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The paper establishes exact lower bound on the effective elastic energy of two-dimensional, three-mate-
rial composite subjected to the homogeneous, anisotropic stress. It is assumed that the materials are
mixed with given volume fractions and that one of the phases is degenerated to void, i.e., the effective
composite is porous. Explicit formula for the energy bound is obtained using the translation method
enhanced with additional inequality expressing certain property of stresses. Sufficient optimality condi-
tions of the energy bound are used to set the requirements which have to be met by the stress fields in
each phase of optimal effective material regardless of the complexity of its microstructural geometry. We
show that these requirements are fulfilled in a special class of microgeometries, so-called laminates of a
rank. Their optimality is elaborated in detail for structures with significant amount of void, also referred
to as high-porosity structures. It is shown that geometrical parameters of optimal multi-rank, high-poros-
ity laminates are different in various ranges of volume fractions and anisotropy level of external stress.
Non-laminate, three-phase microstructures introduced by other authors and their optimality in high-
porosity regions is also discussed by means of the sufficient conditions technique. Conjectures regarding
low-porosity regions are presented, but full treatment of this issue is postponed to a separate publication.
The corresponding ‘‘G-closure problem’’ of a three-phase isotropic composite is also addressed and exact
bounds on effective isotropic properties are explicitly determined in these regions where the stress
energy bound is optimal.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Significance of the problem: Optimization of composite micro-
structures is important today because technological capabilities al-
low for manufacturing a huge variety of microscopic designs for
roughly the same price, and one wants to know what ‘‘the best’’
microstructure is. There is no boundary between optimal structural
design in classical engineering sense and optimal composite material
as the latter is also a structure at microlevel. Optimal large-scale
structures are made from optimal microstructures (composites)
and the main difference between them is that the composite prob-
lem is solved for a periodic domain and periodic boundary condi-
tions, which permits for an explicit solution. Besides the optimal
structures, one wants to know the range of improvement of effec-
tive composite properties by varying the microstructure. The re-
lated quasiconvex envelope problem (see for example, Cherkaev,
2000; Dacorogna, 2008) opens ways to construction of metamate-
rials, i.e., structures with unusual responses.

So far, the vast majority of available results deals with two-
material composites. Meanwhile, numerous applications call for
optimal design of multimaterial composites, or even porous com-
posites from two elastic materials and void. Especially worth not-
ing are applications that utilize multi-physics, i.e., elastic and
electromagnetic properties and those that deal with structures
best adapted to variable environment such as natural morpholo-
gies perfected by evolution.

Optimal microstructures of two-phase and multiphase compos-
ites are drastically different. In contrast with the steady and intu-
itively expected topology of two-material optimal mixture (a
strong material always surrounds weak inclusions), optimal multi-
material structures show the large variety of patterns and the opti-
mal topology depends on volume fractions. Optimal multiphase
structure may contain an enveloping layer but it also has ‘‘hubs’’
of a material with intermediate stiffness connected by ‘‘pathways’’
(laminate of the best and worst materials) and other configurations
that reveal a geometrical essence of optimality (see Cherkaev,
2009, 2012; Cherkaev and Zhang, 2011 and Fig. 1). Geometries of
multimaterial optimal structures are not unique, pieces of the
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Fig. 1. Elements of a Hashin–Shtrikman type assemblage from two isotropic
materials and void (white and grey colors represent stronger and weaker phases
repectively, black corresponds to void). Comparison of geometries of optimal
microstructures with maximal effective bulk modulus: (a) two-material composite;
(b)–(d) three-material microstructures with small, intermediate and large volume
of stronger material.
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same material may occur in different places of an optimal structure
and they may correspond to different fields inside them. Clearly,
the method for finding optimal multiphase geometries differ from
those for optimal two-material structures.

In this paper we follow (Cherkaev and Zhang, 2011) in develop-
ing the technique for finding the bounds and optimal structures
and we apply it to elastic composites. The results constitute a next
step from the popular ‘‘topology optimization’’ (see Bendsøe and
Sigmund, 2003), that is a problem of optimal layout of a material
and void. Namely, we describe optimal distributions of two mate-
rials and void, or optimal two-material porous composites made
from a strong and expensive material, a weak and cheap one, and
void. Such problem is useful for many multi-physics design appli-
cations when additional properties besides elasticity are impor-
tant. The presence of one of the materials can be independently
required by whatever reasons.

Background of the research: Formally, the problem of optimal
structures can be formulated as a question of minimizers of a var-
iational problem with nonquasiconvex multiwell Lagrangians; the
wells represent components’ energies plus their costs and the min-
imizers (Young measures) are stress fields in the materials of an
optimal composite. The challenging open problem is to build the
quasiconvex envelope for Lagrangian with three or more wells.
The problem is addressed by (i) finding exact bound (the lower
bound for the quasiconvex envelope) and (ii) approximating these
bounds by special class of minimizers. By building the lower
bound, we also obtain sufficient conditions on optimal fields in
materials that hint on the search for geometric patterns determin-
ing optimal structures (see Milton, 2002; Albin et al., 2007; Cher-
kaev, 2009).

The existing techniques for the bound such as Hashin–Shtrik-
man method (see Hashin and Shtrikman, 1963); translation meth-
od (see Lurie and Cherkaev, 1982, 1986; Tartar, 1985; Milton,
2002) or analytic method of Bergman–Milton (see Bergman,
1978; Milton, 1981a, 2002), produced a number of results for
two-material mixtures in the last 25 years (see e.g., the books Lur-
ie, 1993; Cherkaev, 2000; Allaire, 2002; Milton, 2002; Dacorogna,
2008 for examples). These techniques, however, do not provide
all solutions for multiwell problems.

In the last three decades, the multimaterial optimal composites
have been studied by Milton (1981b), Lurie and Cherkaev (1985),
Milton and Kohn (1988) among others. In 1995, Nesi published a
paper (Nesi, 1995) about bounds for multimaterial mixtures that
are better than Hashin–Shtrikman ones. Several new types of
three-phase structures with bulk modulus equal or close to the Ha-
shin–Shtrikman bound were suggested by Gibiansky and Sigmund
(see Gibiansky and Sigmund, 2000; Sigmund, 2000).

In the last years (2009–2012), a new technique for finding opti-
mal bounds for multimaterial mixtures was suggested and tested
on a couple of examples (Cherkaev, 2009, 2012; Cherkaev and
Zhang, 2011). The essence of the new technique is coupling the
translation method with the Alessandrini–Nesi inequality (see
Alessandrini and Nesi, 2001), that order and restrain values of
the fields in any optimal composite. Roughly speaking, in the case
tackled in this paper (elastic 2D microstructures of maximal stiff-
ness for a mixture of two materials and void), the Alessandrini–
Nesi inequality states that the sign of a stress field is constant in
the whole microstructure. The technique was used to find the
bounds on the effective properties of isotropic 2D multimaterial
composites (see Cherkaev, 2009, 2012) and anisotropic conducting
composites made from two materials and void (see Cherkaev and
Zhang, 2011).

The lower bound on the effective energy is a multifaceted sur-
face, its analytic expression is different in different regions of vol-
ume fractions of mixed materials and anisotropy level of average
stress. In this paper, optimal energy bound and locally optimal
stress fields are analyzed and described for high-porosity compos-
ites, i.e., mixtures containing a significant amount of void. Low-
porosity case is also addressed, but the detailed description is post-
poned to a separate publication. In one region the optimality is
conjectured. Our guess is that another, yet unaccounted, inequality
becomes active and improves the bound in this region.

2. Problem setting

2.1. Notation

Reference to periodic homogenization: Consider a domain X � R2

filled with two linearly elastic materials and a void. Non-homoge-
neous distribution of phases in the domain is determined by its
division into three disjoint subsets Xi, i ¼ 1;2;3. Suppose that a
boundary value problem (BVP) of linearized elasticity is posed in
X. If non-homogeneity of a material layout is given by a fine par-
tition of the domain then it is convenient to make use of the
homogenization theory of periodic media in determining the sim-
plified, effective Hooke’s law in X prior to solving the BVP.

In this paper we solve an inverse homogenization problem: we
find a structure of a multicomponent composite that stores mini-
mal stress energy in a given homogeneous stress field. We assume
that the properties of constituent materials and their volume frac-
tions are given.

Definitions: Due to the local character of homogenization, in the
sequel we consider arbitrary x 2 X which is sufficiently distant
from the boundary @X. Let Y ¼ ½0;1�2 denote a corresponding unit
cell periodically extended to R2. Assume that Y is divided into three
disjont subcells Yi; i ¼ 1;2;3, whose areas mi are fixed. Write

Y ¼
[

i¼1;2;3

Yi; jYij ¼ mi;
X3

i¼1

mi ¼ 1 ð1Þ
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and set ðe1; e2Þ for a Cartesian basis in Y. Let E2
s stand for a space of

plane, second-order symmetric tensors, and E4
s for the space of

plane Hooke’s tensors. Next, choose

E1 ¼
1ffiffiffi
2
p ðe1 � e1 þ e2 � e2Þ; E2 ¼

1ffiffiffi
2
p ðe1 � e1 � e2 � e2Þ;

E3 ¼
1ffiffiffi
2
p ðe1 � e2 þ e2 � e1Þ ð2Þ

for the basis in E2
s .

Suppose that Y1 and Y2 are filled with elastic isotropic materials
whose constitutive properties are given by Ki ¼ 1=ji,
Li ¼ 1=li; i ¼ 1;2, where ji and li stand for bulk and shear moduli
of ith phase. Let K3 ¼ L3 ¼ þ1 which means that the third phase
corresponds to void. Introduce a set A ¼ fA1;A2;Avoidg where

Ai ¼
Ki

2
E1 � E1 þ

Li

2
ðE2 � E2 þ E3 � E3Þ ð3Þ

represents Hooke’s compliance tensor of ith non-degenerate isotro-
pic phase. In the sequel we assume that the materials are well-or-
dered, i.e., K1 < K2 < K3 ¼ þ1 and L1 < L2 < L3 ¼ þ1.

Set

s0 ¼ ge1 � e1 þ .e2 � e2

for the average stress tensor in Y. Components g and . denote prin-
cipal values of s0 and ðe1; e2Þ stands for its principal basis. We nor-
malize s0, assuming without loss of generality g ¼ 1; j.j 6 1. It
follows that

s0 ¼ S0 E1 þ D0 E2; S0 ¼
1þ .ffiffiffi

2
p ; D0 ¼

1� .ffiffiffi
2
p

and S0;D0 represent spherical and deviatoric components of s0.
Stress fields satisfy equlibrium condition divs ¼ 0. We define a

set of statically admissible stress fields in Y

R ¼ s : s 2 L2
#ðY; E2

s Þ; divs ¼ 0 in Y;
Z

Y
sðyÞdy ¼ s0

� �
where L2

#ðY; E2
s Þ stands for the space of L2-functions with values in

E2
s and Y-periodic in X.

