
Conditioning and updating evidence

E.C. Kulasekere a,1, K. Premaratne b,*,
D.A. Dewasurendra b,2, M.-L. Shyu b, P.H. Bauer c

a Department of Electronic and Telecommunication Engineering, University of Moratuwa,

Moratuwa, Sri Lanka
b Department of Electrical and Computer Engineering, University of Miami, Coral Gables,

FL 33124, USA
c Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

Received 1 November 2002; received in revised form 1 September 2003

Abstract

A new interpretation of Dempster–Shafer conditional notions based directly upon the

mass assignments is provided. The masses of those propositions that may imply the

complement of the conditioning proposition are shown to be completely annulled by

the conditioning operation; conditioning may then be construed as a re-distribution of

the masses of some of these propositions to those that definitely imply the conditioning

proposition. A complete characterization of the propositions whose masses are annulled

without re-distribution, annulled with re-distribution and enhanced by the re-distribution

of masses is provided. A new evidence updating strategy that is composed of a linear

combination of the available evidence and the conditional evidence is also proposed. It

enables one to account for the �integrity’ and �inertia’ of the available evidence and its

�flexibility’ to updating by appropriate selection of the linear combination weights. Several

such strategies, including one that has a probabilistic interpretation, are also provided.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Evidential reasoning; Dempster–Shafer theory; Distributed decision net-

works; Conditioning evidence; Updating evidence

*
Corresponding author. Tel.: +1-305-284-4051.

E-mail address: kamal@miami.edu (K. Premaratne).
1 This work was performed while ECK was at the Department of Electrical and Computer

Engineering, University of Miami, Coral Gables, Florida.
2 DAD is now with the Department of Electrical and Computer Engineering, Virginia

Polytechnic Institute and State University, Blacksburg, Virginia.

0888-613X/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijar.2003.10.001

www.elsevier.com/locate/ijar

International Journal of Approximate Reasoning 36 (2004) 75–108

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81168452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

Methods of representing and dealing with uncertainty in artificial intelli-

gence have received considerable attention for several decades. Among the

many symbolic and numerical methods that have been proposed, the theory of

belief functions, also known as Dempster–Shafer (DS) theory, has gained in-

creasing recognition as a framework capable of representing and manipulating

uncertain and partial knowledge. The work of Dempster [1] and Shafer [2] has

led to a large number of important theoretical contributions in belief function

theory in the last two decades [3–10]. This theory has been successfully applied
in target tracking and identification [11], robotics [12,13], map building [14,15],

document retrieval [16], computer vision [17], pattern classification [18], au-

tomated task recognition [19], data mining [20–22], business and economics

[23], to name a few. The main advantage of DS theory lies in its ability to

numerically quantify the lack of knowledge in an effective manner.

Updating or conditioning a body of evidence [24,25] modeled within the DS

framework prior to the availability of a particular piece of information plays

an important role in most of these applications. For example, consider a dis-
tributed decision network that has been deployed in a battlefield. These types

of distributed decision-making environments have generated tremendous in-

terest in recent years due to their wide scope of applicability [26]. A typical

decision node in the hierarchy of such a network performs fusion of the in-

formation or data it obtains from its child nodes in the lower levels of the

hierarchy. Suppose this information from its child sensor nodes has enabled a

decision node to form a knowledge base regarding the location of certain

objects in the battlefield. A DS modeling framework allows this to be carried
out via a suitable basic belief assignment on, for example, an appropriately

defined grid [15]. Suppose then the node receives a new piece of evidence, from

perhaps a mobile robot or ground troops, that a particular enemy object has

been destroyed; hence the grid position previously occupied by this object is

now vacant. Clearly, the decision node now has to update its assignments in

light of this new evidence.

How �willing’ or �flexible’ the decision node is for updating depends on its

perceived �reliability’ of the source providing the new information. In situations
where the original knowledge base had been constructed from a vast amount of

evidence gathered from past experience and/or numerous experts, it may be

reluctant to compromise the �integrity’ of its knowledge base and its �inertia’

should not be ignored when updating is warranted. Various strategies for

updating evidence have been proposed over the years [24,25]. However, these

strategies do not appear to provide a convenient method to account for the

integrity and inertia of the evidence and its flexibility to updating.

In this paper, we first provide a new interpretation of DS conditional no-
tions based directly upon the corresponding mass assignments thus providing a
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more intuitive interpretation of the conditioning operation and how it impacts

the remaining propositions. A new evidence updating strategy conditional to a
given proposition is then proposed. The strategy we propose is a linear com-

bination of the available evidence and the conditional evidence. The integrity

and inertia of the available evidence, and its flexibility to updating, can then be

accounted for via these linear combination weights. Various strategies to

choose these linear combination weights are also proposed. One such strategy,

for which a probabilistic interpretation is provided, we believe is quite novel

and is expected to be extremely useful when no specific information regarding

the reliability of the incoming new evidence is available.

2. Preliminaries

Reals are denoted by R. Given the interval ½a; b� in R, ‘½a; b� denotes its

length, viz., ‘½a; b� ¼ b� a; its scalar multiplication is K � ½a; b� ¼ ½Ka;Kb�. The

addition of intervals ½a1; b1� and ½a2; b2� in R are defined as ½a1; b1� þ ½a2; b2� ¼
½a1 þ a2; b1 þ b2�. For set H, jHj denotes its cardinality; for a 2 R, jaj denotes

its absolute value.

2.1. Introduction to DS theory

DS theory [1,2] was motivated by various concerns including dissatisfaction

with certain axioms in probability. In the standard probability framework all
objects in the sample space are assigned a probability. Any object for which

there is no information is assigned an equal a-priori probability. Hence when

the degree of support for an event is known, the remainder of the support is

automatically assigned to the negation of the event. On the other hand, in DS

theory, mass assignments are carried out for the events, or propositions as they

are known, in the sample space. The mass assignments to non-singleton

propositions generate a notion of uncertainty. Objects for which there is no

information are not assigned an a-priori mass. Hence committing support for
an event does not necessarily imply that the remaining support is committed to

its negation; the lack of support for any particular event simply implies support

for all other events. In other words, the additivity axiom in the probability

formalism is relaxed in DS theory.

We denote the total set of mutually exclusive and exhaustive objects or

singletons via H ¼ fh1; h2; . . . ; hng. In DS theory, H is referred to as the frame

of discernment (FoD), or simply the frame, signifying the scope of our objec-

tive. A singleton represents the lowest level of information that is discernible by
the system. Given jHj ¼ n, the power set of H denoted by 2H, contains 2n

elements that are composed of all the subsets of H. The elements in 2H form

the propositions of interest in DS theory; therefore the mass assigned to a
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proposition is free to move into the individual singleton objects that form the

composite proposition thus generating the notion of ignorance. The support for
any such proposition is provided via a basic belief assignment (BBA).

Definition 1 (Basic belief assignment (BBA)). The mapping m : 2H 7! ½0; 1� is a

BBA for the frame H if: (i) mð;Þ ¼ 0; and (ii)
P

A�H mðAÞ ¼ 1.

The set of propositions in a frame H that possess nonzero BBAs or masses

are called the focal elements of H; it is denoted by FðHÞ ¼fA � H : mðAÞ > 0g.
The triple fH;F;mg is referred to as the corresponding body of evidence (BoE).

The quantity mðAÞ measures the support assigned to proposition A only; the
belief assigned to A on the other hand must take into account the supports for

all proper subsets of A as well.

Definition 2 (Belief). Given a BoE fH;F;mg, the belief assigned to A � H is

Bel: 2H 7! ½0; 1� where BelðAÞ ¼
P

B�A mðBÞ.

We use the notation cFðHÞ to denote those propositions in a frame H that

possess nonzero beliefs, viz., icFðHÞ ¼ fA � H : BelðAÞ > 0g. As will be evi-

dent later, propositions are conditioned with respect to propositions in cFðHÞ
only.

BelðAÞ represents the total support that can move into A without any

ambiguity. It can be characterized without reference to the underlying BBA

via.

