map fg.: X — (Z¢, Tg.) such that f¢c =idg, o fg.. Hence idg. o fo. =

fe=hcoge=hcoidgs. 0gos. =idg. oh(gsc)oc ©8os. and so fo. =h(gsc)oc © gase-

Relations (18) and (19) are evident. Also it is evident that there exists a not necessary continuous mapping
Yosac:(Sa,Tgs,) — (S¢, Tgse), such that (20) is true. If Ojg 47 € S 4 then ¥ 9s4B0[R 4] = O[rc]. Let gax € (I'g 4q) and
b=anC.If b= then Y gsac o gaXx = gcx=0[g.]. If b# ¥ then Yygsac o gax=gcx € (I'rep) N Sch C Scp. By Lemma 1.3,
Yos.Ac is continuous.

At last, (21) is a simple consequence of (19) and fo. =h(9s.)0c © £9sc =h(Qsc)0c © ¥ asAac 0 8as,. O

Corollary 4.4. Let we have a space X, a system [Z 4] of spaces Z,, with fixed points 0], and open sets Vo = Z \ {0}, o € A, a system
[falofmaps fo: X — Zo, a € A, aninverse superspectrum [R 4] = {(Rq, 0y, Uq), Ppa; Aj;}, a system [h 4] of maps hy : Riay — Za,
acA andamap [ga]l = {(8: X — Ra): a € Aj} of X to [R 4] such that:

fa=hgog), aecA;
Uiy = (hoz)_1Va, aecA;, and
the family v = {Wq = (fo) "'Vqo: a € A} is the union of locally finite families v; = {Wq: « € A(i)}, ieN.

Then, for any N € Njj and B(N) = (J{A(i): i € N}, the family vy = (J{v;: i € N} is locally finite; we have the inverse superspectrum
[RBvy] = {(Ra, Oa, Ua), Pra; B(N)}, the system [Zp(n)] of spaces Zo, o € B(N), the systems [ fan)] of maps fo : X — Zy and
[hsw)] of maps hy : Riay — Zg, @ € B(N); the map [gBn)] = {(8a: X — Ra): a € B(N)j} of X to [Rp(v)l;

(SBiv = AlgB)1(X)) C TRp)1; (10"
for gnivy = gBv) ([88(W)]) and any o € B(N),

TR} |Ssw) © EBN) = &) (1)
for @Sy ={(SBmna = SBv) N Tra): a € B(N)*}, there exists a map 80Suw X = (SB(N), TQspy,) such that

gB(N) =idQsy ) © Qs> (12)
there exists a map hy of Sp(n) onto a subspace Zpny of the o -product 0z ,1 = 0{(Za, 0p,): o € B(N)} such that

P01z 0er ohpy =ha o TRy ta}sSsw: @ € BN), (13")
and, for Qpny = (QBN)) zs, x there exists a map h(Qs ) Qsm) - (SBN)> TQSsw,) = (ZBN)s TQp,) SUch that

hsn) 0ids,w, =1dosy, ©NQssw)Qsm (14"
Jor (Al femn)lX = Zifpmy)) = ZB(N) and the corestriction fgny of AlfBn)] to Zp(n),

By =hBn) o 8B(); (15")
there exists amap fgy, : X = (ZB(N)s TQp,) SUch that

By = idQB(N) onB(N); (16")

fosm =M@ssm) Qsm © 8255w - (17’)
For N C M € Nj; and the projection 7yn 0f O[R )] ONEO TR 5 y))s

TMNSBM) = SB(N); (18")
for the corestrictions Ymn of TmN|s s, t0 SBN),

EB(N) = YMN © EBM); (19")
there exists a map Yyomn : (Sm = (SB(N)» TQSpuy)) —> (SN = (SB(N)» TQS ) Such that

YmN 01dQs 5y = idQssy, oV OMN, (20")
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and
80Ssm = VOMN © 8055+ (21")
faBw) =hQssw)Qsm © YOMN © EQSpsw)- (22)
ForNCMcCLeNj,
VoMN © Y oLm = VQIN- (23)