Due to Y-periodicity, s 2 R is endowed with two properties:

– function detsðyÞ; y 2 Y , is quasiaffine hence
Z
Y

det sðyÞdy ¼ det s0 ¼ .; ð4Þ
– function detsðyÞ; y 2 Y , is locally univalent with det s0, that is
det sðyÞP 0 a:e: in Y if det s0 P 0 ð5Þ
and the latter remains valid if ‘‘P’’ is replaced by ‘‘6’’,

(see Alessandrini and Nesi, 2001). The above-mentioned properties
do not result in any restrictions on s 2 R, they simply unveil cer-
tain characteristics of the stress fields related to assumed Y-period-
icity. Nevertheless, (4) and (5) are of great significance in bounding
the stress energy which is the central part of the study.

Symmetric second order tensor s is uniquely represented in (2)
by one spherical and two deviatoric components, respectively gi-
ven by s and d1; d2, such that

s ¼ s11 þ s22ffiffiffi
2
p ; d1 ¼

s11 � s22ffiffiffi
2
p ; d2 ¼

ffiffiffi
2
p

s12

hence sðyÞ ¼ sðyÞE1 þ d1ðyÞE2 þ d2ðyÞE3. Decomposing the determi-
nant function of a stress field according to

2 det s ¼ s2 � d2
1 þ d2

2

� �
and considering . 2 ½�1;1�, allows for rewriting (5) in the form
s2ðyÞP d2
1ðyÞ þ d2

2ðyÞ a:e: in Y if . 2 ½0; 1�;
s2ðyÞ 6 d2

1ðyÞ þ d2
2ðyÞ a:e: in Y if . 2 ½�1;0�:

ð6Þ

For further considerations, let us rephrase the requirements im-
posed on s 2 R. First, define a set

Runi ¼ s : s 2 L2
#ðY; E2

s Þ with univalence property as in ð6Þ;
n o

:

Next, write the restriction on the average stress (
R

Y s ¼ s0) in a form

Rav ¼ Si;Dij; i; j ¼ 1;2 : m1S1 þm2S2 ¼ S0;
�

m1D11 þm2D12 ¼ D0; m1D12 þm2D22 ¼ 0;
S2

i P D2
i1 þ D2

i2; if . 2 ½0; 1�;

S2
i 6 D2

i1 þ D2
i2; if . 2 ½�1;0�

o
where

Si ¼
1

mi

Z
Yi

sðyÞdy; Dij ¼
1

mi

Z
Yi

djðyÞdy; i; j ¼ 1;2; ð7Þ

denote average spherical and deviatoric stresses in non-degenerate
phases.

It follows that R # Rrel where

Rrel ¼ s : s 2 Runi and such that Si;Dij 2 Rav; i; j ¼ 1;2
� �

ð8Þ

stands for a set of relaxed stress fields, i.e., fields with neglected
equilibrium condition divs ¼ 0 in Y.

2.2. Composite materials of minimal stress energy

Energy bound and extremal effective material properties: The
(quadrupled) stress energy density in Yi; i ¼ 1;2, is calculated
according to

UiðsÞ ¼ 4
1
2
s : ðAi sÞ

	 

¼ Ki s2 þ Li d2

1 þ d2
2

� �
ð9Þ

and we set U3ðsÞ ¼ 0 due to assumed s ¼ 0 in void. The contraction
s : ðAi sÞ is realized by a standard operation ½s�T ðAiÞ ½s� in the basis
(2). Here ½s� and ðAiÞ stand for a vector and matrix representations
of respective quantities and ½s�T denotes a transpose of ½s�. Effective
energy is thus calculated according to

U0ð.Þ ¼ inf
Z

Y1

U1ðsÞdyþ
Z

Y2

U2ðsÞdy
���� s 2 R

� �
ð10Þ

and U0ð.Þ is bounded from below by

U�ð.Þ ¼ inf U0ð.Þ j Yi as in ð1Þf g:

Bounding the stress energy allows for restricting the values of effec-
tive constitutive properties. Indeed, by introducing K�; L� and A�
linked similarly to (3) one may claim U�ð.Þ in the form

U�ð.Þ ¼ 4
1
2
s0 : ðA� s0Þ

	 

¼ K� S2

0 þ L�D2
0

¼ 1
2

K� ð1þ .Þ2 þ L� ð1� .Þ2
� �

: ð11Þ

With this notation, K� and L� represent coupled bounds on effective
moduli of a composite for fixed .. They may be understood as con-
stitutive properties of a homogenized medium adjusted to the
external stress s0 ¼ S0 E1 þ D0 E2 in a sense of storing the minimal
amount of energy in two directions E1; E2 simultaneously.

Note that the requirement of isotropy imposed on the effective
medium is redundant. Indeed, the component of A� related to the
direction E3 � E3 may be arbitrary as s0 : E3 ¼ 0. Non-isotropic
microstructres may thus be optimal, i.e., such that the amount of
stress energy stored in them equals U�ð.Þ. Details on this topic
are presented in Section 4.



Table 1
A guide to the results of calculations of the exact lower bound on the stress energy,
optimal effective isotropic properties and optimal fields in materials.

Range of . Regiona Utrð.Þ K�ð.Þ; L�ð.Þ Optimal fields

. 2 ½�1;0� A0 (43) (51) (23), (44) – phase 1
(24), (44) – phase 2

B0 (36) (53) (23), (37) – phase 1
(17), (37) – phase 2

C0 (39) (54) (23), (40) – phase 1
(17), (40) – phase 2

D0 (48) (56) (24), (49) – phase 1
(17), (49) – phase 2

. 2 ½0; 1� D (46) (55) (20), (47) – phase 1
(17), (47) – phase 2

C (30) (54) (19), (31) – phase 1
(17), (31) – phase 2

B (27) (52) (19), (28) – phase 1
(17), (28) – phase 2

A (33) (50) (19), (34) – phase 1
(20), (34) – phase 2

E – – –

a See Fig. 2.
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Let us find formulae for K� and L�. To this end, note that by vary-
ing . 2 ½�1;1� on the r.h.s. of (11) we obtain a family of functions
that are quadratic in . and U�ð.Þ represents an envelope of this
family. Solving the system

U�ð.Þ �
1
2

K� ð1þ .Þ2 þ L� ð1� .Þ2
� �

¼ 0;

d
d.

U�ð.Þ �
1
2

K� ð1þ .Þ2 þ L� ð1� .Þ2
� �	 


¼ 0;

allows for determining the coefficients of U�ð.Þ. They read

K�ð.Þ ¼
U�ð.Þ
1þ .

þ 1� .
2ð1þ .Þ

dU�ð.Þ
d.

;

L�ð.Þ ¼
U�ð.Þ
1� .

� 1þ .
2ð1� .Þ

dU�ð.Þ
d.

:

ð12Þ

Functions in (12) are extremal if their values belong to @GmA, i.e.,
the boundary of G-closure of set A. Recall that GmA contains all effec-
tive Hooke’s tensors obtained by homogenization of components
belonging to A, taken with arbitrary microstructure and fixed vol-
ume fractions mi (see e.g., Cherkaev, 2000) for further reference.

Calculating energy bound by the translation method: In what fol-
lows we briefly describe a procedure of determining U�ð.Þ. For this
we make use of the translation method which proved to be an effi-
cient tool in solving problems regarding energy and effective prop-
erty bounds posed in various settings (see Cherkaev, 2000; Milton,
2002). The method starts from introducing a translation parameter
a 2 T � R and rephrasing (9) in the form

UiðsÞ ¼ Fiðs;aÞ � 2a det s; i ¼ 1;2;

where

Fiðs;aÞ ¼ ðKi þ aÞ s2 þ ðLi � aÞ d2
1 þ d2

2

� �
:

With (4) taken into consideration we calculateZ
Y1

U1ðsÞdyþ
Z

Y2

U2ðsÞdy ¼
Z

Y1

F1ðs;aÞdyþ
Z

Y2

F2ðs;aÞdy� 2.a:

Next, we neglect the differential constraint divs ¼ 0 on the stress
field in Y. This reduces the problem to an algebraic one and allows
for taking the infimum in (10) on the enlarged set Rrel. Optimal
stress field s 2 Rrel can be now determined independently in each
phase which also follows from dropping divs ¼ 0 in Y. The search
is reduced to non-degenarate phases only as s ¼ 0 in void. Conse-
quently, one obtains

U0ð.ÞP Uð.;aÞ � 2.a;

Uð.;aÞ ¼ inf
Z

Y1

F1ðs;aÞdyþ
Z

Y2

F2ðs;aÞdy j s 2 Rrel

� �
:

ð13Þ

By (8) it is possible to split the latter task into two steps. First, we
define the energy function Ui in the domain Yi

UiðSi;Di1;Di2;aÞ ¼ inf
Z

Yi

Fiðs;aÞdy
���� s 2 Runi

( )
; i ¼ 1;2; ð14Þ

finding the best distribution of s within Yi. Then we continue with

Uð.;aÞ ¼min U1 þU2 j Si;Dij 2 Rav
� �

ð15Þ

that describes the distribution of s in the whole Y. Finally, we
choose translation parameter a, obtaining the best lower bound
on the stress energy

U�ð.ÞP Utrð.Þ ¼max Uð.;aÞ � 2.a j a 2 Tf g: ð16Þ

The equality U�ð.Þ ¼ Utrð.Þ holds if the minimizer s 2 Rrel is stati-
cally admissible, i.e., divs ¼ 0 in Y ; s 2 R. If this is the case then
the bound Utrð.Þ is optimal, or exact, as it corresponds to the bound-
ary of GmA and it may be substituted in (12) for calculating extremal
coupled effective properties of a three-phase composite. Explicit
calculation of Utrð.Þ is a subject of Section 3, and proving its opti-
mality is postponed until Section 4.

3. Lower bound on the stress energy: sufficient optimality
condition

We proceed by explicit calculation of s 2 Rrel in two steps defined
by (14) and (15). This in turn allows for determining Utrð.Þ by proper
adjustment of the translation parameter a in (16). Consequently,
bounds on effective constitutive properties K�ð.Þ and L�ð.Þ are ob-
tained through (12). These bounds are exact if the energy bound is
exact, i.e., when U�ð.Þ ¼ Utrð.Þ holds. Discussion of the latter is pro-
vided in Sections 4 and 5. Below we establish the sufficient optimality
condition in terms of stress fields related to Utrð.Þ. With Ki; Li; i ¼ 1;2
given, the sought condition turns out to be dependent on mutual
relations among m1;m2 and .. It results in the division of a polyhe-
dron P ¼ fð.;m1;m2Þ : . 2 ½�1;1�;m1 2 ½0;1�m2�;m2 2 ½0;1�g into
several regions. Table 1 provides a brief guide to the sequence and
results of calculations and Fig. 2 shows an exemplary cross-section
of P by a plane m2 ¼ const.

3.1. Requirements for optimal stress fields in phases

In (14) we wish to obtain UiðSi;Di1;Di2;aÞ > �1 for i ¼ 1;2, as
such property is crucial in subsequent derivation of a nontrivial en-
ergy bound Utrð.Þ. To this end, we first discuss the conditions un-
der which the integrand Fiðs;aÞ is bounded from below by a
convex function. Next, we set the requirements for optimal relaxed
stress fields s 2 Runi by making use of the Jensen inequality (see
Cherkaev, 2000, Section 1.2). Applied to our case, it states that if
Fiðs;aÞ is convex in s then its integral over Yi takes a minimum va-
lue on a constant stress field being the average of s over Yi. Thus,
with s decomposed into spherical and deviatoric parts, we expect
the minimizers to be expressed in terms of averages Si;Di1;Di2,
see (7).