Theorem 3 [2]. For a given FoD H, the function Bel : 2H 7! ½0; 1� constitutes a
belief function iff (i) Belð;Þ ¼ 0; (ii) BelðHÞ ¼ 1; and (iii) for every collection
fAigi¼1;n, Ai � H

Bel
[
i¼1;n

Ai

0@ 1AP
X

I�f1;...;ng
I 6¼;

ð�1ÞjIjþ1
Bel

\
i2I

Ai

 !
: ð1Þ

The relative complement of proposition A with respect to X � H, denoted by

X � A, consists of all singletons not included in, and not implying, A, viz.,

X � A ¼ fh : h 2 X ; h 62 Ag. We use �A to denote H � A.

Now we may quantify the extent to which one doubts a proposition.

Definition 4 (Doubt). Given a BoE fH;F;mg, the doubt regarding A � H is
Dou : 2H 7! ½0; 1� where DouðAÞ ¼ Belð�AÞ.

With Definitions 2 and 4 in place, the extent to which one finds a propo-

sition plausible may be quantified as follows:
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Definition 5 (Plausibility). Given a BoE fH;F;mg, the plausibility of A � H is

Pl : 2H 7! ½0; 1� where PlðAÞ ¼ 1 � DouðAÞ ¼ 1 � Belð�AÞ.

Indeed PlðAÞ indicates the extent to which one fails to doubt A, i.e., the

extent to which one finds A to be plausible. One may easily show that, for any

A � H, PlðAÞ ¼
P

B\A6¼; mðBÞ and PlðAÞP BelðAÞ.
The uncertainty associated with A, denoted by UnðAÞ, is the interval

UnðAÞ ¼ ½BelðAÞ;PlðAÞ�. Note that 06 ‘½UnðAÞ�6 minf1 � BelðAÞ;PlðAÞg.
When each focal set contains only one element, i.e., mðAÞ ¼ 0 8jAj 6¼ 1,

belief functions become probability functions. In such a case, it is easy to show

the following:

(1) The BBA mðAÞ reduces to probability, i.e., mðAÞ ¼ PðAÞ.
(2) BelðAÞ ¼ PlðAÞ ¼ P ðAÞ.
(3) BelðA [ BÞ ¼ BelðAÞ þ BelðBÞ whenever A;B � H and A \ B ¼ ;.
(4) BelðAÞ þ Belð�AÞ ¼ 1.

(5) ‘½UnðAÞ� ¼ 0.

Dempster’s rule of combination (DRC) can be used to find a new BBA (and

correspondingly a new BoE) that combines and takes into account several

BBAs (and correspondingly several BoEs) that span the same FoD.

Definition 6 (Dempster’s rule of combination (DRC)). The orthogonal sum de-

noted by m1 � m2 : 2H 7! ½0; 1� of two BBAs m1 : 2H 7! ½0; 1� and m2 : 2H 7! ½0; 1�
defined over the same FoD H is the following: for 8A � H

ðm1 � m2ÞðAÞ ¼
P

C;D:C\D¼A m1ðCÞm2ðDÞ
1 �

P
C;D:C\D¼; m1ðCÞm2ðDÞ

8C;D � H; ð2Þ

if X
C\D¼;

m1ðCÞm2ðDÞ < 1: ð3Þ

Note that m1 � m2 : 2H 7! ½0; 1� is also a BBA in the sense of Definition 1.

The pair of propositions fC;Dg is said to be compatible if C \ D 6¼ ;; otherwise

they are said to be incompatible or disjoint. Two BBAs are said to be compatible
if (3) is satisfied. DRC is applicable to such compatible BBAs only.

3. Conditioning evidence in DS theory

Various notions of conditional belief and plausibility have been reported

previously [27–34]. The conditional measures in [27] are derived by relating

notions of inner and outer measures to DS notions. As had been pointed out in
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[27], same or similar expressions for these same conditional measures appear in

previous other articles as well [1,28,35].

Theorem 7 [27]. Given a BoE fH;F;mg and A 2 cFðHÞ, the conditional belief
BelðB jAÞ : 2H 7! ½0; 1� and conditional plausibility PlðB jAÞ : 2H 7! ½0; 1� assigned
to B � H are

BelðB jAÞ ¼ BelðA \ BÞ
BelðA \ BÞ þ PlðA� BÞ ;

PlðB jAÞ ¼ PlðA \ BÞ
PlðA \ BÞ þ BelðA� BÞ : ð4Þ

From now on, we use mð�jAÞ : 2H 7! ½0; 1� with mð; jAÞ ¼ 0 to denote
the conditional BBA given A corresponding to the conditional notions

Belð� jAÞ : 2H 7! ½0; 1� and Plð� jAÞ : 2H 7! ½0; 1� in Theorem 7; its existence is in

fact demonstrated in [27].

Note that, Theorem 7 implies the following:

BelðB jAÞ ¼ BelðA \ B jAÞ and PlðB jAÞ ¼ PlðA \ B jAÞ; ð5Þ

i.e., conditioning of B with respect to A actually applies to the propositions that

are in common to both A and B. In other words, in evaluating the evidence we

have to support B when our view is restricted to only A, it only makes sense to
consider the propositions both A and B have access to!

The uncertainty intervals can be used for an alternate approach to interpret
conditional notions in the following manner as well: Consider a BoE

fH;F;mg and propositions A and B such that B � H and A 2 cFðHÞ. The

uncertainty intervals one may associate with A and B with respect to the FoD

H, viz., UnðAÞ and UnðBÞ, respectively, do not account for the �contents’ of A
and hence no measure of the �contribution’ of UnðAÞ towards UnðBÞ may be

extracted. Such a conditional uncertainty measure is exactly what would be

useful if the knowledge we have were to be restricted to what is available in A.

Indeed, what is desired would be an appropriate uncertainty interval for B that
uses only those focal elements of H that are used to compute BelðAÞ. The

difficulty stems from the fact that the BBA associated with only these focal

elements do not constitute a BBA in the sense of Definition 1. In other words,

given UnðAÞ, it is not possible to directly identify the contribution of UnðAÞ
towards UnðBÞ. The more appropriate notion is the conditional uncertainty
interval UnðB jAÞ ¼ ½BelðB jAÞ;PlðB jAÞ�, B � H, A 2 cFðHÞ.

At this juncture, we must mention that these conditional notions in The-

orem 7 are not �commutative’ in the sense that conditioning first with respect
to A1 and subsequently with respect to A2 is not in general equivalent to

conditioning with respect to A1 \ A2. We comment on this issue further in

Section 6.
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3.1. Conditional BBA

The results in this section shed light on how conditioning impacts the ori-

ginal BBA prior to conditioning. This viewpoint, which is based directly on the

BBA, we believe is more intuitive in the sense that it enables one to discern how

the original masses are impacted upon receiving the conditioning evidence.

First, we identify those propositions whose masses are annulled with con-

ditioning.

Lemma 8. Given the BoE fH;F;mg and A 2 cFðHÞ, consider the conditional
BBA mð� jAÞ : 2H 7! ½0; 1�. Then mðB jAÞ ¼ 0 whenever �A \ B 6¼ ;.

Proof. Suppose 9B � H s.t. �A \ B 6¼ ; and mðB jAÞ > 0. Then we must have

BelðB jAÞ > BelðA \ B jAÞ, because the non-zero mass mðB jAÞ �contributes’

towards BelðB jAÞ but not towards BelðA \ B jAÞ. But, this contradicts (5)

which states that BelðB jAÞ ¼ BelðA \ B jAÞ. h

In other words, Lemma 8 states that, conditioning annuls masses of all those

propositions that may imply the complement of the conditioning proposition.

