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Abstract 

The intensity of the flow accelerated corrosion (FAC) process depends on a great number of parameters with a complicated effect on 
each other. The use of an intellectual neural network (INN) to solve the FAC prediction problem makes it possible to estimate the mutual 
effects from all the factors involved, to identify the essential properties of the information obtained, and, ultimately, to improve the accuracy 
of prediction without determining the whole range of dependences among a great deal of factors on which the FAC process depends. An 
approach is proposed to the creation and training of an optimal neural network for the NPP piping FAC rate prediction problem. Matlab 
software was used to develop an intellectual neural network to address the problem of the wall thinning prediction for a straight pipe with 
the VVER NPP single-phase secondary fluid. The network has been trained using an elastic back propagation algorithm, a number of the 
NS configurations have been studied, and the findings have been analyzed. 

A conceptual framework has been built for the intellectual system in the form of three NS types: a replicative NS, a Kohonen self- 
organizing NS, and a back-propagation NS. 
Copyright © 2016, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute). Production and hosting by 
Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

Keywords: Neural network; Learning algorithm; Flow accelerated corrosion; NPP piping. 

 

 

 

 

 

 

 

 

 

 

d  

d
 

t  

s
 

b  

s  

t  

a  

s  

t  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Introduction 

Practically all components of the nuclear power plant
(NPP) steam-water line’s pipelines and equipment, manufac-
tured from perlite and low-alloy steels, are prone to flow ac-
celerated corrosion (FAC). FAC processes occur under the
action of hydrodynamic factors (the erosive component of
damage) and electrochemical oxidation of the surface (cor-
rosive component). The FAC effects manifest themselves in
the form of thinning and, ultimately, “before-leak” failures of
the power equipment components. A great diversity of the
equipment metal damage zones and forms is explained by
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ifferences in the geometry, phase states, thermal- and hydro-
ynamic performance, and fluid water-chemistry. 

Therefore, a vital task is to predict the FAC rate to optimize
he NPP equipment monitoring scope and to avoid critical
ituations [1,2] . 

Globally, the most common FAC prediction technique is
ased on empirical data. Empirical models lack any physical
ense but provide for a satisfactory description of experimen-
al data that characterize the properties of real objects. Gener-
lization and analysis of long-term operating experience and
tatistical data on the NPP damage rate, as well as investiga-
ion of the FAC processes and regularities in metals have led
o the development of dedicated codes in the USA ( CHEC-

ORKS ), Germany ( WATHEK ), France ( COMSY ) and Russia
 EKI-02 , EKI-03 ). The most well-known empirical model is
he Chexal–Horowitz model [2] used in the CHECWORKS
ode. It employs an extensive array of experimental and lab-
ratory research data for the quantitative estimation of the
AC influencing factors: 

AC rate = F 1 ( T ) · F 2 ( AC ) · F 3 ( MT ) · F 4 ( O 2 ) · F 5 ( pH ) 

· F 6 ( G ) · F 7 ( α) · F 8 ( H ) , 
scow Engineering Physics Institute). Production and hosting by Elsevier 
vecommons.org/licenses/by-nc-nd/4.0/ ). 
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Fig. 1. A model of an artificial neural network for the prediction problem 

solution. 
here Т is the temperature; AC is the alloy composition; MT
s the mass transfer; O 2 is the oxygen effect; pH is the pH
ffect at a given temperature; G is the geometry; α is the
team quality; and H is the hydrazine effect. 

However, no prediction based on empirical models pro-
ides for acceptable results. For instance, in the semi-
mpirical Chexal–Horowitz model built with regard for the
ependence among the factors defined implicitly with the use
f empirical tables [2] , the major uncertainty sources are the
nitial thickness of the component wall, the alloy components
ot used in the model, the actual steam quality in the two-
hase flow, uncertainties of the water chemistry, and others. 

The only objective source of information on the state of a
ipe component is monitoring data. Therefore, it is suggested
hat a FAC process model based on neural networks should be
sed for prediction. Neural networks have proved themselves
o perform well in simulation of systems and processes the
nternal constraints in which have been either understudied or
nteract in a complicated way [3–5] . 

