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Abstract
Aims The functioning of plant-associated bacteria is
strongly influenced by their interaction with other or-
ganisms. For instance, bacteria upregulate the produc-
tion of secondary metabolites in presence of protozoa
and we hypothesised that this interaction may contribute
to plant health.

Methods Here, we tested if the effect of beneficial pseu-
domonads on wheat growth and health is modified by co-
inoculat ion with the bacter ivorous amoeba
Acanthamoeba castellanii. We assessed effects of this
co-inoculation in absence and presence of the root path-
ogen Pythium ultimum.
Results In absence of amoebae, bacterial isolates had
few beneficial effects and some isolates exacerbated
growth inhibition by the pathogen (despite their reported
beneficial effects in vitro). Effects on plant growth in
absence and presence of the pathogen were negatively
correlated. Co-inoculation with amoebae suppressed
this relationship, leading to plant growth promotion in
absence and reduction of deleterious effects in presence
of the pathogen. The positive effect of amoebae in
absence of the pathogen could be related to bacterial
siderophore production in vitro.
Conclusions Our results illustrate the discrepancy be-
tween in vitro and in vivo effects of plant beneficial
bacteria. Incorporation of other rhizospheric trophic com-
ponents such as protists may be a key factor to influence
the plant-beneficial potential of bacteria in vivo.

Keywords Protozoa . Rhizosphere . Pathogen
inhibition . Plant growth promotion . Pseudomonas .

Wheat

Introduction

Plant growth and health largely depend on their associa-
tion with beneficial microbes that are able to stimulate
growth by producing hormones or volatile compounds
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or by suppressing diseases (Berendsen et al. 2012). During
the past decades, there has been a growing interest in
applying bacterial strains with a certain plant beneficial
activity to enhance crop productivity in a sustainable way
(Lugtenberg and Kamilova 2009). Considerable efforts
have been undertaken to characterize the traits underlying
pathogen suppression and targeted screening procedures
have been developed to isolate beneficial bacteria (Fravel
2005). Bacteria are typically screened and assessed in
controlled environments. However, in natural settings bac-
teria are interacting with several organisms. As the phys-
iology of beneficial microbes is strongly influenced by
biotic interactions (Dubuis et al. 2007; Mazzola et al.
2009; Jousset and Bonkowski 2010; Garbeva et al.
2011), we tested whether integrating other organisms
could alter the bacterial effect on plant growth and patho-
gen inhibition.

Here, we focused on the impact of protozoa on the
activity of plant growth promoting rhizobacteria. Protozoa
are a key component of soil ecosystems (Ekelund and
Rønn 1994). Protozoa can affect plant health by mineral-
izing nutrients and altering the structure and activity of
root-associated communities (Bonkowski 2004).
Predation by protozoa may for instance promote the pro-
duction of plant growth hormones (Krome et al. 2010) or
enhance the survival of beneficial microbes suppressing
pathogens (Jousset et al. 2008; Müller et al. 2013).
Further, protozoa can stimulate the production of com-
pounds linked to disease suppression, such as antibiotics
(Mazzola et al. 2009; Jousset et al. 2010) or siderophores
(Levrat et al. 1989). Accordingly, we expected that co-
inoculating beneficial bacteria with bacterivorous proto-
zoa may translate to an improved plant growth and health.

We assessed the ability of nine beneficial
Pseudomonas isolates to promote the growth of wheat
and reduce growth inhibition of wheat caused by the
plant pathogen Pythium ultimum. We set up a microcosm
experiment with wheat seedlings inoculated with bacteria
alone or together with the amoeba Acanthamoeba
castellanii and determined shoot length, shoot weight
and root weight as estimators for plant growth and health.

Material and methods

Amoeba and bacterial isolates

Acanthamoeba castellanii was isolated from a German
woodland (Bonkowski and Brandt 2002) and kept axenic

on protease peptone yeast extract (2%w/v peptone, 0.25%
w/v yeast-extract). Prior to experiments, an active culture
was collected by gentle centrifugation (150×g), washed in
¼ strength Hoagland’s mineral solution (Hoagland and
Arnon 1950) and adjusted to a density of 120,000 individ-
uals/mL. Nine pseudomonad isolates were chosen from a
previously characterized collection retrieved from agricul-
tural fields, of which eight isolates are described in Agaras
et al. (2015). The ninth isolate (SPSA5) was characterized
with the same methods as being a carrier of the phlD and
prnD gene (encoding for DAPG and pyrrolnitrin), while
being deficient in producing phenazine, HCN, exoprotease
and phospholipase (also see Table 1). The isolates were
chosen to cover a gradient of in vitro antagonistic activity
againstPythium ultimum strain 67–1 in dual culture assays.
Briefly, bacterial suspensions (OD600 = 1.0, 10 μL) were
spotted on the edge of malt agar plates and a mycelial plug
(1 cm2) of P. ultimum was deposited in the centre of the
plates, at approximately 3–4 cm from the bacterial spots
(Ongena et al. 1999). Plates were incubated at room tem-
perature and inhibition zones were measured after 5 days.
The antagonistic activity of each isolate was ranked ac-
cording to the extent of the inhibition zone (distance inmm
from the border of the bacterial spot to the oomycete
mycelium), as follows: strong (> 3 mm: RBAN4,
SVBP3, SVBP6, SVBP8), moderate (1–3 mm: RBBP4,
RPBP2, SMMP3), weak (< 1 mm: SPSA5, SVMP4; also
see Table 1). For the growth experiment, isolates were
grown over night in lysogeny broth at 28 °C, centrifuged
(10,000×g, 2 min) and washed in sodium chloride
(0.85 % w/v), resuspended in ¼ strength Hoagland’s
mineral solution and adjusted to an OD600 of 1.