For the limit S of the countable inverse spectrum Sp = {Sn, Vomn; N € Nj}, its projections Wy : S — Sy, the limit g: X — S of
maps £9osxn) (ie, 8oSsmy = Unog Ne N;l)' and (h; = h(QSB((i)))QB((i)) o ¥Bip = h(QSA(i))QA(i) o WA S = (Zpyiy =
Zi fsipls TQB((:‘») = (Z[fA(i)]’ TQA(:’)) = Z[f.A(i)]Q.A(i))’

hi 0g= f[fA(i)]Q[fA(i)] ’ ieN. (24)

IfRgePand dimR, <r1,a € A}, then S; and S are perfectly normal spaces with dim S; <rand dimS <r,ieN.

Proof. Relations (10")-(22’) follow from the previous proposition and (23) follows from the equality 7y o Ty = T LN.
Note that fg, coincides with f[f_A(i)]Q[fA(i)j and hi o g =h(Qsy ) Qs © YBi) © & =hQssq) Qs © EQSsu) =
fopqy,- This implies (24).
It follows from Corollary 4.1 that all spaces Sy are perfectly normal and dim Sy <r, N € Nj;. Since the spectrum Sp has
a cofinal part that is an inverse sequence, we have that S, by Charalambous’s theorem on covering dimension of the limit
of an inverse sequence of perfectly normal spaces, is a perfectly normal space with dimS <r. O

Proposition 4.5. Let we have a space Y ; its subspace X; spaces Zy with fixed points 0, and open sets V, = co 0, and a system [ f :4]
of maps f,:Y — Zy, a € A; an inverse superspectrum [R 4] = {(Rq, Oa, Uq), Ppa; Ajj}; a system [h 4] of maps hy : Riay — Za,
aecA;amap (g1 =1{(g;:Y — Ra): a € Aj} of Y to [R 4]; open—closed subsets Wy, of X N (W, = (fL)~'Wq), o € A, such that
fo=haogl), acA
Ug) = (ha) ™'V (andso W, = (g(g)) 'Uje)). @€ A; and
(W[l = m{W(;: ace a}) =(g) 'Ua, aeAj.
Let fo: X — Zo be equal to f), on Wy and to Oy on X \ Wy; gq: X — Rq be equal to g/, on Wy = ({Wq: « € a} and to 04 on
X\ Wq.
Then
Wo=(fo) Vo, acA
fa=haoga), aeA;
Wy = g{_(;}U{a}, acA;
We=(g) Uy and Wg is open-closed in W,, ac Ay
the system [g 4] = {(8a: X — Rq}: a € Ajj} isamap of X to [R 4].

Proof. The proof is simple. O
5. Factorization of systems of maps by means of superspectra

We shall start with some preliminary considerations.
First we shall obtain the following (“pointed”) version of the weak factorization theorem.

Proposition 5.1. For any map f of a space X with dim X = r to a pointed space Z € P, there exist a pointed space Y € P and maps
g:X—>Y h:Y— Zsuchthat f =hog,dimY <r, g(coz f) =coOy and h~10; = {0y}, h~ 1 co0z = coOy.

Lemma 5.2. Let f be a map of a space X with dim X = to a pointed perfectly normal space Z. Then there exist a pointed space Y and
maps g: X — Y, h:Y — Zsuchthat f =ho g, dimY <r, g(coz f) =coOy and h~10; = {0y}, h~1co0z = coOy.

Proof. Let F= f~10;, W = f~1co0z and Y be the disjoint union of W and a one-point set {Oy}. Take mappings g: X —
Y and h:Y — Z such that g|w =idw and gF C {Oy}, hlw = f|lw and hOy = 0z. Evidently, f =h o g, g(coz f) = coOy
and h=10; = {0y}, h~'co0z = coOy. Take the topology T on Y with the subbase consisting of all open subsets of W as
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a subspace of X and all sets h~10, where O is open in Z. Then mappings g: X — (Y, 7) and h: (Y, T) — Z are continuous
and the corestriction of glw to W C Y is a homeomorphism.
Let us prove that dimY <r.