What happens to the masses of the remaining propositions, viz., those that

definitely imply the conditioning proposition?
To address this, we proceed as follows:

PlðAÞ � BelðA \ BÞ � PlðA� BÞ

¼ PlðAÞ � BelðA \ BÞ � ½1 � Belð�A [ BÞ�

¼ PlðAÞ � BelðA \ BÞ � ½PlðAÞ þ Belð�AÞ� þ Belð�A [ BÞ

¼ Belð�A [ BÞ � Belð�AÞ � BelðA \ BÞ; ð6Þ

where we have used the relationships PlðAÞ þ Belð�AÞ ¼ 1 and PlðA� BÞþ
Belð�A [ BÞ ¼ 1. But, we realize that

Belð�A [ BÞ � Belð�AÞ � BelðA \ BÞ ¼
X

X :X2SðA\BÞ
mðX Þ; ð7Þ

where

SðA \ BÞ ¼: fX 2 FðHÞ : X ¼ D [ C s:t: ; 6¼ D � �A; ; 6¼ C � A \ Bg:
ð8Þ

Hence we have

PlðAÞ �
X

X :X2SðA\BÞ
mðX Þ ¼ BelðA \ BÞ þ PlðA� BÞ: ð9Þ
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Therefore we may express the conditional belief as

BelðB jAÞ ¼ BelðA \ BÞ
BelðA \ BÞ þ PlðA� BÞ ¼

BelðA \ BÞ
PlðAÞ �

P
X :X2SðA\BÞ mðX Þ : ð10Þ

It is this expression that we intend to use to further study the conditional

BBA. For convenience, from now on, with no loss of generality, we assume

that B � A; after all, Lemma 8 already implies that mðB jAÞ ¼ 0 whenever
�A \ B 6¼ ;. For this case, (10) reduces to

BelðB jAÞ ¼ BelðBÞ
BelðBÞ þ PlðA� BÞ ¼

BelðBÞ
PlðAÞ � NðBÞ ; ð11Þ

where we use the short-hand notation

NðBÞ ¼
X

X :X2SðBÞ
mðX Þ: ð12Þ

Note that

SðBÞ ¼: fX 2 FðHÞ : X ¼ D [ C s:t: ; 6¼ D � �A; ; 6¼ C � B � Ag: ð13Þ

For the discussion to follow, it will also be convenient to define the fol-

lowing:

ŜðX Þ ¼: fB � A : B � A \ X where X 2 FðHÞ and ; 6¼ �A \ Xg: ð14Þ

See Fig. 1.

Use Definition 2 in (11) to get

mðB jAÞ ¼ 1

PlðAÞ �
P

X :X2SðBÞ mðX Þ
X
C:C�B

mðCÞ �
X
C:C�B

mðC jAÞ: ð15Þ

Let us study (15) in more detail: observe that mðB jAÞ, for a given B, depends

only on the following quantities:

Fig. 1. (a) The set SðBÞ, B � A and (b) the set cSðX Þ, X 2 FðHÞ, ; 6¼ �A \ X .
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(1) PlðAÞ––plausibility of the conditioning proposition which is independent of

the proposition being conditioned.
(2) mðCÞ, C � B––originally assigned masses of propositions that definitely

imply the proposition being conditioned.

(3) mðX Þ, X 2 SðBÞ––originally assigned masses of propositions that may
imply �A and B but definitely not A� B.

(4) mðC jAÞ, C � B––conditional masses of propositions that definitely imply

the proposition being conditioned; since SðCÞ � SðBÞ, 8C � B, these con-

ditional masses in turn depend only on mðX Þ, X 2 SðBÞ.
(5) Perhaps more important is to observe that mðCÞ, C � �A––masses of prop-

ositions that definitely imply �A––make no contribution towards any prop-

osition being conditioned.

With the above development in place, is it possible to view the conditioning

operation as an annulment and re-distribution of the masses of those propo-

sitions that may imply the complement of the conditioning proposition? If so,

do these masses get re-distributed or not re-distributed (which will require a re-

normalization)? How exactly does this re-distribution take place?

To address these questions, we now provide an explicit recursive formula
that enables one to compute the conditional BBA. First, express (11) asX

C:C�B

PlðAÞmðC jAÞ ¼
X
C:C�B

½mðCÞ þ NðBÞmðC jAÞ�: ð16Þ

Subtract
P

C:C�B NðCÞmðC jAÞ from each side and re-arrange terms to get

DðBÞ ¼
X
C:C�B

½NðBÞ � NðCÞ�mðC jAÞ �
X
C:C�B

DðCÞ; ð17Þ

where we use the notation

DðBÞ ¼ ½PlðAÞ � NðBÞ�mðB jAÞ � mðBÞ: ð18Þ

Then we have

Lemma 9. Given the BoE fH;F;mg and A 2 cFðHÞ, consider the conditional
BBA mð� jAÞ : 2H 7! ½0; 1�. Then, for B � A and every collection fDig such that
C � D � B,

DðBÞ ¼
X
C:C�B

NðBÞ �
X

I 6¼;;I�f1;...;2jBj�jCj�1g

ð�1ÞjIjþ1N
\
i2I

Di

 !264
375mðC jAÞ

¼
X
C:C�B

NðBÞ �
XjBj�1

i¼jCj
ð�1ÞjBj�1�i

X
D:C�D�B;jDj¼i

NðDÞ
" #

mðC jAÞ: ð19Þ
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Proof. The fact that the two alternate expressions in the right-hand side of (19)

are identical is easy to see. We establish the claim via the second expression
through induction on jBj ¼ f1; 2; . . .g.
ii(i) jBj ¼ 1 case. In this case, (19) yields DðBÞ ¼ 0, which may be verified to be

true via (17).

i(ii) jBj ¼ f1; 2; . . . ;Mg cases. Suppose the claim is true for 16 jBj6M .

(iii) jBj ¼ M þ 1 case. Consider (17). Note that the sets C : C � B in the last

term on the right-hand side of (17) satisfy the property jCj6M . Hence

we may apply (19) to getX
C:C�B

DðCÞ

¼
X
C:C�B

X
D:D�C

NðCÞ �
XjCj�1

i¼jDj
ð

"
� 1ÞjCj�1�i

X
E:D�E�C;jEj¼i

NðEÞ
#
mðD jAÞ

¼
X
C:C�B

X
D:C�D�B

NðDÞ �
XjDj�1

i¼jCj
ð

"
� 1ÞjDj�1�i

X
E:C�E�D;jEj¼i

NðEÞ
#
mðC jAÞ:

ð20Þ

Substitute in (17) to get

DðBÞ ¼
X
C:C�B

NðBÞmðC jAÞ

�
X
C:C�B

X
D:C�D�B

NðDÞ�
XjDj�1

i¼jCj
ð

"
� 1ÞjDj�1�i

X
E:C�E�D;jEj¼i

NðEÞ
#
mðC jAÞ:

ð21Þ

Now, compare (19) and (21). Clearly, the claim will be established if we can
show the following: for a given B : B � A and C : C � BXjBj�1

i¼jCj
ð�1ÞjBj�1�i

X
D:C�D�B;jDj¼i

NðDÞ

¼
X

D:C�D�B

NðDÞ �
XjDj�1

i¼jCj
ð

"
� 1ÞjDj�1�i

X
E:C�E�D;jEj¼i

NðEÞ
#
: ð22Þ

To verify this identity, consider the coefficient associated with the arbitrary

term NðX Þ, X � B:

(iii.a) Left-hand side of (22). Only one coefficient is generated; it corresponds

to i ¼ jX j. This yields ð�1ÞjBj�1�jX j
.
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(iii.b) Right-hand side of (22). Only one coefficient of value 1 is generated by the

first term; to get the coefficients generated by the second term, we need to
put i ¼ jX j and consider all sets D : X � D � B (D ¼ X need not be con-

sidered since the second term vanishes in this situation). This yields

1 �
X

D:X�D�B

ð�1ÞjDj�1�jX j ¼ 1 �
XjBj�1

i¼jX jþ1

jBj � jX j
i� jX j

� �
ð�1Þi�1�jX j

¼ 1 þ
XjBj�1

i¼jX jþ1

jBj � jX j
i� jX j

� �
ð�1Þi�jX j

¼ 1 þ
XjBj�1�jX j

i¼1

jBj � jX j
i

� �
ð�1Þi

¼ 1 þ
XjBj�jX j

i¼0

jBj � jX j
i

� �
ð�1Þi

�
jBj � jX j
jBj � jX j

� �
ð�1ÞjBj�jX j�

jBj � jX j
0

� �
ð�1Þ0

¼ �
jBj � jX j
jBj � jX j

� �
ð�1ÞjBj�jX j ¼ð�1ÞjBj�1�jX j

; ð23Þ

where we used the fact that
PjBj�jX j

i¼0

jBj � jX j
i

� �
ð�1Þi ¼ 0.

Hence, (22) indeed holds true. This establishes the claim in (19). h

In effect, Lemma 9 demonstrates the fact that the conditional BBA of a

proposition is completely determined by the conditional BBAs of those

propositions that imply it. With this in place, it is easy to establish.