Assuming that Si;Dij; i; j ¼ 1;2, are prescribed and Ki – Li, we
consider the following cases:

(I) If a 2 ð�Ki; LiÞ then all terms in Fiðs;aÞ are convex.
For . 2 ½�1;1�, from the Jensen inequality it follows that
UiðSi;Di1;Di2;aÞ ¼ miðKi þ aÞS2
i þmiðLi � aÞ D2

i1 þ D2
i2

� �
:



Fig. 2. Regions of optimality related to a cross-section of a polyhedron P by a plane m2 ¼ 0:35. Constitutive properties of nondegenerate materials are fixed to K1 ¼ 1, L1 ¼ 2,
K2 ¼ 3, L2 ¼ 4.
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Components of optimal relaxed field s 2 Runi are constant in Yi:
sðyÞ ¼ Si; djðyÞ ¼ Dij a:e: in Yi: ð17Þ
(IIa) If a > Li then the s-term in Fiðs;aÞ is convex and d-terms are
concave.
For . 2 ½0;1� we have s2 P d2

1 þ d2
2 a.e. in Yi hence Fiðs;aÞ is

bounded from below by a convex function. Indeed,
ðKi þ aÞs2 þ ðLi � aÞ d2
1 þ d2

2

� �
P ðKi þ LiÞs2
and the ‘‘P’’ relation above is replaced by ‘‘=’’ when s2 ¼ d2
1 þ d2

2 a.e.
in Yi. Consequently,
UiðSi;Di1;Di2;aÞ ¼ miðKi þ LiÞS2
i : ð18Þ
Components of optimal s 2 Runi are given by
sðyÞ ¼ Si ðconstant fieldÞ;
d1ðyÞ ¼ Si cos hðyÞ; d2ðyÞ ¼ Si sin hðyÞ; a:e: in Yi

ð19Þ
with hðyÞ arbitrary in Yi up to the restrictions given in (6).
(IIb) If a ¼ Li then the s-term in Fiðs;aÞ is convex and d-terms

vanish.
For . 2 ½0;1� we obtain UiðSi;Di1;Di2;aÞ in a form identical to
(18). Formulae determining the components of optimal
relaxed field read
sðyÞ ¼ Si ðconstant fieldÞ;
djðyÞ arbitrary up to s2 P d2

1 þ d2
2 a:e: in Yi:

ð20Þ
(IIIa) If a < �Ki then the s-term in Fiðs;aÞ is concave and d-terms
are convex.
For . 2 ½�1;0� we have s2

6 d2
1 þ d2

2 a.e. in Yi hence
ðKi þ aÞs2 þ ðLi � aÞ d2
1 þ d2

2

� �
P ðKi þ LiÞ d2

1 þ d2
2

� �
ð21Þ
and the ‘‘P’’ relation above is replaced by ‘‘¼’’ when s2 ¼ d2
1 þ d2

2 a.e.
in Yi. Consequently,
UiðSi;Di1;Di2;aÞ ¼ miðKi þ LiÞ D2
i1 þ D2

i2

� �
: ð22Þ
Components of optimal relaxed stress field are constant in Yi:
sðyÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

i1 þ D2
i2

q
; djðyÞ ¼ Dij a:e: in Yi: ð23Þ
(IIIb) If a ¼ �Ki then the s-term in Fiðs;aÞ vanishes and d-terms
are convex.
For . 2 ½�1;0� we obtain UiðSi;Di1;Di2;aÞ in the form identi-
cal to (22) with optimal relaxed fields
sðyÞ arbitrary up to s2
6 d2

1 þ d2
2; a:e: in Yi;

djðyÞ ¼ Dij ðconstant fieldÞ:
ð24Þ
Other relations between . and a are not discussed here as they are
irrelevant in further study.
3.2. Calculation of the energy bound: regions of optimality

Having Ui ¼ UiðSi;Di1;Di2;aÞ; i ¼ 1;2, explicitly calculated, we
now turn to the problem of determining Uð.;aÞ and Utrð.Þ through
(15) and (16). Substituting thus obtained optimal Si;Di1;Di2 in the
formulae for sðyÞ and d1ðyÞ; d2ðyÞ leads to the explicit form of the
requirements for optimal relaxed stress fields derived in previous
Section.

3.2.1. Case of . 2 ½0; 1� and a 2 ðL1; L2Þ: Regions B and C

According to the discussion in Section 3.1, items (I) and (IIa), set

U1 ¼ m1ðK1 þ L1ÞS2
1;

U2 ¼ m2ðK2 þ aÞS2
2 þm2ðL2 � aÞ D2

21 þ D2
22

� �
:

It follows that

Uð.;aÞ ¼ min U1 þU2f g
subject to : m1S1 þm2S2 ¼ S0;

m1D11 þm2D21 ¼ D0;

m1D12 þm2D22 ¼ 0;
S2

1 P D2
11 þ D2

12;

S2
2 P D2

21 þ D2
22:

ð25Þ

From the KKT optimality conditions we conclude that (i)
D12 ¼ D22 ¼ 0, (ii) U1 þU2 is minimized with respect to D21 if D11

is maximized. All constraints in (25) are satisfied if we set

D11 ¼ min
1

m1
D0; S1

� �
:

Consequently, further discussion splits into two subcases corre-
sponding to regions of optimality B and C in Fig. 2. Forthcoming re-
sults are rather straightforward to obtain in both regions, hence we
omit the details of calculations.

Region B: Assume that

D11 ¼
1

m1
D0 6 S1:

By this, D21 ¼ 0 and (25) transforms to
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Uð.;aÞ ¼ min m1ðK1 þ L1ÞS2
1 þm2ðK2 þ aÞS2

2

n o
subject to : m1S1 þm2S2 ¼ S0;

ð26Þ

hence one may replace the above with a one-dimensional uncon-
strained optimization problem where S1 is treated as a variable.
The necessary optimality condition @ðU1 þU2Þ=@S1 ¼ 0 allows for
determining the function S1ðaÞ which is substituted back in (26),
and formula for S2ðaÞ follows from the constraint. The lower bound
on stress energy in region B given by

Utrð.Þ ¼max Uð.;aÞ � 2.a j a 2 ðL1; L2Þf g

¼ ð1þ .� 2
ffiffiffiffiffiffiffiffiffiffi.m2
p Þ2

2m1
ðK1 þ L1Þ þ 2.K2 ð27Þ

results from solving @½Uð.;aÞ � 2.a�=@a ¼ 0. In this way, two crit-
ical values of a are obtained. The one corresponding to maximum in
(27) reads

a ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi.m2
p ð1þ .� 2

ffiffiffiffiffiffiffiffiffiffi.m2
p Þ

.m1
ðK1 þ L1Þ � K2:

Consequently, optimal average spherical and deviatoric stress com-
ponents in region B are given by

In phase 1 : S1¼
1þ.�2

ffiffiffiffiffiffiffiffiffiffi.m2
pffiffiffi

2
p

m1
; D11¼

1�.ffiffiffi
2
p

m1
; D12¼0;

In phase 2 : S2¼
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffi.m2
p

m2
; D21¼0; D22¼0:

ð28Þ

Sufficient optimality condition of Utr in region B expressed in terms
of stress fields in phases 1 and 2 respectively follows from substi-
tuting S1;D11;D12 in (19) and S2;D21;D22 in (17).

Region B is represented by a curvilinear rectangle P2P3P5P6 in
Fig. 2. Its boundaries are determined according to the following
scheme

a < L2 ) m1 > wA�Bðm2;.Þ;
a > L1 ) m1 < wB�Dðm2;.Þ;
m1S1 P D0 ) . 2 ½m2;1�

where

wA�Bðm2;.Þ ¼
ffiffiffiffiffiffiffiffiffiffi.m2
p ð1þ .� 2

ffiffiffiffiffiffiffiffiffiffi.m2
p Þ

2.
K1 þ L1

K2 þ L2
;

wB�Dðm2;.Þ ¼
ffiffiffiffiffiffiffiffiffiffi.m2
p ð1þ .� 2

ffiffiffiffiffiffiffiffiffiffi.m2
p Þ

2.
K1 þ L1

K2 þ L1
:

ð29Þ

Region C: Conversely to the previous paragraph assume

D11 ¼ S1 6
1

m1
D0;

which results in

Uð.;aÞ ¼ min m1ðK1 þ L1ÞS2
1 þm2 ðK2 þ aÞS2

2 þ ðL2 � aÞD2
21

h in o
subject to : m1S1 þm2S2 ¼ S0;

m1S1 þm2D21 ¼ D0:

The algorithm of calculations is similar to the one presented for re-
gion B. It follows that the stress energy in region C is bounded from
below by
Utrð.Þ ¼max Uð.;aÞ � 2.a j a 2 ðL1; L2Þf g

¼ ðK2 þ L2Þ.2

2m2
þ ðK2 � L2Þ.

þ ðK1 þ L1Þð1�m2Þ2 þ ðK2 þ L2Þm1m2

2m1
ð30Þ

with

a ¼ 1
2
ðL2 � K2Þ þ

m2

.m1
ð1�m2ÞðK1 þ L1Þ �m1ðK2 þ L2Þ½ �

� �
:

Spherical and deviatoric components of optimal average stress in
phases are given by

In phase 1 : S1 ¼
1�m2ffiffiffi

2
p

m1
; D11 ¼ S1; D12 ¼ 0;

In phase 2 : S2 ¼
m2 þ .ffiffiffi

2
p

m2
; D21 ¼

m2 � .ffiffiffi
2
p

m2
; D22 ¼ 0:

ð31Þ

By substituting (31) in (19) and (17) respectively we obtain suffi-
cient optimality condition of Utr in region C expressed in terms of
stress fields in phases 1 and 2.

Region C is represented in Fig. 2 by a curvilinear triangle P1P2P3.
Its boundaries are determined by the following expressions

a < L2 ) m1 > wA�Cðm2;.Þ;
a > L1 ) m1 < wC�Eðm2;.Þ;
m1S1 6 D0 ) . 2 ½0;m2�

where

wA�Cðm2;.Þ ¼
m2ð1�m2ÞðK1 þ L1Þ
ðm2 þ .ÞðK2 þ L2Þ

;

wC�Eðm2;.Þ ¼
m2ð1�m2ÞðK1 þ L1Þ

ðm2 þ .ÞðK2 þ L2Þ � 2ðL2 � L1Þ.
:

ð32Þ
3.2.2. Case of . 2 ½0; 1� and a > L2: Region A

According to the discussion in Section 3.1, item (IIa), set

Ui ¼ miðKi þ LiÞS2
i ; i ¼ 1;2:

Hence

Uð.;aÞ ¼ min U1 þU2f g
subject to : m1S1 þm2S2 ¼ S0

and

Utrð.Þ ¼max Uð.;aÞ � 2.a j a P L2f g:

It is immediate that the function to be maximized monotonically
decreases in a hence we set a ¼ L2. Results obtained in the remain-
der of this section correspond to the region of optimality A in Fig. 2.