A great number of parameters that define the FAC rate have
 complex effect on each other. The use of neural networks
o address the FAC prediction problem makes it possible to
ssess the mutual effects of all the factors involved, to iden-
ify the essential properties of the information obtained, and,
ltimately, to improve the accuracy of prediction. The gen-
ralization and abstraction capability of an artificial neural
etwork helps predict correctly the FAC rate without deter-
ining the whole range of dependences among a great deal

f factors on which the FAC process depends. But the real
odel is complex and involves many input variables. 
The paper suggests an approach to the creation and train-

ng of the optimal artificial neural network for solving the
roblem of the NPP piping FAC rate prediction. 

pplication of neural networks for the FAC process 
rediction 

A network is the model of a process. Its major attributes
re structure, number of layers, neuron type, input and output
alues, and learning algorithms. The selection of the neu-
al network attributes depends on the amount and quality
f experimental data available for the network training. The
raining framework includes ultrasonic thickness measurement 
esults, the metal’s chemical composition, the coolant water
hemistry, flow temperature and velocity, etc. (e.g., CHEC-
ORKS model [2] ). And no prior data processing and deter-
ination of respective dependences for the particular factor

s required. However, an increase in the prediction accuracy
equires data to be filtered based only on thinning data, since
he FAC process causes wall thinning, while thickening is
aused by another process (transport of corrosion products),
hich is not expected to add more noise to the predicted
rocess. 

For the FAC prediction, there is no sense in building a
ersatile network that takes into account the effects from all
otential input factors. Such approach requires the develop-
ent of an intricately structured network with a great number
f layers and neurons and a greater volume of learning sam-
ling to obtain the satisfactory result. For each geometrical
ype of the piping components (straight pipe, bend, tap and
o on), it however makes sense to build a separate network
o obtain a simpler structure of the neural network and to
mprove the model accuracy. 

S model for the FAC rate prediction 

The training of a neural network for the FAC rate pre-
iction requires data influencing the predicted value to be
upplied to the network input. The output value, as defined
or the problem, will be a characteristic of the FAC rate. The
mount of the piping wall thickness deviation from the rated
alue has been chosen as such characteristic ( S ). 

The inputs to be used will be the factors that influence the
AC process [1,2] : fluid temperature T ; coolant flow velocity
 ; oxygen content in the coolant O 2 ; fluid’s pH; mass content
f chromium in material Cr; mass content of molybdenum in
aterial Mo; mass content of copper in material Cu; inner

iameter of the piping D ; geometry of the piping component
 ; content of the amine (ammonia, ethanolamine, morpholine)
sed; piping operating time in years t oper . 

The larger is the input vector, the more complex shall be
he NS architecture that handles this set. The more complex
s the network configuration, the more time is needed to train
he network and the more likely difficulties to occur in the
raining process. 

An indispensable parameter of prediction problems is the
ime span for which the prediction is performed, t р red . There-
ore, the NS model we will get has the form of a “black box”
 Fig. 1 ). 

A sigmoidal (or logical) function of the form F ( x ) = 1 /
1 + exp(–x )) (see Fig. 2 ) was used as the activation function.

A back propagation algorithm has been selected for train-
ng. This is a systematic approach to the training of multilayer
rtificial neural networks that enables a spatial construction of
approximation” weights for the path calculated by steepest
escent method. The computational power of the algorithm
onsists of the efficiency of the calculation of the network
unction’s partial derivatives F ( w , x ) for all components of
he adjusted vector of weights w for the given input vector х .
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Fig. 2. Sigmoidal function. OUT —neuron output; NET —input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A simplified neural network model for the FAC prediction problem 

solution. 
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The back propagation algorithm suggests the following se-
quence of actions: 

(1) Selection of the next learning pair from the learning set
and supply of the input vector to the network. 

(2) Calculation of the network output. 
(3) Calculation of the difference between the network out-

put and the required output (the target vector of the
learning pair). 

(4) Correction of the network’s weights such that to mini-
mize the error. 

(5) Repeated performance of steps 1 through 4 for each
vector of the learning set until the error for the whole
of the set reaches the acceptable level. 

The weights are corrected using the formula 

�w pq,k = ηδq,k · OUT , 

where �w pq,k is the value of the weight correction from the
vector p to the vector q ; η is the learning rate; and OUT is
the neuron output. 

The value δ for the output layer neurons is found by the
expression 

δ = OUT · ( 1 − OUT ) · ( T arget − OUT ) 

where OUT (1 – OUT) is the derivative from the sigmoidal
activation function; and Target is the target value. 

The value δq,k –1 required for the hidden layer neuron is ob-
tained by totaling the products of the value δq,k for the neuron
to which it is attached in the output layer and the respective
weight and by multiplying by the derivative contractive func-
tion: 

δq,k−1 = OU T p,k ·
(
1 − OU T p,k 

) ·
[ ∑ 

q 

δq,k w pq,k 

] 

. 

To solve the FAC rate prediction problem, a simplified neu-
ral network model was realized ( Fig. 3 ), containing a reduced
number of input parameters. 