Lemma 10. Given the BoE fH;F;mg and A 2 cFðHÞ, consider the conditional
BBA mð� jAÞ : 2H 7! ½0; 1�. Then

mðBÞ
PlðAÞ �

P
X :X2SðBÞ mðX Þ 6mðB jAÞ6 BelðBÞ

PlðAÞ �
P

X :X2SðBÞ mðX Þ 8B � A:

ð24Þ

Proof. The right-hand side inequality simply claims that mðB jAÞ6BelðB jAÞ
(see (9)) which is of course obvious. The left-hand side inequality claims that

DðBÞP 0. To show this, consider (19) and observe that[
i2I

Di ¼
B for jCj 6¼ jBj � 1;
C for jCj ¼ jBj � 1:

�
ð25Þ
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Now noting the definition of NðBÞ in (12), it is clear that Nð�Þ satisfies the

following property of belief functions (although it is not necessarily a belief
function):

NðBÞP
X
I

ð�1ÞjIjþ1N
\
i2I

Di

 !
; for ; 6¼ I � f1; . . . ; 2jBj�jCj � 1g: ð26Þ

Thus DðBÞP 0, as claimed. h

Lemma 10 implies that

mðBÞ6 mðBÞ
PlðAÞ �

P
X :X2SðBÞ mðX Þ

6mðB jAÞ 8B � A; ð27Þ

i.e., the masses of those propositions that definitely imply the conditioning

proposition cannot decrease with conditioning.

In summary, Lemmas 8 and 10 enable us to conclude that, conditioning

annuls the masses of all propositions that may imply the complement of the
conditioning proposition while increasing or keeping unchanged the masses of

all propositions that definitely imply the conditioning proposition. Of this

latter class of propositions, we can actually identify those that are guaranteed

to increase after conditioning:

Lemma 11. Given the BoE fH;F;mg and A 2 cFðHÞ, consider the conditional
BBA mð� jAÞ : 2H 7! ½0; 1�. Then mðBÞ < mðB jAÞ 8B � A, B 2 FðHÞ, if

max Belð�AÞ;
P

X :X2SðBÞ mðX Þ
n o

> 0.

Proof. From (15) it is clear that mðBÞ < mðB jAÞ, 8B � A, if mðBÞ <
mðBÞ

PlðAÞ�
P

X :X2SðBÞ
mðX Þ

. Since B 2 FðHÞ, we have mðBÞ > 0. Hence, this is equivalent

to

PlðAÞ �
X

X :X2SðBÞ
mðX Þ < 1 ()

X
X :X2SðBÞ

mðX Þ P 0; if PlðAÞ < 1;
> 0; if PlðAÞ ¼ 1:

�
ð28Þ

The claim then follows. h

We also have

Lemma 12. Given the BoE fH;F;mg and A 2 cFðHÞ, consider the conditional
BBA mð� jAÞ : 2H 7! ½0; 1�. Then the following are true:
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ii(i)

mðAÞ
BelðAÞ 6mðA jAÞ6 1: ð29Þ

i(ii) For all B � A s.t. mðBÞ ¼ BelðBÞ

mðB jAÞ ¼ mðBÞ
PlðAÞ �

P
X :X2SðBÞ mðX Þ

¼ mðBÞ
mðBÞ þ PlðA� BÞ : ð30Þ

(iii) For all B � A s.t. B 2 Tð�AÞ

mðB jAÞ ¼ mðBÞ
PlðAÞ ; ð31Þ

where Tð�AÞ¼: fB � A � H : SðBÞ ¼ ;g.

Proof

ii(i) It is clear that PlðAÞ �
P

X :X2SðAÞ mðX Þ ¼ BelðAÞ. Now the claim follows by

direct application of Lemma 10.

i(ii) When mðBÞ ¼ BelðBÞ, the upper and lower bounds in Lemma 10 converge;

the claim then follows directly.

(iii) Note that (11) implies that BelðB jAÞ ¼ BelðBÞ
PlðAÞ 8B 2 Tð�AÞ. The claim then

follows when one notices that B 2 Tð�AÞ ) C 2 Tð�AÞ 8C � B. h

At this juncture, we wish to make several observations.

(1) Lemma 10 implies that the conditional mass of all propositions in B � A
must strictly increase whenever Belð�AÞ > 0 () PlðAÞ < 1.

(2) Item (i) of Lemma 12 implies that the conditional mass of the conditioning

proposition cannot decrease. When BelðAÞ < 1, mðA jAÞ must necessarily

exceed mðAÞ. When mðAÞ ¼ BelðAÞ, mðA jAÞ ¼ 1 and the mass of every

other proposition is zero; a special case for which this is applicable is when

A is a singleton proposition.

(3) Special cases for which item (ii) of Lemma 12 are applicable are the follow-
ing:

(a) When B is a singleton proposition; and/or

(b) BelðBÞ ¼ 0 (which implies mðBÞ ¼ 0)––this situation actually yields

mðB jAÞ ¼ 0, 8B � A s.t. BelðBÞ ¼ 0, i.e., the mass of a proposition hav-

ing zero belief remains at zero with conditioning.

(4) Item (iii) of Lemma 12 exposes an important fact: one may view each ele-

ment in Tð�AÞ as a proposition whose mass is not further �refined’ (except

perhaps due to re-normalization by PlðAÞ) with conditioning. It is only the
masses of those propositions that render a non-empty SðBÞ that may get

further refined with conditioning.
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3.1.1. Summary: BBA-based interpretation of conditioning

Summarizing the results in Lemmas 8–12, we may now interpret the con-
ditioning operation as part annulment with re-distribution and part annulment

without re-distribution of the originally allocated masses of propositions that

may imply the complement of the conditioning proposition, viz., X � H s.t.
�A \ X 6¼ ;

(1) Masses that are annulled without re-distribution. Masses of propositions

X � H s.t. X � �A are annulled but not re-distributed; this generates the

re-normalization factor PlðAÞ. See Fig. 2(a).

(2) Masses that are annulled with re-distribution. Masses of propositions X � H
s.t. A \ X 6¼ ; and �A \ X 6¼ ; are annulled but re-distributed toward

B 2 ŜðX Þ. See Fig. 2(b).
(3) Masses that cannot decrease. Masses of the remaining propositions (i.e.,

propositions B s.t. B � A) cannot decrease with conditioning. No proposi-

tion in T ð�AÞ gets further refined (except due to the re-normalization factor

PlðAÞ in (2)). The remaining masses of propositions B � A may benefit from

the re-distribution in (2). In particular, only mðX Þ 8X 2 SðBÞ, can contrib-

ute towards mðB jAÞ, B � A. See Fig. 2(c).

Fig. 2. Impact of conditioning on original mass assignment.
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Example 13. It is perhaps best to illustrate the above notions via an example.

Consider the situation in Table 1 where H ¼ fa; b; c; dg and the conditioning
proposition is A ¼ fa; b; cg ) �A ¼ fdg. The deductions one may make re-

garding the conditional BBA are indicated as well. Note that

SðfagÞ ¼ Sðfa; bgÞ ¼ fa; dg; Sðfa; cgÞ ¼ SðAÞ ¼ ffa; dg; fc; dgg;
Sðfb; cgÞ ¼ fc; dg ð32Þ

and

Ŝðfa; dgÞ ¼ fa; fa; bg; fa; cg; fa; b; cgg;
Ŝðfc; dgÞ ¼ fc; fa; cg; fb; cg; fa; b; cgg: ð33Þ

Table 2 shows the computed conditional notions.

3.2. Conditional belief and plausibility

We have already obtained several important results regarding how condi-

tioning affects the original BBA. In this section, we make several observations
regarding the conditional belief and plausibility notions. These provide further

insight into the conditioning operation and will be useful in the development of

the updating strategy proposed in Section 4.