Region A: Proceeding analogously to previous cases we derive
the lower estimate of stress energy in region A. It takes the form

Utrð.Þ ¼
ð1þ .Þ2

2
ðK1 þ L1ÞðK2 þ L2Þ

m1ðK2 þ L2Þ þm2ðK1 þ L1Þ
� 2.L2: ð33Þ

Optimal values of average spherical components of stresses read

In phase 1 : S1 ¼
1þ .ffiffiffi

2
p K2 þ L2

m1ðK2 þ L2Þ þm2ðK1 þ L1Þ
;

In phase 2 : S2 ¼
1þ .ffiffiffi

2
p K1 þ L1

m1ðK2 þ L2Þ þm2ðK1 þ L1Þ
:

ð34Þ

Substituting S1 and S2 in (19) and (20) leads to sufficient optimality
condition of Utr in region A expressed in terms of stress fields in
phases 1 and 2 respectively.

For fixed Ki; Li; i ¼ 1;2, and arbitrary m2, region A is described by

A ¼ ð.;m1Þ :f 0 6 m1 6 wA�Cðm2;.Þ if . 2 ½0;m2�;
0 6 m1 6 wA�Bðm2;.Þ if . 2 ½m2;1�g

see (29) and (32). Curvilinear sides of A are represented in Fig. 2 by
lines P1P3 and P3P6. Note that A splits into A1 and A2 with the interface
represented by a curve P3P7. This division is explained in Section 4.2.3.

3.2.3. Case of . 2 ½�1; 0� and a 2 ð�K2;�K1Þ: Regions B0 and C0

According to the discussion in Section 3.1, items (I) and (IIIa), set

U1 ¼ m1ðK1 þ L1Þ D2
11 þ D2

12

� �
;

U2 ¼ m2ðK2 þ aÞS2
2 þm2ðL2 � aÞ D2

21 þ D2
22

� �
:
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It follows that

Uð.;aÞ ¼ min U1 þU2f g
subject to : m1S1 þm2S2 ¼ S0;

m1D11 þm2D21 ¼ D0;

m1D12 þm2D22 ¼ 0;
S2

1 6 D2
11 þ D2

12;

S2
2 6 D2

21 þ D2
22:

ð35Þ

From the KKT optimality conditions we conclude that: (i)
D12 ¼ D22 ¼ 0, (ii) S2 minimizes U1 þU2 if S1 takes its maximal va-
lue. All constraints in (35) are satisfied if we set

S1 ¼ min
1

m1
S0; D11

� �
:

Similarly to Section 3.2.1, the case splits into two subcases. They
correspond to regions of optimality B0 and C0 in Fig. 2.

Region B0: Assume that

S1 ¼
1

m1
S0 6 D11:

By this, S2 ¼ 0 and (35) transforms to

Uð.;aÞ ¼ min m1ðK1 þ L1ÞD2
11 þm2ðK2 þ aÞD2

21

n o
subject to : m1D11 þm2D21 ¼ D0:

Proceeding analogously to previous sections we obtain

Utrð.Þ ¼max Uð.;aÞ � 2.a j a 2 ð�K2;�K1Þf g

¼ ð1� .� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p Þ2

2m1
ðK1 þ L1Þ � 2.L2

ð36Þ

with

a ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p ð1� .� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p Þ

.m1
ðK1 þ L1Þ þ L2:

Optimal average values of spherical and deviatoric components of
stresses in region B0 are thus given by

In phase 1 : S1 ¼
1þ .ffiffiffi

2
p

m1
; D11 ¼

1� .� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
pffiffiffi

2
p

m1
; D12 ¼ 0;

In phase 2 : S2 ¼ 0; D21 ¼
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p

m2
; D22 ¼ 0:

ð37Þ

Sufficient optimality condition of Utr in region B0 results from
substituting S1;D11;D12 in (23) and (17).

Region B0 is represented by a curvilinear rectangle P02P03P05P06 in
Fig. 2. Its boundaries are determined according to the following
scheme

a > �K2 ) m1 > wA0�B0 ðm2;.Þ;
a < �K1 ) m1 < wB0�D0 ðm2;.Þ;
m1D11 P S0 ) . 2 ½�1;�m2�

where

wA0�B0 ðm2;.Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p ð1� .� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p Þ

2.
K1 þ L1

K2 þ L2
;

wB0�D0 ðm2;.Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p ð1� .� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p Þ

2.
K1 þ L1

K1 þ L2
:

ð38Þ

Region C0: Conversely to previous paragraph assume

S1 ¼ D11 6
1

m1
S0;

which results in

Uð.;aÞ ¼ min m1ðK1þ L1ÞD2
11þþm2 ðK2þaÞS2

2þðL2�aÞD2
21

h in o
subject to : m1D11þm2S2 ¼ S0;

m1D11þm2D21 ¼D0:
It follows that the stress energy in region C0 is bounded from below by

Utrð.Þ ¼max Uð.;aÞ � 2.a j a 2 ð�K2;�K1Þf g

¼ ðK2 þ L2Þ.2

2m2
þ ðK2 � L2Þ.

þ ðK1 þ L1Þð1�m2Þ2 þ ðK2 þ L2Þm1m2

2m1
ð39Þ

with

a ¼ 1
2
ðL2 � K2Þ �

m2

.m1
ð1�m2ÞðK1 þ L1Þ �m1ðK2 þ L2Þ½ �

� �
:

Spherical and deviatoric components of optimal average stress in
phases are given by

In phase 1 : S1 ¼ 1�m2ffiffiffi
2
p

m1
; D11 ¼ S1; D12 ¼ 0;

In phase 2 : S2 ¼ m2 þ .ffiffiffi
2
p

m2
; D21 ¼ m2 � .ffiffiffi

2
p

m2
; D22 ¼ 0:

ð40Þ

Substituting S1;D11;D12 in (23) and S2;D21;D22 in (17) results in suf-
ficient optimality condition of Utr in region C0.

Region C0 is represented in Fig. 2 by a curvilinear triangle
P1P02P03. Its boundaries are determined by the following expressions

a > �K2 ) m1 > wA0�C0 ðm2;.Þ;
a < �K1 ) m1 < wC0�Eðm2;.Þ;
m1D11 6 S0 ) . 2 ½�m2;0�

where

wA0�C0 ðm2;.Þ ¼
m2ð1�m2ÞðK1 þ L1Þ
ðm2 � .ÞðK2 þ L2Þ

;

wC0�Eðm2;.Þ ¼
m2ð1�m2ÞðK1 þ L1Þ

ðm2 þ .ÞðK2 þ L2Þ � 2ðL2 þ K1Þ.
:

ð41Þ
3.2.4. Case of . 2 ½�1; 0� and a < �K2: Region A0

According to the discussion in Section 3.1, item (IIIa), set

Ui ¼ miðKi þ LiÞ D2
i1 þ D2

i2

� �
; i ¼ 1;2:

Hence

Uð.;aÞ ¼ min U1 þU2f g
subject to : m1D11 þm2D21 ¼ D0;

m1D12 þm2D22 ¼ 0;

and it is immediate that D12 ¼ D22 ¼ 0.
The estimate of the stress energy is determined as

Utrð.Þ ¼max Uð.;aÞ � 2.a j a 6 �K2f g: ð42Þ

Function to be maximized in (42) monotonically decreases in a
hence we set a ¼ �K2. Results obtained in the remainder of this sec-
tion correspond to the region of optimality A0 in Fig. 2.

Region A0: The lower estimate of stress energy in region A0 takes
the form

Utrð.Þ ¼
ð1� .Þ2

2
ðK1 þ L1ÞðK2 þ L2Þ

m1ðK2 þ L2Þ þm2ðK1 þ L1Þ
þ 2.K2: ð43Þ

Optimal values of average deviatoric fields read

In phase 1 : D11 ¼
1� .ffiffiffi

2
p K2 þ L2

m1ðK2 þ L2Þ þm2ðK1 þ L1Þ
;

In phase 2 : D21 ¼
1� .ffiffiffi

2
p K1 þ L1

m1ðK2 þ L2Þ þm2ðK1 þ L1Þ
:

ð44Þ

Considering (44) in (23) and (24) leads to sufficient optimality con-
dition of Utr in region A0 expressed in terms of stress fields in phases
1 and 2 respectively.
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For fixed Ki; Li; i ¼ 1;2, region A0 is described by

A0 ¼ ð.;m1;m2Þ :f 0 6 m1 6 wA0�C0 ðm2;.Þ if . 2 ½�m2;0�;
0 6 m1 6 wA0�B0 ðm2;.Þ if . 2 ½�1;m2�g

see (38) and (41). Curvilinear sides of A0 are represented in Fig. 2 by
lines P1P03 and P03P06. Note that A0 splits into A01 and A02 with the inter-
face represented by a curve P03P07. This division is explained in
Section 4.2.3.

3.2.5. Case of . 2 ½�1; 1� and a 2 ð�K1; L1Þ: Regions D;D0 and E

The case of a 2 ð�K1; L1Þ is discussed in Section 3.1, item (I).
Both U1 and U2 are described by

Ui ¼ mi ðKi þ aÞS2
i þ ðLi � aÞ D2

i1 þ D2
i2

� �h i
; i ¼ 1;2:

For . 2 ½0;1� it follows that

Uð.;aÞ ¼ min U1 þU2f g
subject to : m1S1 þm2S2 ¼ S0;

m1D11 þm2D21 ¼ D0;

m1D12 þm2D22 ¼ 0;
S2

1 P D2
11 þ D2

12;

S2
2 P D2

21 þ D2
22:

ð45Þ

In case of . 2 ½�1; 0�, last two constraints change into

S2
1 6 D2

11 þ D2
12;

S2
2 6 D2

21 þ D2
22:

The KKT requirements are that D12 ¼ D22 ¼ 0. Hence, in case of arbi-
trary ., problem (45) takes the form

Uð.;aÞ¼min m1 ðK1þaÞS2
1þðL1�aÞD2

11

h in
þm2½ðK2þaÞS2

2þðL2�aÞD2
21

o
subject to : m1S1þm2S2¼ S0;

m1D11þm2D21¼D0:

Applying necessary optimality conditions leads to

S1 ¼
ðK2 þ aÞS0

m1ðK2 þ aÞ þm2ðK1 þ aÞ ; D11 ¼
ðL2 � aÞD0

m1ðL2 � aÞ þm2ðL1 � aÞ ;

S2 ¼
ðK1 þ aÞS0

m1ðK2 þ aÞ þm2ðK1 þ aÞ ; D21 ¼
ðL1 � aÞD0

m1ðL2 � aÞ þm2ðL1 � aÞ :

Technically, determining Utrð.Þ and optimal a 2 ð�K1; L1Þ re-
quires similar algorithm to the one used in previous sections. Cor-
responding formulae are not presented here due to their
complexity. The limiting cases of a ¼ L1 or a ¼ �K1 are dealt with
separately in the sequel of this Section. As a result, three additional
regions of optimality appear. Namely, region E corresponds to
a 2 ð�K1; L1Þ and regions D and D0 are related to a ¼ L1 and
a ¼ �K1 respectively.