Seed surface sterilization and seedling pre growth

Wheat seeds (Triticum aestivum var. Baguette 19) were
surface sterilized by soaking in 70 % ethanol for 2 min
followed by treatment with diluted commercial bleach
(0.6 % v/v sodium hypochlorite) for 10 min. After six
washes with sterilized distilled water, surface-
disinfected seeds were deposited onto water agar plates
(1.5 % w/v) and stored overnight in a cold room (4 °C),
after which seedlings were germinated and pre-grown
for 72 h at 20 °C.

Experimental setup

Seedlings were gently transferred to 110 cm3-pots filled
with 15 g of autoclaved vermiculite and watered with
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30 mL of ¼ strength Hoagland’s mineral solution (1
seedling per pot). When appropriate, the substrate was
artificially infested with the pathogenic oomycete
Pythium ultimum strain 67–1 by adding 15 g of a
seven-day-old millet-seed inoculum of the pathogen
per kg of substrate. Seedlings were inoculated with
20 μL of the bacterial suspension and 100 μL of the
amoebae suspension according to the treatment.
Controls received the corresponding amount of ster-
ile ¼ strength Hoagland’s mineral solution. For each
treatment and bacterial isolate six pots were set up
(for experimental design, see supplementary materi-
al 1). Pots were incubated in a greenhouse for eight
days with minimum and maximum average temper-
atures of 20 and 28 °C, a relative humidity ranging
between 45 and 90 % and a photoperiod of 16 h
(Incandescent lamps (400 W, Osram, Brazil).
Pots were randomized and seedling height was
recorded daily.

In this study we focused on early plant growth. Since
P. ultimum is a pathogen targeting early seedling devel-
opment, it is important to look at possible interaction
effects at this early stage, since it will affect later plant
development (Mellano et al. 1970).

At the end of the experiment, plants were
destructively harvested. Shoot length and fresh
weight, and root dry weight were recorded separate-
ly for each plant and used as a measure for plant
growth/health.

Statistical analyses

We used a generalized linear model (GLM) to investi-
gate the effect of bacteria (factor, 9 levels), amoebae
(factor, 2 levels) and Pythium ultimum (factor, 2
levels) on shoot fresh weight and length and root
dry weight. For this analysis, non-bacterized samples
were excluded.

In a second step, we defined the effect of each bac-
terium as the difference in the measured parameter
between the bacterized treatment and the non-
bacterized control. Therefore, we normalized the mea-
sured values for each bacterium by subtracting the av-
erage value of the non-bacterized control.We termed the
effect of the bacteria in the pathogen-free treatment
Bplant growth promotion^ and took the ability of the
bacteria to decrease the plant growth inhibition caused
by the pathogen as a proxy for effects on Bpathogen
inhibition^ and plant health.

We assessed potential trade-offs between plant
growth promotion and pathogen inhibition in presence
and absence of amoebae using linear models with
pairwise comparison of means. A significant negative
correlation between plant growth promotion and patho-
gen inhibition indicates a trade-off between the two
activities; a significant positive correlation between
amoebae and plant growth promotion indicates that
amoebae alleviate this trade-off.

In order to link the observed patterns to particular
bacterial traits such as the production of antibiotics, we
compared the effect of the bacterial isolates in the four
absence/presence treatments of amoebae and P. ultimum
to a trait matrix established in a previous experiment.
This trait matrix covers the presence of genes coding for
secondary metabolites such as hydrogen cyanide
(HCN), as well as in vitro semi-quantitative measure-
ments, amongst others siderophore production (see
Table 1 and Agaras et al. (2015)). For each trait
we set up a separate GLM of the means with bacterial
effects on plant growth as response variable and target
trait as predictor.

Statistical analyses were performed using R 3.0.3 (R
Core Team 2014) with the package car for ANOVA
error type III analyses (Fox and Weisberg 2010).