Table 1

Illustrative example––originally cast BBA. H ¼ fa; b; c; dg and A ¼ fa; b; cg
B BelðBÞ PlðBÞ mðBÞ Deductions regarding mðB jAÞ
a 0.2 0.5 0.2 PlðAÞ < 1 ) mðfag jAÞ > mðfagÞ and SðfagÞ

contributes

b 0.2 0.5 0.2 fbg 2 Tð�AÞ ) mðfbg jAÞ ¼ mðfbgÞ=PlðAÞ
c 0 0.2 0 mðfcgÞ ¼ BelðfcgÞ ¼ 0 ) mðfcg jAÞ ¼ 0

d 0.1 0.3 0.1 fdg � �A ) mðfdg jAÞ ¼ 0 and mass is not

re-distributed

fa; bg 0.6 0.8 0.2 PlðAÞ < 1 ) mðfa; bg jAÞ > mðfa; bgÞ and

Sðfa; bgÞ contributes

fa; cg 0.2 0.7 0 PlðAÞ < 1 ) mðfa; cg jAÞ > mðfa; cgÞ and

Sðfa; cgÞ contributes

fa; dg 0.4 0.7 0.1 �A \ fa; dg 6¼ ; ) mðfa; dg jAÞ ¼ 0 and mass is

re-distributed to Ŝðfa; dgÞ
fb; cg 0.3 0.6 0.1 PlðAÞ < 1 ) mðfb; cg jAÞ > mðfb; cgÞ and

Sðfb; cgÞ contributes

fc; dg 0.2 0.4 0.1 �A \ fc; dg 6¼ ; ) mðfc; dg jAÞ ¼ 0 and mass is

re-distributed to Ŝðfc; dgÞ
fa; b; cg 0.7 0.9 0 PlðAÞ < 1 ) mðfAg jAÞ > mðfAgÞ and SðAÞ

contributes
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3.2.1. Trivial cases

It is easy to see that Belð; jAÞ ¼ Plð; jAÞ ¼ 0 and BelðH jAÞ ¼ PlðH jAÞ ¼ 1.

3.2.2. Monotonicity

Since belief and plausibility functions are monotone with respect to set in-

clusion, for B1 � B2, BelðB1 jAÞ6BelðB2 jAÞ and PlðB1 jAÞ6PlðB2 jAÞ.

3.2.3. A ¼ H case

In this case, BelðB jAÞ ¼ BelðBÞ and PlðB jAÞ ¼ PlðBÞ.

3.2.4. B ¼ A case

In this case, BelðA jAÞ ¼ PlðA jAÞ ¼ 1.

3.2.5. A � B, B 6¼ ;, case
In this case, BelðB jAÞ ¼ PlðB jAÞ ¼ 1.

3.2.6. Probabilistic BBA

In a probability framework when mð�Þ ¼ Belð�Þ ¼ Plð�Þ ¼: P ð�Þ, we have

Table 2

Illustrative example––conditional BBA

B BelðB jAÞ PlðB jAÞ mðB jAÞ

a 0:2

0:8

0:5

0:8

0:2

0:8

b
0:2

0:9

0:5

0:7

0:2

0:9

c 0
0:2

0:5
0

d 0 0 0

fa; bg 0:6

0:8
1.0

0:25

0:9

fa; cg 0:2

0:7

0:7

0:9

0:02

ð0:7Þð0:8Þ

fa; dg 0:2

0:8

0:5

0:8
0

fb; cg 0:3

0:8

0:6

0:8

0:11

ð0:8Þð0:9Þ

fc; dg 0
0:2

0:5
0

fa; b; cg 1 1
0:031

ð0:7Þð0:8Þð0:9Þ
H ¼ fa; b; c; dg and A ¼ fa; b; cg.
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BelðB jAÞ ¼ PlðB jAÞ ¼ P ðA \ BÞ
P ðA \ BÞ þ P ðA� BÞ ¼

P ðA \ BÞ
P ðAÞ ¼ P ðB jAÞ:

ð34Þ

These observations illustrate that the notions in Theorem 7 can be consid-

ered �natural extensions’ [36], and hence act as generalizations, of those in
Definitions 2 and 5.

With the above discussion in mind, these conditional notions can be used as

measures to indicate the support provided by proposition A for another

proposition B; or, to be more precise, for the propositions in common to both

A and B, viz., A \ B. Unlike the direct calculation of the belief using the

complete BoE, these measures explicitly depend on the specific propositions in

A that condition the propositions in B.

4. Updating evidence

Now that we have quantified how a given proposition A contributes to

another proposition B (actually to A \ B), how should we update our originally

assigned support for B? In [37], perhaps for the first time, this updated belief of

B conditional to A––which we denote by BelAðBÞ––is taken to be a linear

combination of the originally assigned belief BelðBÞ and the conditional belief
BelðB jAÞ. This strategy is simple, works directly on belief functions instead of

the BBA [23] and accounts for both the individual evidence cast on B and the

evidence gathered from what are common to both A and B in a unified manner.

Moreover, as we will presently demonstrate, it allows one to accommodate the

integrity and inertia of the available evidence and its flexibility to updating; it

also possesses most of the properties that one expects from a reasonable

updating strategy.

4.1. Updating strategy

Consider the following linear combination of mðBÞ and mðB jAÞ for updating

the mass of B:

mAðBÞ ¼ aAmðBÞ þ bAmðB jAÞ; ð35Þ

where faA; bAg are parameters dependent on the conditioning proposition A.
We use the subscript A to distinguish quantities that have been updated con-

ditional to A. Note that mAð;Þ ¼ 0 whileX
B:B�H

mAðBÞ ¼ 1 () aA þ bA ¼ 1: ð36Þ
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The corresponding updated belief is then

BelAðBÞ ¼ aABelðBÞ þ bABelðB jAÞ: ð37Þ

Note that BelAð;Þ ¼ 0 and BelAðHÞ ¼ 1; the validity of item (iii) of Theorem

3 for BelAð�Þ follows from the fact that the convex sum of belief functions

constitutes another belief function.

Finally, the updated plausibility PlAðBÞ may be obtained via

PlAðBÞ ¼ 1 � BelAðBÞ ¼ 1 � ½aABelðBÞ þ bABelðB jAÞ�
¼ aA½1 � BelðBÞ� þ bA½1 � BelðB jAÞ�
¼ aAPlðBÞ þ bAPlðB jAÞ; ð38Þ

where we have used (36).

With the above development in place, we propose

Definition 14 (Updated BBA, belief and plausibility). Consider the BoE

fH;F;mg and a given A � cFðHÞ. Then, for an arbitrary B � H, define the

following:

ii(i) Updated BBA of B given A is mAðBÞ : 2H 7! ½0:1� where

mAðBÞ ¼ aAmðBÞ þ bAmðB jAÞ: ð39Þ

i(ii) The corresponding updated belief of B given A is BelA : 2H 7! ½0; 1� where

BelAðBÞ ¼ aABelðBÞ þ bABelðB jAÞ: ð40Þ

(iii) The corresponding updated plausibility of B given A is PlA : 2H 7! ½0; 1�
where

PlAðBÞ ¼ 1 � BelAðBÞ ¼ aAPlðBÞ þ bAPlðB jAÞ: ð41Þ

Here faA; bAg are non-negative parameters dependent on the conditioning

proposition A such that aA þ bA ¼ 1.

For B � H and A 2 cFðHÞ, we may also define a corresponding updated
uncertainty interval as [37]

UnAðBÞ ¼ ½BelAðBÞ;PlAðBÞ� ¼ aAUnðBÞ þ bAUnðB jAÞ: ð42Þ

4.2. Properties of the updating strategy

We now discuss some of the properties of the updating strategy in Definition

14.
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4.2.1. Updated BBA

From Lemmas 8–12, we observe the following:

mAðBÞ
¼ aAmðBÞ6mðBÞ; for B � H s:t: �A \ B 6¼ ;;

P aA þ
bA

PlðAÞ �
P

X :X2SðBÞ mðX Þ

" #
mðBÞPmðBÞ; for B � A:

8><>:
ð43Þ

For those propositions in A that are not refined from conditioning, we may be

more precise:

mAðBÞ ¼ aA þ
bA

PlðAÞ

� �
mðBÞPmðBÞ; 8B � A s:t: B 2 Tð�AÞ: ð44Þ

In other words, the updating strategy in Definition 14 affects the originally

assigned masses as follows:

i(i) Masses of propositions that may imply the complement of the conditioning

proposition are decreased (unless aA ¼ 1).

(ii) Masses of propositions that definitely imply the conditioning proposition

are increased (or at least not decreased).