Take a finite fo cover v ={01,..., Oy} of Y. Without loss of generality we can suppose that there exists a neighbor-
hood G of 0z such that (V =h~1G) c O and VN O; =§, i <k. There exists a finite fo refinement p of g~ v ={g~10;: i=
1,...,k} of order <r. Again without loss of generality we can suppose that = {Uy,..., Uy} and U;c g~ 10;,i=1,...,k.

Evidently, g~V C Uy. Since G is fo in Z, we have that V is fo in Y. Hence we can take a zero-set F in Y such that
Oy eintF, F C V. Then the set (U, = U\ g7 1F) =gU; is fo in Y and so (U] =U, UV)=gU,U{0y} is fo in Y too.
Evidently, all gU; =Uj, i <k, are also fo in Y and {U;: i <k}U{U}]} is a refinement of v of order <r. O

Proof of Proposition 5.1. Let we have a map f of a space X to a pointed space Z € P. By the previous lemma, there
exist a pointed space Y/, amap g':X — Y’  and a map h’:Y' — Z such that f =h" o g/, dimY’ <r, g’coz f = coOy, and
(W)~107 = {0y'}, (W)~ 1 co0z = coOy:. By property 3 of P, there exist a space Y € P and maps g’:Y’ — Y and h:Y — Z
such that h" =ho g” and dimY < dimY’ <r. Since P is hereditary, we can suppose that g” is an onto map. Evidently, for
g=g"0g, we have that f =ho g, g(coz f) =coOy and h=10; consists of one point. Let it be Oy. Then h~10; = {0y} and
h=1co0z =coly. O

Lemma 5.3. Let we have a space Y of dimension dimY = r; a finite set a with |a| > 1; a space R} € P with a fixed point 0, and
Up =co0y and amap g; : Y — Ry with gy (W} =cozg;) =Up and W = (gl’))‘lub forany b C a, d #b # a; maps ppc:Up — Uc
for ¢ C b such that

ppp =idy,, Pbd = Ded © Ppe ford Cc Cb;
W{,:ﬂ{wg: cCbh, c|=1} and gé|WlQ=progg|Wé.

Then there exist R, € P of dimension dim R, < r with a fixed point O, and U, = coOq; amap g, : Y — Rq with g, (W) =coz g,) = Uq
and W;, = (g(’l)‘1 Ug; maps pgp : Uqg — Uy for b C a such that

Paa =idy, and pgc =ppcopap forcChCa;

Wé:ﬂ{wg:bca, bl =1} and ghlw; = Pab © Eqlw-

Proof. Let [], be the product of all R, for b C a; pr, be the projection of [], to Rp; A, be the diagonal prod-
uct of all gj. Then [], € P and g, = pryoAqs. Let V; = N{(pry) 'Up: b Ca, |b| =1} and W} = (A)~'V,. Then
W, =gy 'Up: bCa, bl=1}=N{W,: bCa, |b|=1)}.

By property 3 of P, there exist a space R, € P of dimension dimR}, <r, amap g/ :Y — R, and a map h}, : R, — I, such
that Aq =h o g//. Since P is hereditary and the subset theorem is true for perfectly normal spaces, we can suppose that g
is an onto map. Let U} = (h/)~1V/. Evidently, U, = g/W/ and W/ = (g/)~'U}.

By property 4 of P, there exist a pointed space R, € P with a fixed point 0, and U, = co0, and a map v : R, — R,
such that U} = ¥ ~1U, and the corestriction x of ¥ly, to Uq is a homeomorphism. Since dimU, < dim R, <, we have
that dim R, < r. Evidently, for g, = o g/, cozg, = (g)) " 'Ug = W/ and g,W/ = U,. It is easy to see that g}, pse = idy,,
Pab =PIy oh o x ! and W have the required properties. For example, for ¢ C b C a, we have (because W, C W, c Wy)

/ " /! ! /
Pac © 8glw; =Prcohy o gqlw, = Pre o Aalw; = &clw; = Pbe © 8plw;
" 4 7
= Pbc © PIp 0 Adlw; = Pbe © PIy o hy 0 &qlw; = Pbe © Pab © &qlw;-

Since g, W/ = U,, we have that psc = ppc 0 pgp. O

Proposition 5.4. Let we have spaces Z,, € P with fixed points 0, and Vo = co0y, a € A; a space Y with dimY =r; and a system of
maps [f'1={f,:Y = Zy: a € A}.