Results

Both above- and belowground parts of the plants at
the end of the experiment were affected by the
different treatments with shoot fresh weight ranging
from 0.05 to 0.21 g (for results of single isolates and
non-bacterized control see supplementary material
2). Pythium ultimum and the bacterial isolates inter-
actively affected root dry weight of the plants
(see Table 2). Aboveground, there was a strong
interactive effect between P. ultimum, bacterial
isolates and amoebae, which was visible both for
shoot fresh weight and length (see Table 2). In
addition, analyses of shoot length measurements
over time revealed that significant interactive
effects already appeared four days after inoculation
and were most pronounced after six days (see
supplementary material 3).

These multiple interactive effects call for a further
step in order to assess whether general patterns can be
found. We therefore investigated the relationship be-
tween pathogen inhibition (P. ultimum present) and
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plant growth promotion (P. ultimum absent). We hereby
focused on the aboveground part of the plants. To our
surprise, in absence of amoebae most isolates had no or
a net negative effect on plant growth (Fig. 1). In
addition, we observed a clear trade-off between effects
of bacteria on plant growth depending on presence or
absence of the pathogen (Fig. 1): Bacteria inhibiting
plant growth in absence of the pathogen showed no
or a positive net effect in presence of the pathogen,
while bacteria showing no effect alone even strength-
ened the effect of the pathogen (F1,7 = 25.93,
P < 0.001, Fig. 1). The same trend can be seen for
shoot length, albeit only as a tendency (see supple-
mentary material 4). In contrast, this trade-off was
no longer apparent in presence of amoeba, showing
positive net growth effects in absence of the
pathogen and alleviation of the negative net effects

some bacteria had in presence of the pathogen
(F1,7 = 0.329, P = 0.584, Fig. 1). Further, we could
see clear-cut shifts in the effects of some single
isolates. For instance, co-inoculation with amoebae
stimulated a plant growth promotion effect of RPBP2
and RBAN4 without changing their effect in pres-
ence of the pathogen, whilst it negated the negative
effect of SMMP3 in presence of the pathogen without
changing the isolates’ effect in absence of the patho-
gen (see Fig. 1 and supplementary material 2).

We didn’t find any interaction effect between pres-
ence of pathogen and presence of amoebae in the treat-
ments without addition of bacteria (for shoot length:
P = 0.366; for shoot fresh weight: P = 0.719; also see
supplementary material 2, panels (s) and (t)).

We then related the results to the trait matrix and
found that production of siderophores in vitro

Table 1 Antagonism potential against Pythium ultimum, relative siderophore production, hydrogen cyanide production and taxonomic
identification of the 9 Pseudomonas isolates used in this study.

Bacterial isolate Pythium
inhibition

Siderophore Relative
production

HCN qualitative
production

Pseudomonas
complex

Reference
or Source

RBAN4 > 3 mm 116.7 ± 7.2 1 P. asplenii Agaras et al. 2015

SVBP3 > 3 mm 57.1 ± 12.4 1 P. chlororaphis Agaras et al. 2015

SVBP6 > 3 mm 145.8 ± 7.2 1 P. putida Agaras et al. 2015

SVBP8 > 3 mm 70.8 ± 7.2 1 P. chlororaphis Agaras et al. 2015

RBBP4 1–3 mm 0 1 P. fluorescens Agaras et al. 2015

RPBP2 1–3 mm 104.2 ± 7.2 0 P. asplenii Agaras et al. 2015

SMMP3 1–3 mm 58.3 ± 7.2 1 P. chlororaphis Agaras et al. 2015

SPSA5 < 1 mm 120.8 ± 7.2 0 P. protegens This study

SVMP4 < 1 mm 30.4 ± 6.4 1 P. putida Agaras et al. 2015

For details on measurement of siderophore and HCN production, see Agaras et al. (2015)

Table 2 Summary of the three-way ANOVA (error type III) investigating the effect of inoculation of wheat plants with amoebae, Pythium
ultimum and nine different antifungal pseudomonads on shoot length and fresh weight after eight days

Shoot length Shoot fresh weight Roots dry weight

d.f. F p F p F p

Amoebae (AM) 1 7.86 0.005 5.650 0.019 0.02 0.887

Pythium (PY) 1 0.030 0.863 1.845 0.176 4.555 0.034

Bacterial Isolate (BI) 8 0.252 0.980 1.239 0.279 3.304 0.002

AM x PY 1 10.353 0.002 4.670 0.032 1.012 0.316

AM x BI 8 0.952 0.475 2.405 0.017 1.746 0.091

BI x PY 8 1.985 0.051 2.703 0.008 2.232 0.027

AM x PY x BI 8 2.464 0.0148 2.867 0.005 1.522 0.152

Significant effects are highlighted in bold, tendencies are highlighted in italic

512 Plant Soil (2017) 410:509–515



(continuous variable) correlated with an increased shoot
fresh weight when isolates were co-inoculated with
protozoa (F1,7 = 7.216, p = 0.031, Fig. 2). In contrast,
addition of bacteria producing HCN resulted in a small-
er shoot weight when they were co-inoculated with
amoebae (F1,7 = 9.143, p = 0.019).