Eqs. (43) and (44) bring to light the following important observation as well:
propositions that do not allow further refinement in their mass when being

conditioned do not get updated (except the changes due to re-normalization)

either. In fact, we notice that

mAðBÞ ¼ mðBÞ 8B � A s:t: B 2 Tð�AÞ; whenever PlðAÞ ¼ 1: ð45Þ

Clearly, these constitute important intuitively appealing properties that one

expects from a reasonable updating strategy.

4.2.2. Updated belief and plausibility

4.2.2.1. Trivial cases. It is easy to see that BelAð;Þ ¼ PlAð;Þ ¼ 0 and

BelAðHÞ ¼ PlAðHÞ ¼ 1.

4.2.2.2. Monotonicity. The fact that BelðBÞ and BelðB jAÞ each monotonically

increases with respect to B implies that the same is true with BelAðBÞ; PlAðBÞ
possesses the same property as well.

4.2.2.3. A ¼ H case. In this case, BelHðBÞ ¼ BelðBÞ and PlHðBÞ ¼ PlðBÞ.
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4.2.2.4. B ¼ A case. Note that BelAðAÞ ¼ 1 � aA½1 � BelðAÞ� and PlAðAÞ ¼ 1�
aA½1 � PlðAÞ�. Now it is easy to see that BelAðAÞP BelðAÞ and PlAðAÞP PlðAÞ,
i.e., the occurrence of A improves its own belief and plausibility assignments.

We also get

aA ¼

1 � BelAðAÞ
1 � BelðAÞ ¼ 1 � PlAðAÞ

1 � PlðAÞ for BelðAÞ6PlðAÞ < 1;

1 � BelAðAÞ
1 � BelðAÞ for BelðAÞ < PlðAÞ ¼ 1;

arbitrary in ½0; 1�; for BelðAÞ ¼ PlðAÞ ¼ 1:

8>>>>><>>>>>:
ð46Þ

4.2.2.5. A � B;B 6¼ ;, case. In this case, BelAðBÞ ¼ aABelðBÞ þ bA P BelðBÞ and

PlAðBÞ ¼ aAPlðBÞ þ bA P PlðBÞ.

4.2.2.6. Updated conditional. Another very intuitively appealing conclusion

may be drawn as follows: from (40) and (41), note that

BelAðA \ BÞ ¼ aABelðA \ BÞ þ bABelðB jAÞ;
PlAðA� BÞ ¼ aAPlðA� BÞ þ bAPlðA� B jAÞ

¼ aAPlðA� BÞ þ bAPlðB jAÞ:
ð47Þ

Hence

BelAðB jAÞ ¼
BelAðA \ BÞ

BelAðA \ BÞ þ PlAðA� BÞ

¼ aABelðA \ BÞ þ bABelðB jAÞ
aA½BelðA \ BÞ þ PlðA� BÞ� þ bA½BelðB jAÞ þ PlðB jAÞ�

¼ aABelðA \ BÞ þ bABelðB jAÞ
aA½BelðA \ BÞ þ PlðA� BÞ� þ bA

¼ BelðB jAÞ; ð48Þ

i.e., BelðB jAÞ is invariant with updating.

4.2.2.7. Repeated conditioning. Let us use the superscript ðiÞ to denote the i
times repeated conditioning with respect to proposition A via repeated appli-

cation of (40), i.e.

Bel
ðiþ1Þ
A ðBÞ ¼ aðiÞ

A Bel
ðiÞ
A ðBÞ þ bðiÞ

A Bel
ðiÞ
A ðB jAÞ 8iP 0; ð49Þ

where i ¼ 0 and i ¼ 1 denote terms related to the originally cast BBA and the
first update respectively. Then

Bel
ð2Þ
A ðBÞ ¼ að1Þ

A ½að0Þ
A BelðBÞ þ bð0Þ

A BelðB jAÞ� þ bð1Þ
A Bel

ð1Þ
A ðB jAÞ

¼ BelðB jAÞ þ að0Þ
A að1Þ

A ½BelðBÞ � BelðB jAÞ�; ð50Þ
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where we have used the invariance of BelðB jAÞ in (48) and aðiÞ
A þ bðiÞ

A ¼ 1 8iP 0.

Continuing in this manner, one may show that

Bel
ðnÞ
A ðBÞ ¼ BelðB jAÞ þ

Yn�1

i¼0

aðiÞ
A ½BelðBÞ � BelðB jAÞ� 8nP 0; ð51Þ

where fað0Þ
A ; bð0Þ

A g¼: faA; bAg. This again results in the intuitively appealing result

lim
n!1

Bel
ðnÞ
A ðBÞ ¼ BelðB jAÞ; lim

n!1
Bel

ðnÞ
A ðAÞ ¼ 1: ð52Þ

4.2.2.8. Updated incremental. We also have

BelAðBÞ � BelAðA \ BÞ ¼ aA½BelðBÞ � BelðA \ BÞ�;
PlAðBÞ � PlAðA \ BÞ ¼ aA½PlðBÞ � PlðA \ BÞ�:

ð53Þ

4.2.2.9. Behavior of updates. When is the updated notion higher than its cor-
responding original assignment? This is of course true whenever B � A (as can

be inferred from (43). Another way to address this question is to note that

BelAðBÞ � BelðBÞ ¼ ð1 � aAÞ½BelðB jAÞ � BelðBÞ�;
PlAðBÞ � PlðBÞ ¼ ð1 � aAÞ½PlðB jAÞ � PlðBÞ�;

UnAðBÞ � UnðBÞ ¼ ð1 � aAÞ½UnðB jAÞ � UnðBÞ�:
ð54Þ

The dynamics of these incrementals of belief, plausibility and uncertainty

interval are therefore identical. It is now easy to arrive at the following inter-

esting conclusions:

(1) BelðBÞP BelðB jAÞ and PlðBÞP PlðB jAÞ guarantee no increase in the up-

dates for the belief and plausibility functions respectively; the minimum

updates are limited by BelðB jAÞ and PlðB jAÞ respectively. Moreover,

UnðBÞP UnðB jAÞ guarantees no deterioration of the uncertainty interval;
the maximum improvement is limited by UnðB jAÞ.

(2) BelðBÞ6BelðB jAÞ and PlðBÞ6PlðB jAÞ guarantee no decrease in the up-

dates for the belief and plausibility functions respectively; the maximum

updates are limited by BelðB jAÞ and PlðB jAÞ respectively. Moreover,

UnðBÞ6UnðB jAÞ guarantees no improvement of the uncertainty interval;

the maximum deterioration is limited by UnðB jAÞ.

These observations are summarized in Fig. 3.

4.3. Linear combination weights

In this section, we propose several strategies that enable the selection of the

linear combination weights faA; bAg.
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4.3.1. Inertia of available evidence

The weights faA; bAg can be interpreted as measures that indicate the flexi-

bility or inertia of the originally cast evidence to updating when presented with
the incoming conditional proposition.

Definition 15 (Inertia of available evidence based updating). Consider the evi-

dence updating strategy in Definition 14.

ii(i) The choice faA; bAg ¼ f1; 0g is called the infinite inertia based (II-based)
updating strategy.

i(ii) The choice faA; bAg ¼ f0; 1g is called the zero inertia based (ZI-based) up-
dating strategy.

(iii) The choice faA; bAg ¼ f N
Nþ1

; 1
Nþ1

g, where N refers to the number of �pieces’

of evidence the available evidence is based upon is called the proportional
inertia based (PI-based) updating strategy.

We make several observations regarding these updating strategies:

(1) II-based updating. This can account for the complete inflexibility of the

available evidence towards changes (e.g., when it perceives the incoming

evidence to be completely unreliable, when the original BoE is formed from

a vast collection of reliable data thus generating a high inertia, etc.).

Fig. 3. Behavior of the updates BelAðBÞ, PlAðBÞ and UnAðBÞ.
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(2) ZI-based updating. This can account for the complete flexibility of the

available evidence towards changes (e.g., when it perceives the incoming
evidence to be completely reliable, when the original BoE has little or no

credible knowledge base to begin with, etc.).

(3) PI-based updating. This strategy treats each �piece’ of already gathered

evidence and the new �piece’ of incoming evidence as having equal inertia.