Region E: The problem is now to find the formulae for two curves
which separate region E from D and D0. These curves are given by im-
plicit functions wD�Eðm1;m2;.Þ ¼ 0 and wD0�Eðm1;m2;.Þ ¼ 0 where

wD�Eðm1;m2;.Þ ¼
@

@a
Uð.;aÞ � 2.a½ �

����
a¼L1

;

wD0�Eðm1;m2;.Þ ¼
@

@a
Uð.;aÞ � 2.a½ �

����
a¼�K1

:

It follows that

wD�Eðm1;m2;.Þ ¼ bwD�Eðm1;m2Þð1þ .Þ2 þ 2.ð1�m1Þ
m1

;

bwD�Eðm1;m2Þ ¼ �
m2ðK1 þ L1Þ ðm1 þm2ÞðK1 þ L1Þ þ 2m1ðK2 � K1Þ½ �

2m1 m1ðK2 þ L1Þ þm2ðK1 þ L1Þ½ �2
;

and

wD0�Eðm1;m2;.Þ¼ bwD0�Eðm1;m2Þð1�.Þ2þ2.ð1�m1Þ
m1

;

bwD0�Eðm1;m2Þ¼
m2ðK1þL1Þ ðm1þm2ÞðK1þL1Þþ2m1ðL2�L1Þ½ �

2m1 m1ðK1þL2Þþm2ðK1þL1Þ½ �2
:

Region E is bounded by the lines

m1 ¼ 1�m2;

m1 ¼ wC0�E if . 2 ½�1;0�;
m1 ¼ wC�E if . 2 ½0; 1�;
wD0�Eðm1;m2;.Þ ¼ 0;
wD�Eðm1;m2;.Þ ¼ 0;

see (32) and (41). Curvilinear sides of E described above are respec-
tively represented in Fig. 2 by lines P1P03; P1P3; P

0
2P04 and P2P4.

Region D: Assuming a ¼ L1 and repeating the discussion for re-
gion E or region B (Section 3.2.1) we conclude that the stress en-
ergy estimation reads

Utrð.Þ ¼
ð1þ .Þ2

2
ðK1 þ L1ÞðK2 þ L1Þ

m1ðK2 þ L1Þ þm2ðK1 þ L1Þ
� 2.L1: ð46Þ

and optimal average fields in D are given by

In phase 1 :

S1 ¼
ðK2 þ L1Þð1þ .Þffiffiffi

2
p

m1ðK2 þ L1Þ þm2ðK1 þ L1Þ½ �
; D11 ¼ 1� .ffiffiffi

2
p

m1
; D12 ¼ 0;

In phase 2 :

S2 ¼
ðK1 þ L1Þð1þ .Þffiffiffi

2
p

m1ðK2 þ L1Þ þm2ðK1 þ L1Þ½ �
; D21 ¼ 0; D22 ¼ 0:

ð47Þ

Region D is represented in Fig. 2 by an area bounded by two straight
lines: (i) . ¼ 1, (ii) m1 ¼ 1�m2 and two curves: (i)
wD�Eðm1;m2;.Þ ¼ 0 (line P2P4), (ii) m1 ¼ wB�D (line P2P5).

Region D0: Assuming a ¼ �K1 and repeating the discussion for
region E or region B0 (Section 3.2.3) we conclude that the stress en-
ergy estimation reads

Utrð.Þ ¼
ð1� .Þ2

2
ðK1 þ L1ÞðK1 þ L2Þ

m1ðK1 þ L2Þ þm2ðK1 þ L1Þ
þ 2.K1: ð48Þ

and optimal average fields in D0 are given by

In phase 1 :

S1 ¼
1þ .ffiffiffi

2
p

m1
; D11 ¼

ðK1 þ L2Þð1� .Þffiffiffi
2
p

m1ðK1 þ L2Þ þm2ðK1 þ L1Þ½ �
D12 ¼ 0;

In phase 2 :

S2 ¼ 0; D21 ¼
ðK1 þ L1Þð1� .Þffiffiffi

2
p

m1ðK1 þ L2Þ þm2ðK1 þ L1Þ½ �
; D22 ¼ 0:

ð49Þ

Region D0 is represented in Fig. 2 by an area bounded by two
straight lines: (i) . ¼ �1, (ii) m1 ¼ 1�m2 and two curves: (i)
wD0�Eðm1;m2;.Þ ¼ 0 (line P02P04), (ii) m1 ¼ w0B0�D (line P02P05).

Sufficient optimality condition of Utr in region D, see (46), re-
sults from substituting (49) in (20) and (17). Similarly, considering
(49) in (24) and (17) leads to sufficient optimality condition of Utr

given by (48) in region D0.

3.3. Bounds on effective isotropic properties

Making use of (12) allows for calculating bounds on effective
isotropic properties in each optimality region where U�ð.Þ is deter-
mined. From the results obtained in the preceeding section and by
assuming that Utrð.Þ ¼ U�ð.Þ it follows that formulae for K�ð.Þ and
L�ð.Þ can be derived in any region except E. Recall that K�ð.Þ and
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L�ð.Þ are related to @GmA only if optimal stress fields predicted in
Section 3.1 are statically admissible. In Section 4 we prove that this
is the case for high-porosity regions. We conjecture the same prop-
erty for D and D0, see the discussion in Section 5.

Region A:

K�ð.Þ ¼
m1

K1 þ L1
þ m2

K2 þ L2

� �1

� L2; L�ð.Þ ¼ L2: ð50Þ

Region A0:

K�ð.Þ ¼ K2; L�ð.Þ ¼
m1

K1 þ L1
þ m2

K2 þ L2

� �1

� K2: ð51Þ

Region B:

K�ð.Þ¼K2�
ð1þ.Þ ffiffiffiffiffiffiffiffiffiffi.m2

p �2.
� �

1þ.�2
ffiffiffiffiffiffiffiffiffiffi.m2
p� �

2m1.ð1þ.Þ ðK1þL1Þ;

L�ð.Þ¼
ffiffiffiffiffiffiffiffiffiffi.m2
p ð1þ.�2

ffiffiffiffiffiffiffiffiffiffi.m2
p Þ

2m1.
ðK1þL1Þ�K2:

ð52Þ

Region B0:

K�ð.Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p ð1� .� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p Þ

2m1 .
ðK1 þ L1Þ � L2;

L�ð.Þ ¼ L2 þ
ð1� .Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2

p þ 2.
� �

1� .� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p� �

2m1 .ð1� .Þ ðK1 þ L1Þ:

ð53Þ

Note that . < 0 in B0.
Regions C and C0:

K�ð.Þ ¼
1
2
ðK2 � L2Þ þ

ð1�m2Þ2

m1ð1þ .ÞðK1 þ L1Þ þ
m2

2 þ .
m2ð1þ .ÞðK2 þ L2Þ

" #
;

L�ð.Þ ¼
1
2
ð1�m2Þ2

m1ð1� .ÞðK1 þ L1Þ þ
m2

2 � .
m2ð1� .Þ ðK2 þ L2Þ � ðK2 � L2Þ

" #
:

ð54Þ
1

Fig. 3. Comparison of optimal bounds K�ð.Þ (solid lines), L�ð.Þ (dashed lines) and
the Hashin–Shtrikman estimates KHS, LHS (dotted lines). Values of functions are
calculated for m1 ¼ 0:17, m2 ¼ 0:35 and K1 ¼ 1, L1 ¼ 2, K2 ¼ 3, L2 ¼ 4. Symbols .AC ,
.BD , .A0C0 , .B0D0 refer to the anisotropy level of s0 at the interfaces between respective
regions; . ¼ 0 at the interface between A and A0 , . ¼ m2 at the interface between C

and B, . ¼ �m2 at the interface between C0 and B0 .
Region D:

K�ð.Þ ¼
m1

K1 þ L1
þ m2

K2 þ L1

� �1

� L1; L�ð.Þ ¼ L1: ð55Þ

Region D0:

K�ð.Þ ¼ K1; L�ð.Þ ¼
m1

K1 þ L1
þ m2

K1 þ L2

� �1

� K1: ð56Þ

Fig. 3 illustrates the comparison of functions K�ð.Þ and L�ð.Þ
representing coupled lower bounds on isotropic properties of a
three-phase composite in different regions with the Hashin–
Shtrikman uncoupled bounds

KHS ¼
m1

K1 þ aK
þ m2

K2 þ aK

� �1

� aK ; aK ¼ L1;

LHS ¼
m1

L1 þ aL
þ m2

L2 þ aL

� �1

� aL; aL ¼ 2K1 þ L1:

Estimates KHS, LHS are independent of . 2 ½�1;1�, as they do not
incorporate an information on the anisotropy of s0.

Note that K�ð.Þ 6 KHS for all . 2 ½�1;1� and K�ð.Þ ¼ KHS in re-
gion D while the inequality L�ð.Þ < LHS is slack in all regions, see
the discussion in Section 5.

4. Optimal microstructures in high-porosity regions

In this Section we show that optimal relaxed stress fields deter-
mined in regions A;B;C and A0;B0;C0 coincide with statically
admissible stress fields s 2 R. The task is twofold. First, we make
use of the differential constraint divs ¼ 0 in deriving additional
requirements on s 2 Rrel. Next, we show that these requirements
are fulfilled in certain microstructures, so-called laminates of high
rank.

4.1. Compatibility of stresses on phase interfaces and average stresses
in rank-one laminates

In calculations of optimal s 2 Rrel, the differential constraint
divs ¼ 0 in Y (equilibrium equation) is neglected. Consequently,
energy-minimizing stress fields are determined in each phase
independently. It follows that components of optimal relaxed fields
may be incompatible with divs ¼ 0 on material interfaces which in
turn means that s R R.

Suppose that two materials meet in a given microstructure at a
line C and let n and t denote a normal and tangent to C. In the se-
quel we consider microstructures where phases are arranged in
layers hence C takes a form of a straight line. Moreover, we assume
that stress field in each layer is constant. By this we claim that if a
given non-degenerate phase Yi; i ¼ 1;2, is distributed in p layers
Yi;1;Yi;2; . . . ;Yi;p, then optimal s is layer-wise constant in Yi. It fol-
lows that if p ¼ 1 then s is constant in entire Yi. Equlibrium equa-
tion is thus fulfilled identically in each phase.

Constraint divs ¼ 0 requires that ½½sn��C ¼ 0 where ½½ � ��C de-
notes a jump on the interface C between layers of materials. If
we set sm;m ¼ 1;2, for constant fields on both sides of C then
the jump condition may be rewritten in a form

ðs1 � s2Þ : ðn� nÞ ¼ ðs1 � s2Þ : ðn� tÞ ¼ ðs1 � s2Þ : ðt � nÞ ¼ 0:

It follows that stress fields with ðs1 � s2Þ : ðt � tÞ– 0 are compatible
with the equlibrium constraint hence statically admissible in Y (see
Cherkaev, 2000, Section 14.2.2) for full discussion of this topic.

Here we discuss stresses sA, sB in two materials A and B, ar-
ranged in a rank-one laminate LðABÞ. Compatibility of stress fields
in LðABÞ is also referred to as rank-one connectivity at C. Let sA and
sB denote rank-one connected stress fields in materials layered in



(a) (b)

(c)

Fig. 4. Rank-one connectivity of stress fields sm;m ¼ 1;2;3 such that
sm : ðe1 � e2Þ ¼ 0: (a) simple laminate Lð12Þ with phases taken in proportions
b1;1� b1, a normal to the interface C given by n ¼ e1 and stress fields s1 and s2; (b)
simple laminate Lð13Þ with phases taken in proportions b2;1� b2, a normal to the
interface C given by n ¼ e2 and constant stress fields s1 and s3; (c) graphical
interpretation of compatibility conditions ðs1 � s2Þ : ðe1 � e1Þ ¼ 0,
ðs1 � s3Þ : ðe2 � e2Þ ¼ 0 and average fields sLð12Þ in laminate Lð12Þ, sLð13Þ in laminate
Lð13Þ. Vectors E1, E2 are defined in (2).

