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Modeling Linkage Disequilibrium
Increases Accuracy of Polygenic Risk Scores
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Polygenic risk scores have shown great promise in predicting complex disease risk andwill becomemore accurate as training sample sizes

increase. The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruning and applying a

p value threshold to association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a

method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LD information from an external

reference panel. Theory and simulations show that LDpred outperforms the approach of pruning followed by thresholding, particularly

at large sample sizes. Accordingly, predicted R2 increased from 20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0%

in a large multiple sclerosis dataset. A similar relative improvement in accuracy was observed for three additional large disease datasets

and for non-European schizophrenia samples. The advantage of LDpred over existing methods will grow as sample sizes increase.
Introduction

Polygenic risk scores (PRSs) computed from genome-wide

association study (GWAS) summary statistics have proven

valuable for predicting disease risk and understanding the

genetic architecture of complex traits. PRSs were used for

predicting genetic risk in a schizophrenia (SCZ) GWAS

for which there was only one genome-wide-significant lo-

cus1 and have been widely used for predicting genetic risk

for many traits.1–14 PRSs can also be used for drawing infer-

ences about genetic architectures within and across

traits.11,12,15–17 As GWAS sample sizes grow, the prediction

accuracy of PRSs will increase and might eventually yield

clinically actionable predictions.15,18–20 However, as noted

in recent work,18 current PRS methods do not account for
1Department of Epidemiology, Harvard T.H. Chan School of Public Health, Bos

netics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; 3P

MIT, Cambridge, MA 02142, USA; 4Bioinformatics Research Centre, Aarhus Un

Queensland, Brisbane, 4072 QLD, Australia; 6Diamantina Institute, Translat

Australia; 7Department of Mathematics, Massachusetts Institute of Technolo

Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; 9Analytic

MA 02114, USA; 10Deptartment of Psychiatry and Psychotherapy, Charité – Un
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the effects of linkage disequilibrium (LD), which limits

their predictive value, especially for large samples.

Indeed, our simulations show that, in the presence of

LD, the prediction accuracy of the widely used approach

of LD pruning followed by p value thresholding

(PþT)1,6,8,9,11,12,14,15,18,19 falls short of the heritability ex-

plained by the SNPs (Figure 1 and Figure S1; see Material

and Methods).

One possible solution to this problem is to use one of the

many available prediction methods that require genotype

data as input. These include genomic BLUP—which as-

sumes an infinitesimal distribution of effect sizes—and

its extensions to non-infinitesimal mixture priors.21–28

However, these methods are not applicable to GWAS sum-

mary statistics when genotype data are unavailable
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A B Figure 1. Prediction Accuracy of PþT
Applied to Simulated Genotypes with
and without LD
The performance of PþT, PRSs based on
LD-pruned SNPs (r2 < 0.2) followed by p
value thresholding with an optimized
threshold, when applied to simulated
genotypes with and without LD. The pre-
diction accuracy, as measured by squared
correlation between the true phenotypes
and the PRSs (prediction R2), is plotted as
a function of the training sample size.
The results are averaged over 1,000 simu-
lated traits with 200,000 simulated geno-
types, where the fraction of causal variants
pwas allowed to vary. In (A), the simulated
genotypes are unlinked. In (B), the simu-
lated genotypes are linked; we simulated
independent batches of 100 markers while
fixing the squared correlation between
adjacent variants in a batch at 0.9.
because of privacy concerns or logistical constraints, as is

often the case. In addition, many of thesemethods become

computationally intractable at the very large sample sizes

(>100,000 individuals) that would be required for

achieving clinically relevant predictions for most common

diseases.15,18,19

In this study, we propose LDpred, a Bayesian PRS that

estimates posterior mean causal effect sizes from GWAS

summary statistics by assuming a prior for the genetic ar-

chitecture and LD information from a reference panel. By

using a point-normal mixture prior25,29 for the marker

effects, LDpred can be applied to traits and diseases with

a wide range of genetic architectures. Unlike PþT, LDpred

has the desirable property that its prediction accuracy

converges to the heritability explained by the SNPs as

sample size grows (see below). Using simulations based

on real genotypes, we compare the prediction accuracy

of LDpred to that of the widely used approach of

PþT,1,6,8,9,11,12,14,15,18,19,30 as well as other approaches

that train on GWAS summary statistics. We apply LDpred

to seven common diseases for which raw genotypes are

available in small sample size and to five common diseases

for which only summary statistics are available in large

sample size.
Material and Methods

Overview of Methods
LDpred calculates the posterior mean effects fromGWAS summary

statistics by conditioning on a genetic architecture prior and LD

information from a reference panel. The inner product of these

re-weighted and the test-sample genotypes is the posterior mean

phenotype and thus, under the model assumptions and available

data, an optimal (minimum variance and unbiased) predictor.31

The prior for the effect sizes is a point-normal mixture distribu-

tion, which allows for non-infinitesimal genetic architectures.