4.3.2. Integrity of available evidence

Suppose that the conditioning proposition A has just occurred, and we are in

the process of updating the support for all the propositions (including A itself)
armed with this new evidence. Then, for the integrity of the originally cast

evidence to be maintained, it is reasonable to enforce BelAðAÞ6PlðAÞ. The

corresponding weights faA; bAg we believe can be considered the most rea-

sonable choices if we are unwilling to compromise the evidence that had al-

ready been cast prior to the arrival of the new evidence. In other words, in

order not to contradict the originally cast evidence, we allow BelAðAÞ to in-

crease to PlðAÞ––but no more! Substituting this in (40) we get

Definition 16 (Integrity of available evidence based updating). Consider the ev-

idence updating strategy in Definition 14. The integrity of available evidence
based (IAE-based) updating strategy refers to

aA 2
1 � PlðAÞ
1 � BelðAÞ ; 1
� �

for BelðAÞ < 1;

½0; 1� for BelðAÞ ¼ PlðAÞ ¼ 1:

8<: ð55Þ

We make several observations regarding this IAE-based updating strategy:

(1) aA achieves its upper bound, i.e., aA ¼ 1. This means that the current

knowledge base is not changed. It indicates that the BoE is least flexible

to the incoming evidence, viz., the II-based updating strategy.

(2) aA achieves its lower bound, i.e., aA ¼ 1�PlðAÞ
1�BelðAÞ. This yields

BelAðAÞ ¼ PlðAÞ;

PlAðAÞ ¼
½PlðAÞ � BelðAÞ� þ PlðAÞ½1 � PlðAÞ�

1 � BelðAÞ for BelðAÞ < 1;

1 for BelðAÞ ¼ PlðAÞ ¼ 1:

8<:
ð56Þ

It indicates that the BoE is most flexible to the incoming evidence to the
extent that its own evidence is not compromised. We refer to this as the most
flexible IAE-based updating strategy. Note that, in this case, PlAðAÞP PlðAÞ
with equality holding true iff aA ¼ 1 and/or PlðAÞ ¼ 1; PlAðAÞ ¼ 1 iff

PlðAÞ ¼ 1.
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(3) aA violates its lower bound, i.e., aA < 1�PlðAÞ
1�BelðAÞ. This yields

BelAðAÞ > PlðAÞ;

PlAðAÞ
>

½PlðAÞ � BelðAÞ� þ PlðAÞ½1 � PlðAÞ�
1 � BelðAÞ for BelðAÞ < 1;

¼ 1 for BelðAÞ ¼ PlðAÞ ¼ 1:

8><>:
ð57Þ

It indicates that the BoE is willing to compromise the integrity of the
originally cast evidence. A high perceived reliability associated with the in-

coming evidence may convince the BoE to adopt such an updating strategy.

4.3.2.1. A probabilistic interpretation. What is most interesting is that we can

provide a probabilistic interpretation to the most flexible IAE-based updating

strategy. To proceed, let Belð�Þ ¼ Plð�Þ¼: Pð�Þ. For convenience, we also assume

that A and B are mutually exhaustive, i.e., A [ B ¼ H. Hence

P ðAÞ þ P ðBÞ � PðA \ BÞ ¼ 1: ð58Þ
Previously, in (48), we showed that an updating strategy comprised of a

linear combination of P ðBÞ and P ðB jAÞ implies the latter to be invariant, i.e.,

PAðB jAÞ ¼ P ðB jAÞ () PAðA \ BÞ
PAðAÞ

¼ P ðA \ BÞ
P ðAÞ : ð59Þ

Hence let 3

PAðAÞ ¼ cAP ðAÞ; PAðA \ BÞ ¼ cAPðA \ BÞ: ð60Þ
Since (58) must be true after updating as well, we have

PAðBÞ ¼ 1 � PAðAÞ þ PAðA \ BÞ ¼ 1 � cA½P ðAÞ � P ðA \ BÞ�

¼ 1 � cA½1 � P ðBÞ� ¼ ð1 � cAÞ þ cAP ðBÞ: ð61Þ

Now, suppose m instances out of a total of M correspond to event A and the

next instance corresponds to A as well. Then we may write

P ðAÞ ¼ m
M

; PAðAÞ ¼
mþ 1

M þ 1
: ð62Þ

Eliminate m

PAðAÞ ¼
1

M þ 1
þ M
M þ 1

P ðAÞ: ð63Þ

3 This probabilistic interpretation is principally due to Professor Young [38].
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Hence

cA ¼ PAðAÞ
PðAÞ ¼ 1 þMP ðAÞ

ðM þ 1ÞPðAÞ and 1 � cA ¼ P ðAÞ � 1

ðM þ 1ÞP ðAÞ : ð64Þ

Substitute in (61)

PAðBÞ ¼
P ðAÞ � 1

ðM þ 1ÞP ðAÞ þ
1 þMPðAÞ
ðM þ 1ÞP ðAÞ ¼

P ðA \ BÞ þMPðAÞP ðBÞ
ðM þ 1ÞP ðAÞ

¼ M
M þ 1

P ðBÞ þ 1

M þ 1
P ðB jAÞ; ð65Þ

where we have used (58). In effect, the parameters in Definition 14 are

aA ¼ M
M þ 1

¼ 1 � PAðAÞ
1 � PðAÞ ; bA ¼ 1

M þ 1
¼ PAðAÞ � P ðAÞ

1 � P ðAÞ ; ð66Þ

where (62) has been used to solve for M . In summary, the update of the

probability of B conditional to the event A becomes

PAðBÞ ¼
1 � PAðAÞ
1 � P ðAÞ P ðBÞ þ

PAðAÞ � P ðAÞ
1 � PðAÞ P ðB jAÞ: ð67Þ

Now compare with (46) and note the following correspondence:

P ðAÞ $ BelðAÞ ¼ PlðAÞ; PAðAÞ $ BelAðAÞ ¼ PlAðAÞ: ð68Þ

This is the probabilistic interpretation of the most flexible IAE-based

updating strategy we were seeking.

5. Example

To illustrate the proposed notions, consider a decision node that receives
sensor data generated by magnetometers distributed throughout a battlefield.

From the sensor readings it has received so far, suppose the node models its

knowledge about the object located at a particular battlefield location via a

BBA with the FoD H ¼ fmetal; non-metal; emptyg. Consider the belief, plau-

sibility and BBA corresponding to a particular battlefield location given in

Table 3.

Suppose the node then receives a new piece of evidence that the location is

indeed occupied by an object (metal or non-metal). To update the BBA above,
we utilize the conditioning proposition A ¼ fmetal; non-metalg ) �A ¼
femptyg. The updates corresponding to the strategy in Definition 14 appear in

Table 4.
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Compare with the results in Sections 3.1, 3.2 and 4.1:

(1) Both {empty} and {non-metal, empty} properly intersect with �A. Hence

their conditional BBAs are zero; accordingly, their updated BBAs depends

only on their corresponding original BBAs.

(2) Note that {metal} 2 Tð�AÞ. Hence its conditional BBA does not get refined
except for the re-normalization by PlðAÞ ¼ 0:9; its updated BBA follows

accordingly.

(3) S({non-metal})¼S({metal, non-metal})¼ {non-metal, empty}. This is a

focal element that is being annulled by conditioning. Hence neither of

the propositions {non-metal} or {metal, non-metal} belong in Tð�AÞ and

therefore their conditional BBAs get refined.

Next, let us consider the role faA; bAg play in the updating mechanism. The

BBAs corresponding to various strategies, together with the corresponding
uncertainty intervals, are indicated in Table 5.