(a)

(b)

Fig. 5. Optimal microstructure in regions C and C0: (a) layout of materials; (b)
layering scheme leading to s0 ¼ sLð13;2Þ for region C (a mirror image with respect to
e1 � e1 results in the scheme for region C0). Stress fields in layers of strong and weak
materials are represented by white and grey squares respectively, s ¼ 0 in void is
represented by black square. Circles represent stress fields in laminates.
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proportions b and 1� b respectively. Resulting average field takes
a value sLðABÞ ¼ bsA þ ð1� bÞsB. Examples of rank-one connected
stress fields and their average values in simple laminates are
sketched in Fig. 4. High-rank laminates are constructed by re-
peated rank-one layering scheme under the assumption that the
materials resulting from previous laminations are homogeneous.
These type of structures are considered in the subsequent section.
4.2. Optimal high-rank laminates

4.2.1. Regions C and C0

Region C: Continuing the discussion in Section 3.2.1 one may
notice that the assumption S1 ¼ D11 enforces hðyÞ ¼ 0 a.e. in Y1.
Consequently, optimal stress field s 2 Rrel is constant in Y1. We
thus calculate

s1 ¼
1�m2

m1
e1 � e1 a:e: in Y1;

s2 ¼ 1e1 � e1 þ
.

m2
e2 � e2 a:e: in Y2:

ð57Þ

In order to prove statical admissibility of (57) we check the compat-
ibility of stresses on material interfaces in a Lð13;2Þ laminate, see
Fig. 5.

Outline of the layering scheme:

1. Substructure Lð13Þ is formed: phase 1 and void are laminated
with n1 ¼ e2 and volume fractions b1;1� b1 respectively.
Homogenized stress field in Lð13Þ is given by sLð13Þ ¼ b1 s1.

2. Final structure Lð13;2Þ is formed: phase 2 and Lð13Þ are lami-
nated with n2 ¼ e1 and volume fractions b2;1� b2 respectively.
Fields sLð13Þ and s2 are rank-one connected if
ðsLð13Þ � s2Þ : ðe1 � e1Þ ¼ 0. Stress field in the final structure
sLð13;2Þ ¼ b2 s2 þ ð1� b2ÞsLð13Þ satisfies sLð13;2Þ ¼ s0.
Parameters of optimal laminate: Compatibility conditions reduce to

sLð13Þ : ðe1 � e1Þ ¼ 1 ) b1 ¼
m1

1�m2
2 ½0;1�;

sLð13;2Þ : ðe2 � e2Þ ¼ . ) b2 ¼ m2 2 ½0;1�
ð58Þ

and it is immediate that the constraints on volume fractions of
phases in Y given by

b1ð1� b2Þ ¼ m1; b2 ¼ m2

are satisfied identically.
Region C0: In addition to the considerations in Section 3.2.3 and

due to assumed S1 ¼ D11 we set sðyÞ ¼ d1ðyÞ ¼ S1 a.e. in Y1. Further
discussion reduces to the one presented above with . 2 ½�1; 0� ta-
ken into account. Spherical and deviatoric components of average
stress in each phase are given by the same formulae in both regions
C and C0, see (31) and (40). Consequently, stress field in laminate
Lð13;2Þ fulfills the sufficient optimality condition also in region
C0 with phase volume fractions given by (58). Layout of materials
and scheme of layering corresponding to region C0 are sketched
in Fig. 5.

4.2.2. Regions B and B0

Region B: Here we continue the discussion in Section 3.2.1 with
the assumption D11 < S1. Function hðyÞ; y 2 Y1, may vary in Y1

hence the stress field in material 1 are rank-one connected with
zero stress in void if hðyÞ ¼ 0 or hðyÞ ¼ p. Taking this into consider-
ation we subdivide phase 1 into two layers, i.e., we set
Y1 ¼ Y1;1 þ Y1;2. Formulae for stresses read

s1;1 ¼
1þ .� 2

ffiffiffiffiffiffiffiffiffiffi.m2
p

m1
e1 � e1 a:e: in Y1;1;

s1;2 ¼
1þ .� 2

ffiffiffiffiffiffiffiffiffiffi.m2
p

m1
e2 � e2 a:e: in Y1;2;

s2 ¼
ffiffiffiffiffiffiffiffiffiffi.m2
p

m2
ðe1 � e1 þ e2 � e2Þ a:e: in Y2:

ð59Þ



(b)

(a)

Fig. 6. Optimal microstructure in regions B and B0: (a) layout of materials; (b)
layering scheme leading to s0 ¼ sLð131 ;2;132Þ for region B (a mirror image with respect
to e1 � e1 results in the scheme for region B0). Stress fields in layers of strong and
weak materials are represented by white and grey squares respectively, s ¼ 0 in
void is represented by black square. Circles represent stress fields in laminates.

(b)

(a)

Fig. 7. Optimal microstructure in regions A1 and A01: (a) layout of materials; (b)
layering scheme leading to s0 ¼ sLð132;2Þ for region A1 (a mirror image with respect
to e1 � e1 results in the scheme for region A01). Stress fields in layers of strong and
weak materials are represented by white and grey squares respectively, s ¼ 0 in
void is represented by black square. Circles represent stress fields in laminates.
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Next, we prove statical admissibility of (59) by checking rank-one
connectivity of stress fields in a Lð131;2;132Þ laminate, see Fig. 6.

Outline of the layering scheme:

1. Substructures Lð131Þ and Lð132Þ are formed. In Lð131Þ, the first
layer of phase 1 (field s1;1) and void are laminated with
n1 ¼ e2 and volume fractions b1;1� b1 respectively. Stress field
in Lð131Þ is given by sLð131Þ ¼ b1 s1;1. In Lð132Þ, the second layer
of phase 1 (field s1;2) and void are laminated with n2 ¼ e1 and
volume fractions b2;1� b2. Stress field in Lð132Þ reads
sLð132Þ ¼ b2 s1;2.

2. Substructure Lð131;2Þ is formed: phase 2 and Lð131Þ are lami-
nated with n3 ¼ e1 and volume fractions b3;1� b3. Fields
sLð131Þ and s2 are rank-one connected if
ðsLð131Þ � s2Þ : ðe1 � e1Þ ¼ 0. Stress field in the substructure is
given by sLð131 ;2Þ ¼ b3 s2 þ ð1� b3ÞsLð131Þ.

3. Final structure Lð131;2;132Þ is formed: laminates Lð132Þ and
Lð131;2Þ are layered with n4 ¼ e2 and volume fractions b4 and
1� b4. Rank-one connection between stress fields holds if
ðsLð132Þ � sLð131 ;2ÞÞ : ðe2 � e2Þ ¼ 0. Formulae
sLð131 ;2;132Þ ¼ b4 s0;2 þ ð1� b4Þs0;3 and sLð131 ;2;132Þ ¼ s0 link the
fields in substructures with the average stress tensor.

Parameters of optimal laminate: Collecting the combatibility condi-
tions we get the following

ðsLð131Þ � s2Þ : ðe1 � e1Þ ¼ 0 ) b1 ¼
S2

2S1
;

ðsLð132Þ � sLð131 ;2ÞÞ : ðe2 � e2Þ ¼ 0 ) b2 ¼
b3 S2

2S1
;

sLð131 ;2;132Þ : ðe2 � e2Þ ¼ . ) b3 ¼
ffiffiffi
2
p

.
S2

;

sLð131 ;2;132Þ : ðe1 � e1Þ ¼ 1 ) b4 ¼ 1�
ffiffiffi
2
p

S2
:

Parameters bi 2 ½0;1�; i ¼ 1; . . . ;4, as
ffiffiffi
2
p
6 S2 6 S1 in entire region B.

Indeed, it is a matter of straightforward calculations to check that
the first inequality immediately follows due to . P m2 in B and
the second one reduces to

m1 6 wB�Dð.;m2Þ
K1 þ L2

K1 þ L1

by substituting relevant formulae from (28) and (29).
Constraints on volume fractions of phases in Y are satisfied if

jY1;1j þ jY1;2j ¼ m1 and jY2j ¼ m2 or, equivalently,

ð1� b3Þð1� b4Þb1 þ b4 b2 ¼ m1;

ð1� b4Þb3 ¼ m2

from which we have

b1 ¼
m1

ffiffiffiffiffiffiffiffiffiffi.m2
p

m2ð1þ .� 2
ffiffiffiffiffiffiffiffiffiffi.m2
p Þ ; b2 ¼

m1 .
1þ .� 2

ffiffiffiffiffiffiffiffiffiffi.m2
p ;

b3 ¼
ffiffiffiffiffiffiffiffiffiffi.m2
p

; b4 ¼ 1�
ffiffiffiffiffiffiffi
m2

.

r
:

ð60Þ

Note that Lð131;2;132Þ (optimal in region B) morphs into Lð13;2Þ
(optimal in C) at the boundary between regions. This is concluded
by setting . ¼ m2 in b1; . . . ; b4 above.

Region B0: From the discussion in Section 3.2.3 and the assump-
tion that S1 < D11 it follows that phase 1 is subdivided into two lay-
ers such that Y1 ¼ Y1;1 þ Y1;2 with sðyÞ ¼ D11 a.e. in Y1;1 and
sðyÞ ¼ �D11 a.e. in Y1;2. In this way, stress fields are given by

s1;1 ¼
1� .� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p

m1
e1 � e1 a:e: in Y1;1;

s1;2 ¼ �
1� .� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p

m1
e2 � e2 a:e: in Y1;2;

s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�.m2
p

m2
ðe1 � e1 � e2 � e2Þ a:e: in Y2:
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Thus described stress field in laminate Lð131;2;132Þ is statically
admissible in region B0. Phase volume fractions are given by (60)
with . replaced with �.. The details of calculations are omitted
here as they follow the pattern presented above. Layout of materials
and scheme of layering corresponding to region B0 are sketched in
Fig. 6.
4.2.3. Regions A and A0

Region A splits into two subregions A1;A2 with different optimal
microstructures.

Subregion A1: We use the results of Section 3.2.2 to prove that
the stress fields

s1 ¼
ffiffiffi
2
p

S1 e1 � e1 a:e: in Y1;

s2;1 ¼
ffiffiffi
2
p

S2 e1 � e1 a:e: in Y2;1;

s2;2 ¼
S2 þ f1ffiffiffi

2
p e1 � e1 þ

S2 � f1ffiffiffi
2
p e2 � e2 a:e: in Y2;2

are statically admissible in laminate Lð123;2Þ, see Fig. 7. Phase 2 is
thus subdivided into layers Y2;1 and Y2;2. In the sequel we assume
s2;2 : ðe1 � e1Þ ¼ 1 from which it follows that f1 ¼

ffiffiffi
2
p
� S2. Values

of S1 and S2 are given by (34).