Implementation of a neural network 

The construction of a neural network is an experimental
process. The major difficulty involved in the network con-
struction consists of the selection of the optimal complexity
level. 
ata processing 

Input signals of the simplified neural network model have
een selected with regard for their relative importance: fluid
emperature, inner diameter of the piping, oxygen content in
he fluid, and time for which the prediction is performed.
herefore, the learning set is composed of vectors containing

our elements each. The intervals of possible values have been
reset for each of the parameters. And the factors, not used
n the model under implementation, have been assumed to be
onstant: р H = 7; Keller coefficient: 0.04; chromium content:
.03%; copper content: 0.03%; molybdenum content: 0.03%;
mine type—ammonia; flow velocity V = 6.1 m/s. 

To provide for an equal effect from each of the variables
n the weight variation in the training process, data has been
ormalized for the interval (0.1)—the range of the sigmoidal
unction’s output values. This was done by linear scaling.
inear scaling of the variable ν to the variable s , distributed

n a range from zero to unity, was based on the formula 

 = [ ν − min ( v 1 ...n ) ] / [ max ( v 1 ...n ) − min ( v 1 ...n )] . 

Back propagation from s to ν is based on the formula 

= min ( v 1 ...n ) + s [ max ( v 1 ...n ) − min ( v 1 ...n ) ] . 

etwork structure selection 

A decision was made in the design of the neural network
or the FAC prediction problem solution that a narrowing net-
ork shall be constructed, since, in this case, it has its gen-

ralization capability increased. 
To calculate the upper boundary h for the number of hid-

en elements, Kolmogorov’s theorem may be used according
o which any function of n variables may be presented as the
uperposition 2 n + 1 of univariate functions: h ≤ 2 i + 1. 

The analysis of published results shows that one or, some-
imes, two hidden layers are enough to solve most practical
roblems [4,5] . 

The number of neurons in hidden layers depends greatly on
he available learning set. The number of learning examples
hould be approximately equal to the number of the network
eights ω multiplied by the inverse error value ε: 

 ≥= ω/ε. 
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Table 1 
Target and resultant values. 

Target values 0.128 0.423 0.109 1.352 0.707 4.65 0.265 0.628 1.81 0.155 
Resultant values 0.128 0.170 0.127 1.046 0.570 4.412 0.198 0.654 1.475 0.121 

Fig. 4. A data display fragment. A diagram of the linear regression between 
the network output and the standard. 
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Fig. 5. A data display fragment. A diagram of the linear regression between 
the optimal network output and the standard versus temperature. 

Fig. 6. A data display fragment. A diagram of the linear regression between 
the optimal network output and the standard versus oxygen content. 
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The construction of a neural network for any problem re-
uires several neural networks of different complexity to be
uilt from which the optimal one will be selected. 

The prediction of the piping wall thinning under the ac-
ion of the FAC process, based on different neural networks
rained using the back propagation algorithm, either led to the
etwork paralysis or was too time-consuming. 

It was decided to use a faster learning algorithm, namely,
he elastic back propagation algorithm which, in contrast to
he standard back propagation algorithm, uses only signs of
artial derivatives for the weight coefficient readjustment. A
edicated procedure has been developed to cover uniformly
he field of input values. 

As a result, a neural network composed of a four-element
nput layer, two hidden layers of four neurons each, and a
ingle-element output layer was built in the MatLab environ-
ent and trained using the elastic back propagation algorithm.
he average root-mean-square error of the prediction based on

he implemented network is equal to 0.035 ( Fig. 4 ). 
Table 1 presents target values of the network output and

he values generated by the network. 

odel investigation 

To judge on the adequacy of the optimal neural network
uilt, it needs to be found out in which domain of the input
arameter determination the neural network behaves correctly.
igs. 5–8 present dependences between the network outputs
nd the standard for the parameters used. 
It was found as the result of the investigation that the ob-
ained neural network predicts correctly in a range of the
iping inner diameter variation to 600 mm at the oxygen con-
entrations of up to 45 μg/kg and in the time range of 1–4
ears. 

earning algorithms and neural network models 

First of all, neural networks are classified based on if su-
ervised or unsupervised learning is used. Supervised learning
uggests that the target vector representing the required output
xists for each input vector. Jointly, these are referred to as
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Fig. 7. A data display fragment. A diagram of the linear regression between 
the optimal network output and the standard versus inner piping diameter. 

Fig. 8. A data display fragment. A diagram of the linear regression between 
the optimal network output and the standard versus operating time. 
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learning pair. Normally, the network is trained using a certain
number of such pairs until the error for the entire learning
array reaches an acceptably low level. 

Unsupervised learning does not require the target vector
for outputs, so no comparison against the predefined ideal
answers is required. The learning set comprises only output
vectors. The learning algorithm readjusts the network weights
such that to obtain consistent output vectors, that is, that the
production of sufficiently close input vectors led to similar
outputs. 