Note that, for the most flexible IAE-based strategy, aA ¼ 1�PlðAÞ
1�BelðAÞ ¼ 1�0:9

1�0:8
¼

0:5. In sensor information processing situations, the reliability of the incoming

evidence plays a crucial role in determining when and how to update the

current knowledge base. It is clear how easily faA; bAg can accommodate this

requirement

Table 3

Example 1––originally cast evidence

B BelðBÞ PlðBÞ mðBÞ
metal 0.7 0.7 0.7

non-metal 0.1 0.2 0.1

empty 0.1 0.2 0.1

{non-metal, empty} 0.3 0.3 0.1

{metal, non-metal} 0.8 0.9 0

Table 4

Example 1––updated evidence. Note that, aA þ bA ¼ 1

B BelAðBÞ PlAðBÞ mAðBÞ

metal 0.7aA þ
0:7

0:9
bA 0.7aA þ

0:7

0:8
bA 0.7aA þ

0:7

0:9
bA

non-metal 0.1aA þ
0:1

0:8
bA 0.2aA þ

0:2

0:9
bA 0.1aA þ

0:1

0:8
bA

empty 0.1aA 0.2aA 0.1aA

{non-metal, empty} 0.3aA þ
0:1

0:8
bA 0.3aA þ

0:2

0:9
bA 0.1aA

{metal, non-metal} 0.8aA þ bA 0.9aA þ bA
0:07

0:72
bA
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(1) The II-based strategy assumes the incoming evidence to be completely false

and keeps its previous evidence intact.
(2) The ZI-based strategy assumes the incoming evidence to be completely

reliable. The corresponding IE-based updating strategy sacrifices the in-

tegrity of the available evidence in assigning complete certainty to the

proposition {metal, non-metal}, viz., incoming information that mentions

the presence of an object is accepted as fact.

(3) The IAE-based strategy, on the other hand, attempts to strike a balance be-

tween these two extreme cases. It accepts the incoming evidence to the ex-

tent that the integrity of the previous evidence is not compromised. So, the
belief in the proposition fmetal; non-metalg is made not to exceed its previ-

ously assigned plausibility.

6. Conclusion and future research directions

The reliability of the information being gathered and the integrity and in-

ertia of the currently available knowledge base play crucial roles in making

complex subjective decisions. This is especially true in distributed sensor net-

works operating in, for example, battlefield environments. In this paper, we

utilize the conditional belief and plausibility notions applicable within the DS

evidential reasoning framework to arrive at an evidence updating strategy to
address these concerns.

First, the DS conditional notions in [27] are viewed with respect to how they

impact the originally cast BBA. This viewpoint we believe is more useful since

it enables one to provide a more intuitive assessment of how the conditioning

proposition affects the remaining propositions. Indeed, one is now able to in-

terpret conditioning as an annulment of the masses of all those propositions

that do not definitely imply the conditioning proposition. Of these, only the

masses of the propositions that may imply the conditioning proposition are re-
distributed to those propositions that do definitely imply the conditioning

proposition. A characterization of these latter propositions that may �benefit’

from a proposition whose mass is being annulled is also provided.

Table 5

Example 1––BBA s and uncertainty intervals corresponding to various updating strategies

Proposition B II-based aA ¼ 1 ZI-based aA ¼ 0 Most flexible IAE-

based aA ¼ 0:5

metal 0.700 [0.700,0.700] 0.778 [0.778,0.875] 0.739 [0.739,0.787]

non-metal 0.100 [0.100,0.200] 0.125 [0.125,0.222] 0.113 [0.113,0.211]

empty 0.100 [0.100,0.200] 0.000 [0.000,0.000] 0.050 [0.050,0.100]

{non-metal, empty} 0.100 [0.300,0.300] 0.000 [0.125,0.222] 0.050 [0.213,0.261]

{metal, non-metal} 0.000 [0.800,0.900] 0.097 [1.000,1.000] 0.048 [0.900,0.950]
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This BBA based interpretation shows that conditioning may be viewed as a

way to restrict one’s viewpoint to those propositions that are in �common’ with
the conditioning proposition. In other words, conditioning enhances support

only for those propositions that definitely imply the incoming evidence while

nullifying the support for all remaining propositions. It is this intuitively very

appealing viewpoint that forms the basis on which the updating strategy in

Section 4 has been developed. It linearly combines the available evidence with

the incoming evidence conditioned to the conditioning proposition thus en-

suring that masses of propositions that may imply the complement of the

conditioning proposition are decreased while the masses of propositions that
definitely imply the conditioning proposition are increased. We believe this to

be a very sensible strategy.

In addition to this property, the proposed updating strategy also enables one

to account for the reliability of incoming evidence, integrity and inertia of

existing evidence and its flexibility to incoming evidence. The appeal of the

proposed updating strategy lies in its ability to address these issues with ease

via appropriate selection of the pair of linear combination weights which es-

sentially �weighs’ the incoming conditional evidence against what is already
available. Of particular importance is the development of a strategy to ensure

that the integrity of existing evidence is not compromised. Its corresponding

probabilistic interpretation we believe is quite novel and provides justification

for its application.

Updating an existing knowledge base with evidence generated from different

FoDs is not addressed in this work. Decision making in the presence of partial

evidence generated from such non-exhaustive FoDs is a key issue encountered

in several application areas. Despite its success in situations when some in-
formation essential for a probabilistic approach is unavailable and as a model

for subjective human reasoning under uncertainty and representing ignorance

[39], the fact that DRC in Definition 6 requires evidence to be generated from

sources possessing identical FoDs has been one of its major drawbacks [40–43].

Approaches to circumvent this difficulty include the following:

• Ignoring differences in FoDs. In this basic approach, the evidence is assumed

to discern the same frame H. See Fig. 4. The implication of such an assump-

tion is that all decision processes are assumed to have access to all the infor-

mation sources. In other words, it ignores the fact that each decision process

may not have access to all the sources, and hence this approach cannot be
considered an effective methodology. Actually, the counter-intuitive conclu-

sions the DRC may produce under such an assumption are well documented

and highlight a major drawback in the existing DS theory [44].

• Deconditioning approach. In this approach proposed in [25,44], the closed-

world assumption made in [2] is relaxed. Consequently, the knowledge for-

malized in the FoD now becomes incomplete because some propositions are
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not considered. The strategy used to handle this situation assumes the exis-

tence of other sources of information that discern the missing propositions,

and these sources are expected to provide the missing information. See Fig.

5. In other words, in the deconditioning approach, one supposes that the

missing propositions and the propositions of the existing information

sources are considered together by these other sources. Sources with ade-

quate �variety’ in terms of propositions they consider and performance in
terms of discernment of these propositions are therefore essential.

We believe that the updating strategy proposed in this paper exposes per-
haps a new conditional approach for combining evidence when one encounters

non-exhaustive FoDs. The premise of this approach is that combination of

Fig. 5. Deconditioning approach.

Fig. 4. Approach of ignoring differences in FoDs.
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evidence from two FoDs makes sense only when one restricts the viewpoint to

those propositions belonging to their common intersection. Thus, instead of
assuming �extra’ knowledge when combining non-exhaustive FoDs, one simply

extracts relevant information from the smallest common sub-FoD which is

then combined. This we feel provides a better representation of the uncertainty

associated with the missing propositions. The envisioned approach is to first

focus on those propositions belonging to the common intersection and then

account for the remaining propositions. See Fig. 6.

The newly developed BBA based interpretation indicates that conditioning

can be used to �isolate’ knowledge that is common to the frames; the individual
evidence cast by each frame then need to be incorporated to capture the

knowledge from the remaining propositions. This is essentially what a strategy

composed of a linear combination of the conditional and the available evidence

does––conditioning term is an indication of the propositions that are common

to available evidence and incoming evidence while the other term captures the

remaining propositions. Hence, we believe an appropriate generalization of the

proposed updating strategy may enable both these tasks to be performed

within an integrated environment.
We believe that this conditional approach, at least in certain applications,

may in fact offer the better option. As an example, consider a wireless ad hoc

sensor network [45] where the very limited energy reserves of nodes require

each node to act as a relay of sensor information from other nodes while

Fig. 6. Conditional approach.
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generating and transmitting its own information. Can a node �eavesdrop’ into

the information of other nodes it is relaying and update its own knowledge
base? The conditional approach can facilitate such a refinement since it enables

the node to simply concentrate on the propositions that are in common to its

own frame without the need for its �expansion’. This type of strategy would be

extremely useful for, for instance, a mobile sensor which may now move and

station itself at a better location to observe a particular object of interest.

Some preliminary results along the above mentioned ideas have been recently

presented in [46]. Several research issues however are still under investigation.

For example, an issue of critical importance that is yet to be addressed is related
to the non-commutativity of the conditional [27], and hence the updating

strategy. In certain applications this might in fact be desirable. For example,

consider a knowledge base, such as a database of MRI images, constructed from

a vast amount of evidence gathered over several years. With the arrival of a new

piece of evidence, one clearly would not want to ignore the inertia of the existing

database. These are issues that need careful consideration.
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