Outline of the layering scheme:
1. Substructure Lð123Þ is formed in two steps: (i) phase 1 and void

are layered with n1 ¼ e2 and volume fractions b1 and 1� b1 (in
this way Lð13Þ with s0;1 ¼ b1 s1 is obtained), (ii) first layer of
phase 2 and Lð13Þ are laminated in the same direction with vol-
ume fractions b2 and 1� b2; this leads to Lð123Þ with
sLð123Þ ¼ b2 s2;1 þ ð1� b2Þb1 s1.

2. Final structure Lð123;2Þ is formed: second layer of phase 2 (field
s2;2) and Lð123Þ are laminated with n3 ¼ e1 and volume fractions
b3 and 1� b3. Rank-one connectivity requirement reads
ðsLð123Þ � s2;2Þ : ðe1 � e1Þ ¼ 0. Stress field sLð123;2Þ ¼ b3 s2;2þ
ð1� b3ÞsLð123Þ matches the effective tensor by sLð123;2Þ ¼ s0.

Parameters of optimal laminate: Rank-one connectivity require-
ments simplify to

ðsLð123Þ � s2;2Þ : ðe1 � e1Þ ¼ 0 ) b1 ¼
1

ð1� b2ÞS1

1ffiffiffi
2
p � b2 S1

� 
;

sLð123;2Þ : ðe2 � e2Þ ¼ . ) b3 ¼
.ffiffiffi

2
p

S2 � 1

and constraints on volume fractions in Y are fulfilled if jY1j ¼ m1

and jY2;1j þ jY2;2j ¼ m2, i.e.,

ð1� b2Þð1� b3Þb1 ¼ m1; ð1� b3Þb2 þ b3 ¼ m2:

Therefore, optimal laminate is parameterized by

b1 ¼
m1

1�m2
; b2 ¼

m2ð1�m2ÞcA �m1ðm2 þ .Þ
ð1þ .Þ ð1�m2ÞcA �m1½ � ;

b3 ¼
.ðm1 þm2 cAÞ

ð1þ .�m2ÞcA �m1
; cA ¼

K1 þ L1

K2 þ L2
:

ð61Þ

Note that cA 2 ½0;1�.
Our next claim is that bi 2 ½0;1�; i ¼ 1;2;3. Indeed, b1 coincides

with that in region C and the remaining conditions can be reduced
to

b2 P 0 if m1 6 wA�Cðm2;.Þ;

b2 6 1 and b3 P 0 if m1 6 ð1þ .�m2ÞcA;

b3 6 1 if m1 6 ð1�m2ÞcA:

ð62Þ
For the definition of wA�Cðm2;.Þ and wA�Bðm2;.Þ (used below) see
Section 3.2.1. It follows that the first constraint in (62) is most
restrictive. Hence, A ¼ A1 [ A2 where

A1 ¼ ðm1;.Þ : 0 6 m1 6 wA�Cðm2;.Þ; . 2 ½0;1�f g;
A2 ¼ ðm1;.Þ : wA�Cðm2;.Þ 6 m1 6 wA�Bðm2;.Þ; . 2 ½m2;1�f g:

Laminate Lð123;2Þ (optimal in A1) morphs into Lð13;2Þ (optimal in
C) at the boundary between regions. This follows from substituting
m1 ¼ wA�Cðm2;.Þ in b2 and b3.

Subregion A2: We make use of ‘‘the coating principle’’ (see [Th.
9]Albin et al., 2007), in determining optimal microstructure in sub-
region A2. Laminate Lð131;2;132Þ (optimal in region B) is coated
with a layer of phase 2, in the direction n5 ¼ e1 normal to the inter-
face, and volume fractions 1� b5 and b5. In this way,
Lð131;2;132;2Þ is obtained. Phases 1 and 2 are thus subdivided
according to Y1 ¼ Y1;1 þ Y1;2 and Y2 ¼ Y2;1 þ Y2;2 respectively. For-
mulae for stress fields in phases read

s1;1 ¼
ffiffiffi
2
p

S1 e1 � e1 a:e: in Y1;1;

s1;2 ¼
ffiffiffi
2
p

S1 e2 � e2 a:e: in Y1;2;

s2;1 ¼
S2ffiffiffi

2
p ðe1 � e1 þ e2 � e2Þ a:e: in Y2;1;

s2;2 ¼
S2 þ f2ffiffiffi

2
p e1 � e1 þ

S2 � f2ffiffiffi
2
p e2 � e2 a:e: in Y2;2:

ð63Þ

Technically, sufficient optimality condition in subregion A2 do not
restrict stress field in Y2;1 to be spherical. However, the assumed
form of s2;1 proves to be optimal as it is shown in the sequel. We
also assume s2;2 : ðe1 � e1Þ ¼ 1 which gives f2 ¼

ffiffiffi
2
p
� S2 in (63).

Outline of the layering scheme:
1. Substructure Lð131;2;132Þ is formed along the scheme dis-

cussed in case of region B hence it is not repeated here.
2. Final structure Lð131;2;132;2Þ is formed: second layer of phase

2 (field s2;2) and Lð131;2;132Þ are laminated with n5 ¼ e1 and
volume fractions 1� b5 and b5. Rank-one connectivity condi-
tion is given by ðsLð131 ;2;132Þ � s2;2Þ : ðe1 � e1Þ ¼ 0. Stress field in
Lð131;2;132;2Þ is linked to the effective tensor by
sLð131 ;2;132 ;2Þ ¼ b5 s2;2 þ ð1� b5Þs0;4 and sLð131 ;2;132 ;2Þ ¼ s0.

Parameters of optimal laminate: Rank-one compatibility of stress
fields in substructures and resulting relations between laminate
parameters read

ðsLð131Þ � s2;1Þ : ðe1 � e1Þ ¼ 0 ) b1 ¼
S2

2S1
;

ðsLð132Þ � sLð131 ;2ÞÞ : ðe2 � e2Þ ¼ 0 ) b2 ¼
b3 S2

2S1
;

ðsLð131 ;2;132Þ � s2;2Þ : ðe1 � e1Þ ¼ 0 ) b4 ¼ 1�
ffiffiffi
2
p

S2

ð64Þ

and the constraints on volume fractions are given by
jY1;1j þ jY1;2j ¼ m1 and jY2;1j þ jY2;2j ¼ m2, or explicitly

ð1� b5Þ ð1� b4Þð1� b3Þb1 þ b4 b2½ � ¼ m1;

ð1� b5Þð1� b4Þb3 þ b5 ¼ m2:

Introducing

x ¼ cA ð1þ .Þ > 0; y ¼ 2 ðm1 þm2 cAÞ > 0; x P y ð65Þ

gives

b3 ¼
x ðm2 þ .Þy� 2m2 x½ �
ðx� yÞ2 ð1� b5Þ

;

b5 ¼
m2 x2 � .y2

ðx� yÞ2
:

ð66Þ

and we proceed to show that bi 2 ½0;1�; i ¼ 1; . . . ;5.



(a)

(b)

Fig. 8. Optimal microstructure in regions A2 and A02: (a) layout of materials; (b)
layering scheme leading to s0 ¼ sLð131 ;2;132 ;2Þ for region A2 (a mirror image with
respect to e1 � e1 results in the scheme for region A02). Stress fields in layers of
strong and weak materials are represented by white and grey squares respectively,
s ¼ 0 in void is represented by black square. Circles represent stress fields in
laminates.

1 The authors are indebted to the anonymous reviewer for bringing this issue to
their attention.
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From cA 2 ½0;1� it follows that b1 fulfills the condition. Parame-
ter b4 falls into required interval if S2 P

ffiffiffi
2
p

in subregion A2. This
condition is satisfied if 2m1 6 ð1þ .� 2m2ÞcA. Observe that

m1 6 wA�Bðm2;.Þ 6
ð1þ .� 2m2ÞcA

2

holds for m2 6 .. Thus b4 2 ½0;1�.
We can assert that b5 P 0 if m2 x2 � .y2 P 0. This inequality

can be reformulated to m1 6 wA�Bðm2;.Þ and the assertion follows.
In order to prove b5 6 1 we show that

ðx� yÞ2 �m2 x2 þ .y2 P 0 ð67Þ

in entire A2. To this end, we first rewrite (67) in the form

ð1þ .Þðy� y1Þðy� y2ÞP 0;

y1;2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ .Þm2 � .

p� �
cA; y1 P y2;

ð68Þ

and the proof falls naturally into two parts. If ð1þ .Þm2 � . < 0
then the roots in (68) do not exist and (67) follows immediately.

Conversely, let us assume that ð1þ .Þm2 � . P 0. Next, make
use of (65) and (68) to calculate

myðm2;.Þ ¼
1� 2m2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ .Þm2 � .

p
2

cA

where my represents values of m1 corresponding to y1. To show that
(67) holds it is sufficient to check if myðm2;.Þ < wA�Cðm2;.Þ. The lat-
ter is fulfilled if ð1þ .Þm2 � . P �m2 which may be concluded
from the assumption.

Comparing the expressions in (66) we deduce that the discus-
sion of b3 P 0 may be reduced to proving ðm2 þ .Þy� 2m2 x P 0.
It is straightforward to compute that this inequality is equivalent
to m1 P wA�Cðm2;.Þ. For checking if b3 6 1 we write it in a form
ðx� yÞ x ð1þm2Þ � y ð1þ .Þ½ �P 0. From (65) we see that it suffices
to show that x ð1þm2Þ � y ð1þ .ÞP 0. This requirement reduces
to 2m1 6 ð1�m2ÞcA which is valid in entire A2 due to

m1 6 wA�Bðm2;.Þ 6
ð1�m2ÞcA

2
:

The property of b2 2 ½0;1� follows from b3 2 ½0;1�, see (64).
Recall that a boundary between regions A1 and A2 is given by

m1 ¼ wA�Cðm2;.Þ;. P m2. By substituting this formula in
b1; . . . ; b5 one may check that Lð131;2;132;2Þ (optimal in A2) mor-
phs into Lð123;2Þ (optimal in A1). By the same token, setting
m1 ¼ wA�Bðm2;.Þ in b1; . . . ; b5 leads to the conclusion that
Lð131;2;132;2Þ smoothly changes into Lð131;2;132Þ (optimal in B).

Similarly to A, region A0 also splits into A01 and A02. Optimal
microstructures in both subregions are the same as in A1 and A2

respectively.
Subregion A01: For proving optimality of the laminate Lð123;2Þ

we make use of the results obtained in Section 3.2.4. Stress fields
in phases read

s1 ¼
ffiffiffi
2
p

D11 e1 � e1 a:e: in Y1;

s2;1 ¼
ffiffiffi
2
p

D21 e1 � e1 a:e: in Y2;1;

s2;2 ¼
g1 þ D21ffiffiffi

2
p e1 � e1 þ

g1 � D21ffiffiffi
2
p e2 � e2 a:e: in Y2;2

where D11;D21 are given by (44). We assume that s2;2 : ðe1 � e1Þ ¼ 1
from which it follows that g1 ¼

ffiffiffi
2
p
� D21. Further calculations are

similar to those presented for subregion A1. They lead to formulae
for optimal lamination parameters written in (61) with . replaced
by �. (see Fig. 8).