Then there exist an inverse superspectrum [R] = {(Rq, Og, Ua), Ppa; A5} a map [g]1={(g,:Y > Ry:ac Aj}of Y to [R]and a
system [h] of maps hy : Ry — Za, @ € A, such that Rq € P, dim Ry <1, a € Ajj, (Uigy =00(g)) = (he)~'Vy and fo=hao gga},
a € A IfW/, =coz(f) = (fi)"'Vo and W, = {W/: a € a} then W} = coz(g}) = (g;)"'Uq and g,W} = Uq, a € A},

Proof. By Proposition 5.1, there exist Riy) € P of dimension dim Ry} < r with fixed points Oy} and Uy} = co0yq); maps
gia} 1Y = Ryq) and hq : Ry — Zy such that f(; = hgy ogZa}‘ gia}W& =Ujq), h&loa ={0(}}, Ujy = h;lva. Then, for W{/a} =
-1
W(/x' gia}w{/a} = U{‘Y) and ch{} = (gEa]) U{a}'
The required inverse superspectrum [R] is constructed using the previous lemma (induction on |a|, a € A}). O
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6. Proof of the main theorem

Proposition 6.1. Let X be a subspace of a space Y and let, for any j € N, systems [Zji] of spaces Z, € P with fixed points 0, and
Vyq =co0q, a € Aji, and systems of maps [ fjil = {(fo : X = Zy): a € Aji}, i € N, are piecewise P-selecting a subset G ; of X.

Then there exists a perfectly normal space S, a map g: X — S and open subsets U of S such that dimS <rand G; = g‘luj,
jeN

Proof. Let A=|J{Aji: i,jeN}and Wy = f;'Vy, a € A.

By Definitions 3.1 and 3.2, for Qji = Qyji) and the diagonal product fj:X — (Zg; = [[{Zsjigji: i € N}) of all fji =
fisjingji» we have that Gj = fj’lH]- for some open set H; in Zg;; there exists a system [f/4]1={(fy:Y — Z4): o € A} of
continuous extensions f;, of fylcoz f,, and for any o, Wy, is open-closed in (W}, = (FfH e N X.

By Propositions 5.4 and 4.5, there exist an inverse superspectrum [R 4] = {(Ra,ORa,Ua),pba;A;}; a map [ga] =
{(ga:Y — Rg): ac Aj} of Y to [R4] and a system [h 4] of maps hy : Rie) = Zo, @ € A, such that

dimR, <r, aeAj;
Wo=(fa) Vo, aed
fao=hqoga, acA; and
Ujg) = (he) ™' V.

Since all families v;j = {Wq: o € A;j} are locally finite, by Corollary 4.4, there exist a perfectly normal space S with
dimS <r and maps g:X — S and hj;:S — Z[sjijgji such that fj =hjiog, j,ieN. Let hj be the diagonal product
Alhji: i€ N). Then fj=hjog and, for Uj = (hj)~'Hj, we have the relation g~'U;j=Gj, jeN. O

Proof of the main theorem. Let dimY =r. Take a finite fo cover ¢ ={G;: j=1,...,k} of X. By the previous proposition,
there exist a perfectly normal space S, a map g:X — S and open subsets U; of S such that dimS <r and G; = g ! Uj,
j=1,...,k. Since S is perfectly normal, we can suppose that S = gX. Then n={U;: j=1,...,k} is a cover of S and so

there exists a finite refinement ¢ of & of order < r. Then § = g~'¢ is a finite fo refinement of ¢ of order <r. O
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