Discussion

Application of plant-beneficial bacteria bears a great
potential to improve plant growth and to contribute to
a low input, high yield agriculture. However, in order to
use bacteria more efficiently we need to understand how
their interactions with other organisms shape their

activity. In the present study we show that co-
inoculation with protozoa can stimulate the plant-
beneficial potential of bacteria. The consequence of root
infections by Pythium ultimum could clearly be seen in
the root dry weight of inoculated plants (see Table 2).
On the other hand, the presence of amoebae did not
affect root dry weight, but it did affect the aboveground
part of the plants. When inoculated alone, most bacterial
isolates had no or negative effects on plant growth. In
addition we observed a trade-off: While some bacterial
isolates had no effects on plant growth alone and even
strengthened the effect of the pathogen, other bacterial
isolates negatively affected plant growth alone but
showed no or a positive net effect in the presence of
the pathogen. This may be due to the genetic
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background of the bacteria: Using a multivariate trait-
based approach, Agaras and colleagues showed that plant
beneficial pseudomonads isolated from agricultural soils
cluster into two different groups, with either traits linked to
plant-growth promoting activity, for instance by producing
hormones, or to disease suppression, such as via antibi-
otics production (Agaras et al. 2015). In addition, metab-
olites involved in pathogen suppression, e.g. 2, 4 –DAPG
and phenazines, can interfere with plant growth (Brazelton
et al. 2008; Ortiz-Castro et al. 2013), suggesting that it may
be difficult to merge plant growth promoting and/or dis-
ease suppressive capacities in one bacterial isolate. The
fact that bacterial isolates bearing plant growth promoting
and disease suppressive traits demonstrated no or even
negative plant growth effects in this studywhen inoculated
alone (in absence of amoebae and P. ultimum), strengthens
the necessity of investigating further interactions of the
bacteria with other organisms in the rhizosphere.

Co-inoculation of protozoa suppressed this trade-off,
by enhancing the effect of bacteria on plant growth in
the absence of the pathogen and alleviating the negative
effect of some bacteria in the presence of the pathogen.
Although the tested system did not allow for digging
into underlying mechanisms, we propose a couple of
possibilities. First, protozoa may have changed the nu-
tritional status of the bacteria. Protozoa speed up nutri-
ent cycling, making bacteria physiologically more ac-
tive (Bonkowski 2004). Further, bacteria can sense the
presence of protozoa and respond by upregulating the
production of secondary metabolites such as 2, 4 –
DAPG or cyclic lipopeptides (Mazzola et al. 2009;
Jousset and Bonkowski 2010). This enhanced activity
may have influenced the ability of the bacteria to inhibit
the pathogen. Second, the presence of protozoa resulted
in increased plant growth in the absence of the pathogen.
We speculate that this effect may be linked to different
mechanisms. For instance, predation by protozoa may
release amino-acids such as tryptophan, which in turn
may stimulate auxin production (Krome et al. 2010), a
phytohormone stimulating root growth. In addition,
siderophore production in vitro correlated with
plant growth promotion by the different bacteria,
but only when protozoa were co-inoculated.
Siderophores are a typical plant-growth promoting
agent, helping plants to better access soil iron
(Sharma et al. 2003). Protozoa can enhance
siderophore production in bacteria (Levrat et al. 1989)
and we propose that this enhanced trait expression may
have contributed to plant growth.

In contrast, we found here that cyanide-producing
bacteria reduced shoot growth in presence of protozoa.
Several compounds linked to disease suppression can
also inhibit plant growth. Cyanide is an important factor
controlling a range of pathogens, but can at the same time
show phytotoxic effects at high dose (Blom et al. 2011).
This effect of cyanide in the presence of protozoa is
reminiscent of past observations showing that protozoa
increase cyanide production in pseudomonads (Jousset
et al. 2010). Thus, it suggests that the direction of plant
growth effects depends on which microbial traits are
triggered by protozoa under the assessed conditions.

Although our statistical analysis didn’t give indica-
tions for direct effects of the protozoa on the pathogen or
vice versa, further studies are on the way to clarify if
direct interactions, e.g. via feeding of the protozoa on
the zoospores, might have occurred or might occur
under specific circumstances.

We conclude that interactions between plant benefi-
cial bacteria and protozoa may be an important driver of
their effect on plant growth in natural soil. Native pro-
tozoa should thus be considered when applying
beneficial microbes. Further, co-inoculation of pro-
tozoa with the beneficial bacteria may be an effi-
cient way to increase plant beneficial activity of bacte-
rial inoculants.
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