Subregion A02: Laminate Lð131;2;132;2Þ proves to be optimal
also in subregion A02. Stress fields are given by
s1;1 ¼
ffiffiffi
2
p

D11 e1 � e1 a:e: in Y1;1;

s1;2 ¼
ffiffiffi
2
p

D11 e2 � e2 a:e: in Y1;2;

s2;1 ¼
D21ffiffiffi

2
p ðe1 � e1 � e2 � e2Þ a:e: in Y2;1;

s2;2 ¼
g2 þ D21ffiffiffi

2
p e1 � e1 þ

g2 � D21ffiffiffi
2
p e2 � e2 a:e: in Y2;2

and we assume that s2;2 : ðe1 � e1Þ ¼ 1 hence g2 ¼
ffiffiffi
2
p
� D21. Opti-

mal lamination parameters are derived similarly to those in region
A2. They read

b1 ¼ D21
2 D11

; b2 ¼ D21 b3
2 D11

;

b3 ¼ x0 ½ðm2�.Þy0�2 m2 x0 �
ðx0�y0Þ2ð1�b5Þ

; b4 ¼ 1�
ffiffi
2
p

D21
;

b5 ¼ m2 ðx0 Þ2þ.ðy0Þ2

ðx0�y0 Þ2

where x0 ¼ ð1� .ÞcA and y0 ¼ y.
Proof of bi 2 ½0;1�; i ¼ 1; . . . ;5 in subregion A02 follows the pat-

tern set in the discussion regarding A2.

4.3. Alternative optimal structures

Structures of Sigmund and Gibiansky: Sufficient optimality condi-
tions set the requirements for stress fields in materials within opti-
mal structures, but not for the parameters of optimal geometries.
Here, we describe an alternative class of optimal structures in-
spired by the approach of Sigmund and Gibiansky (Sigmund,
2000; Gibiansky and Sigmund, 2000) and we show that their re-
sults can be generalized beyond the isotropic case.1 Layouts of
materials in Sigmund-Gibiansky-type (SG-type) structures and their
high-rank laminate limits are shown in Fig. 9.



Fig. 9. Optimal Sigmund-Gibiansky-type structures and their high-rank laminate
limits: (a3) SG-type structure in subregion A3; (a4) rank-2 laminate in subregion A4;
(b) SG-type structure in region B; (c) rank-2 laminate (‘‘T-structure’’) in region C.
Regions of optimality are shown in Fig. 10.

Fig. 10. High-porosity regions of optimality of structures from Fig. 9. Region B and
C coincide with those shown in Fig. 2. The property of subregions A1;A2 in Fig. 2 and
A3;A4 above is that A3 [ A4 ¼ A1 [ A2 ¼ A.

Fig. 11. Loading and geometry of the Sigmund-Gibiansky-type structure optimal in
region B. Symbols Y1;1;b3 and Y1;2; b4 refer to the total fraction of phase 1 and its
overall thickness in perpendicularly oriented Lð13Þ laminates.
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Consider region B. From sufficient optimality conditions, see
Section 4.2.2, we know that optimal stresses in layers of phase 1
are unidirectional, det sðyÞ ¼ 0; y 2 Y1. This condition is satisfied
if material 1 is laminated with void; the density of the field in
the Lð13Þ laminate is constant everywhere, as is the density of
the stress inside layers of phase 1. The value of det sðyÞ in inner
points of Y1 tends to zero when the thickness-to-length ratio of
layers decreases. The stress tensor in phase 2 is spherical,
sðyÞ 	 I; y 2 Y2 and I stands for a second-rank unit tensor. High-
rank laminate obeying the mentioned conditions is shown in
Fig. 6, we show that they are also satisfied in a SG-type structure
from Fig. 9(b).

Assume that a square cell of periodicity is divided into four rect-
angles. Two opposite rectangles are filled with pure phases 2 or 3
(void), and two remaining ones are filled with Lð13Þ laminates
transferring the load towards phase 2. Geometric parameters of
the structure are explained in Fig. 11. They are related to the vol-
ume fractions of non-degenerate phases as following

m1 ¼ ð1� b1Þb2b3 þ ð1� b2Þb1b4; m2 ¼ b1b2;

bi 2 ½0;1�; i ¼ 1; . . . ;4:
ð69Þ

If the external field s0 ¼ 1e1 � e1 þ .e2 � e2;. 2 ½0;1�, is applied to
such a structure then optimal fields in materials are given by

s1;1 ¼
1

b2b3
e1 � e1 a:e: in Y1;1;

s1;2 ¼
.

b1b4
e2 � e2 a:e: in Y1;2;

s2 ¼
1
b2

e1 � e1 þ
.
b1

e2 � e2 a:e: in Y2;

ð70Þ

where
1

b2b3
¼ .

b1b4
;

1
b2
¼ .

b1
: ð71Þ

From (69) it follows that

b1 ¼
ffiffiffiffiffiffiffiffiffiffi
.m2
p

; b2 ¼
ffiffiffiffiffiffiffi
m2

.

r
; b3 ¼ b4 ¼

.m1

ð1þ .� 2
ffiffiffiffiffiffiffiffiffiffi.m2
p Þ ffiffiffiffiffiffiffiffiffiffi.m2

p : ð72Þ

Substituting (72) in (70) gives (59). Consequently, one may con-
clude that the anisotropic SG-type structures from Fig. 9(b) are opti-
mal in entire region B.

The result obtained above has a clear physical interpretation.
Stress field in phase 2 is isotropic, but the rectangle Y2 is elongated
against the larger component of average stress so that an uneven
loading is supported. When the elongation reaches its limit,
b2 ¼ 1, the structure is transformed into a ‘‘T-structure’’ shown in
Fig. 9(c) that is optimal in region C, see Fig. 5.

Similar considerations prove optimality of the SG-type struc-
tures from Fig. 9(a3) in the subregion A3 in Fig. 10. The elongation
of the rectangular domain containing bulk portion of phase 2
reaches its limit on the boundary with A4. After this, the structure
is transformed into a rank-2 laminate from Fig. 9(a4) that is opti-
mal in region A4, see also Fig. 7. Details of calculations are similar
to the above.

Remark 1. Sufficient optimality conditions are the same in whole
region A; they are realized by different structures in different
subregions. The division of A into subregions A3, A4 in Fig. 10 does
not coincide with regions A1, A2 in Fig. 2. This is due to the
additional assumption of the stress field isotropy in the rectangle
of phase 2, see Fig. 9(a3).
Remark 2. It is truly remarkable that isotropic structures in region
A were correctly predicted in the pioneering publication by Gibian-
sky and Sigmund (2000) in the absence of sufficient optimality
conditions found in the present paper.
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Now, with the systematic use of these conditions, we also dem-
onstrate the optimal SG-type structures for region B thus improv-
ing the intuitive results of Gibiansky and Sigmund (2000).

Number of length scales in optimal microstructures: Optimal two-
material composites can take a form of single-scale Vigdergauz
structure in which weak material is embedded in the strong one
(see Vigdergauz, 1989). Composites considered in the present pa-
per require at least two scales. Indeed, sufficient optimality condi-
tions in regions A, B and C state that the stress tensor in phase 1 is
unidirectional, det s ¼ 0. This in turn means that phase 1 must be
laminated with a void in a smaller scale; in this case dets! 0
everywhere in phase 1.

5. Remarks on low-porosity regions

The detailed description of the mentioned regions D, D0 and E of
large volume fraction of the first material, or, equivalently, low-
porosity regions, will be provided in a separate paper. Here we
restrict ourselves with some brief remarks outlining the current
results.

Region D: The Hashin–Shtrikman bound on bulk modulus: At the
boundary of regions B and C that correspond to maximal allowed
volume fraction m1, the optimal translation parameter reaches
the value of L1. The energy bound Utrð.Þ in region B transforms into
the classical translation bound which corresponds to the Hashin -
Shtrikman bound on the bulk modulus for isotropic composites.
This bound is realizable (see Gibiansky and Sigmund, 2000; Cher-
kaev, 2009, 2012). The anisotropic translation bound is attained
on certain microstructures only when the anisotropy level is not
too large, compare the discussion in Cherkaev and Zhang (2011).
The optimal structures for both conducting and elastic composites
are similar, they are determined by high-rank orthogonal
laminates Lð131;2;132;1;1Þ. These structures are obtained by
enveloping the nucleus laminate Lð131;2;132Þ – optimal for the re-
gion B – by two orthogonal layers of the first material. It is shown
in Albin et al. (2007) that such enveloping is stable with respect to
the translation bound: if the nucleus satisfies this bound, then the
enveloped nucleus also satisfies it.

Region D0: Similarly, at the boundary of regions B0 and C0, the opti-
mal translation parameter reaches the value of �K1. However, in this
case, the energy bound Utrð.Þ in region B0 does not give rise to the Ha-
shin - Shtrikman bound on the shear modulus for isotropic
composites.

Indeed, Utr measures the energy of a composite subjected to an
arbitrary stress field whose anisotropy is controlled by . 2 ½�1;1�.
Consequently, if we set . ¼ 1 then the effective energy is opti-
mized only in a direction of the applied field s0 ¼ ½ð1þ .Þ=2�E1

which is spherical, i.e., isotropic.
On the contrary, setting . ¼ �1 does not lead to a similar con-

clusion because applying the deviatoric field s0 ¼ ½ð1� .Þ=2�E2 and
retaining the isotropy of a composite medium by controlling its re-
sponse in the direction E3 at the same time is impossible.

Region E: Guessed optimal structures: Optimal Lð131;2;132;1;1Þ
structures degenerate into the most anisotropic Lð13;2;1Þ, when
the anisotropy of the external field increases (the value of . de-
creases from 1 towards 0). When the anisotropy level increases
even further, the translation bound is not realizable by the known
structures. Moreover, it is definitely not optimal for strongly
anisotropic structures; the reasons are discussed in Cherkaev and
Zhang (2011).

We conjecture that the region E of large volume fractions m1

and strongly anisotropic loadings correspond to the limiting struc-
tures Lð13;2;1Þ. The bound for this region is presently unknown,
and we guess that it corresponds to another inequality that
becomes an equality in that region. To support our guess we
mention that:
- the optimal structure in Region C is Lð13;2Þ. The Lð13;2;1Þ
structures degenerate into them, when the fraction of external
layer of the first material vanishes;

- the best known bounds for extremely anisotropic structures
(.! 0) correspond to the same structure Lð13;2;1Þ in that
region (see Cherkaev and Gibiansky, 1996);

- the structures that realize the translation bound for moderately
anisotropic loadings, also degenerate into Lð13;2;1Þ;

- the Lð13;2;1Þ structures degenerate into Lð13Þ when the frac-
tion of the second material disappears;

- the Lð13;2;1Þ structures degenerate into Lð12Þ when the frac-
tion of the third material (void) disappears.

In the absence of the bound, one cannot prove the sufficient opti-
mality conditions for the guessed structures and therefore the glo-
bal character of their optimality. It can be numerically shown,
however, that the relative gap between a rough bound for the
energy and a structure of this class is very small (see Cherkaev
and Zhang, 2011). Therefore, these structures are either optimal
or a close approximation of optimal, and can be treated as optimal
for practical purposes.
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