The training process therefore identifies the statistical prop-
erties of the learning set and combines similar vectors into
classes. The supply of the vector in a given class to the net-
work will yield a particular output vector, but it cannot be
redicted prior to the training which output will be produced
y the given class of input vectors. Therefore, the outputs of
uch a network shall be transformed into a certain conceivable
orm defined by the training process. 

It is proposed that the considered models of neural net-
orks to be combined such that to optimize the FAC rate
rediction problem solution using an NS to improve the de-
ired prediction quality. 

A detailed study into the NS learning algorithms has shown
hat the problem under consideration cannot be solved only
hrough the unsupervised NS learning, that is, the major prob-
em of these networks address is classification and separation
f features from data. However, combined with supervised NS
earning algorithms (for instance, with the error back propa-
ation algorithm), such methods are capable to improve and
acilitate the FAC rate prediction problem solution. 

A replicative neural network can be used to reduce the
nput vector dimensionality [4,5] . The training of such an NS
ims to make the vector reproduced by the output layer fit the
ector supplied to the input layer. It can be said that training is
nsupervised since input data as such is used as the standard.
rior handling of input data based on a replicative network
eflecting the m -dimensional input space to an n -dimensional
ne ( n < m ) by “identifying” the attributes of the input set
akes it possible to facilitate further training of the base NS

olving the prediction problem. 
Kohonen’s self-organizing maps are useful for increasing

he accuracy of the FAC prediction. In these maps, neurons
re contained in the nodes of the lattice, normally one- or
wo-dimensional. In the competitive process, neurons are se-
ectively adjusted to different input images or classes of in-
ut images. In the course of the adjustment, the positions
f neurons are arranged with respect to each other such that
 notional system of coordinates is generated on the lattice.
he network representing Kohonen’s self-organizing maps is

rained using the following algorithm. 

1. The input set vector x is supplied to the network input. 
2. The distances D j are determined between x and the weight

vectors w j of each neuron using the formula 

D j = 

√ ∑ 

i 

( x i − w i ) 
2 
j , 

where x i is the i th element of the input vector x , and w ij 

is the weight of the neuron j ’s input i . 
3. Neuron the weight vector of which is the nearest one to

x is declared the winner. This weight vector, called w c ,
becomes the base one in the group of the weight vectors
lying in the limits of the distance D from w c . 

4. The group of weight vectors is adjusted in accordance with
the condition 

w j ( t + 1 ) = w j ( t ) + α
[
x − w j ( t ) 

]
for all of the weight vectors in the limits of the distance
D from w c . 

5. Steps 1 through 4 are repeated for each input vector. 
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The learning vector adjusts the weight vectors in the vicin-
ty of the excited neuron such that they looked like an input
ector. In the process of the training, the group of neighboring
eight points moves closer to the input vector point. Input
oints are combined into classes according to the positions
hereof in the vector space. A particular class is associated
ith a particular neuron by moving its weight vector towards

he class center and by contributing to its excitation when any
ector of the given class appears at the input. 

After the dimensionality of the input vector is reduced us-
ng a replicator and a coded input signal is received, it needs
o be found which class of the input space the signal in ques-
ion belongs to. Finally, an NS trained using a back propa-
ation algorithm should be built for each class of the input
et, and it is this NS that will compute the desired prediction
or the piping wall thinning versus the rated value over the
redicted time period. 

Therefore, the intellectual system implemented as a set of
eural networks for the FAC rate prediction problem solution
omprises three NS types: 

- A replicative neural network reducing the input set dimen-
sionality. 

- A Kohonen self-organizing map classifying the input sig-
nal. 

- Neural networks trained using a back propagation algo-
rithm for calculating the predicted value for each class of
input signals. 

The proposed intellectual system makes it possible to op-
imize the learning set volume for a random quantity of the
odel parameters. 
onclusion 

A neural-network approach has been implemented, making
t possible to estimate the mutual effects from the factors
efining the FAC process intensity in the NPP equipment, to
dentify the essential properties of the information obtained,
nd, ultimately, to improve the accuracy of prediction. 

An artificial neural network has been developed using Mat-
ab software to address the problem of the wall thinning pre-
iction for a straight pipe with the VVER NPP single-phase
econdary fluid. The network has been trained using an elastic
ack propagation algorithm, a number of the NS configura-
ions have been studied, and the obtained results have been
nalyzed. 

Consequently, a conceptual framework has been built
or the intellectual system implemented in the form of a
et of three NS types: a replicative NS, a Kohonen self-
rganizing map, and an NS trained using a back propagation
lgorithm. 
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