The prior has two parameters: the heritability explained by the ge-

notypes and the fraction of causal markers (i.e., the fraction of

markers with non-zero effects). The heritability parameter is esti-
The Americ
mated from GWAS summary statistics and accounts for sampling

noise and LD32–34 (see details below). The fraction of causal

markers is allowed to vary and can be optimized with respect to

prediction accuracy in a validation dataset, analogous to how

PþT is applied in practice. Hence, similar to PþT (where p value

thresholds are varied and multiple PRSs are calculated), multiple

LDpred risk scores are calculated with the use of priors with vary-

ing fractions of markers with non-zero effects. The value that

optimizes prediction accuracy can then be determined in an inde-

pendent validation dataset. We approximate LD by using data

from a reference panel (e.g., independent validation data). We es-

timate the posterior mean effect sizes via the Markov chainMonte

Carlo (MCMC) method and apply them to validation data to

obtain PRSs. In the special case of no LD, posterior mean effect

sizes with a point-normal prior can be viewed as a soft threshold

and can be computed analytically (Figure S2; see details below).

We have released open-source software implementing the method

(see Web Resources).

A key feature of LDpred is that it relies on GWAS summary sta-

tistics, which are often available evenwhen raw genotypes are not.

In our comparison of methods, we therefore focus primarily on

PRSs that rely on GWAS summary statistics. The main approaches

that we compare with LDpred are listed in Table S1. These include

PRS based on all markers (unadjusted PRS), PþT, and LDpred

specialized to an infinitesimal prior (LDpred-inf) (see details

below). We note that LDpred-inf is an analytic method, given

that posterior mean effects are closely approximated by

E
�
b j ~b;D�z M

Nh2
g

I þD

!�1

~b; (Equation 1)

where D denotes the LD matrix between the markers in the

training data, and ~b denotes the marginally estimated marker ef-

fects (see details below). LDpred-inf (using GWAS summary statis-

tics) is analogous to genomic BLUP (using raw genotypes) because

it assumes the same prior.

Phenotype Model
Let Y be a N31 phenotype vector and X be a N3M genotype ma-

trix, whereN is the number of individuals, andM is the number of

genetic variants. For simplicity, we will assume throughout that

the phenotype Y and individual genetic variants Xi have been
an Journal of Human Genetics 97, 576–592, October 1, 2015 577



mean centered and standardized to have variance 1. Wemodel the

phenotype as a linear combination of M genetic effects and an in-

dependent environmental effect ε, i.e., Y ¼PM
i¼1Xibi þ ε, whereXi

denotes the ith genetic variant, bi is its true effect, and ε is the envi-

ronmental and noise contribution. In this setting, the (marginal)

least-squares estimate of an individual marker effect isbbi ¼ X0
iY=N. For clarity, we implicitly assume that we have the

standardized effect estimates available to us as summary statistics.

In practice, we usually have other summary statistics, including

the p value and direction of the effect estimates, from which we

infer the standardized effect estimates. First, we exclude all

markers with ambiguous effect directions, i.e., A/T and G/C

SNPs. Second, from the p values we obtain Z scores and multiply

them by the sign of the effects (obtained from the effect estimates

or effect direction). Finally, we approximate the least-squares esti-

mate for the effect by bbi ¼ siðzi=
ffiffiffiffi
N

p Þ, where si is the sign, and zi is

the Z score obtained from the p value. If the trait is a case-control

trait, this transformation from the p value to the effect size can be

thought of as being an effect estimate for an underlying quantita-

tive liability or risk trait.35

Unadjusted PRS
The unadjusted PRS is simply the sum of all the estimated marker

effects for each allele, i.e., the standard unadjusted polygenic score

for the ith individual is Si ¼
PM

j¼1Xji
bbj, where Xji denotes the geno-

type for the ith individual and the jth genetic variant.

PþT
In practice, the prediction accuracy is improved if the markers are

LD pruned and p value pruned a priori. Informed LD pruning

(also known as LD clumping), which preferentially prunes the

less significant marker, often yields much more accurate predic-

tions than pruning randommarkers. Applying a p value threshold,

i.e., using onlymarkers that achieve a given significance threshold,

also improves prediction accuracies formany traits and diseases. In

this paper, PþT refers to the strategy of first applying informed LD

pruning with r2 threshold 0.2 and subsequently applying p value

thresholding, where the p value threshold is optimized over a

grid with respect to prediction accuracy in the validation data.

Bpred: Bayesian Approach in the Special Case

of No LD
Under a model, the optimal linear prediction given some statistic

is the posterior mean prediction. This prediction is optimal in the

sense that it minimizes the prediction error variance.36 Under the

linear model described above, the posterior mean phenotype

given GWAS summary statistics and LD is

E
�
Y j ~b; bD� ¼

XM
i¼1

X0
iE
�
bi j ~b; bD�:

Here, ~b denotes a vector of marginally estimated least-squares es-

timates obtained from the GWAS summary statistics, and bD refers

to the observed genome-wide LD matrix in the training data, i.e.,

the samples for which the effect estimates are calculated. Hence,

the quantity of interest is the posterior mean marker effect given

LD information from the GWAS sample and the GWAS summary

statistics. In practice, we might not have this information avail-

able to us and are forced to estimate the LD from a reference panel.

In most of our analyses, we estimated the local LD structure in the

training data from the independent validation data. Although this

choice of LD reference panel can lead to small bias when one esti-
578 The American Journal of Human Genetics 97, 576–592, October
mates individual prediction accuracy, this choice is valid when-

ever the aim is to calculate accurate PRSs for a cohort without

knowing the case-control status a priori. In other words, it is an

unbiased estimate for the PRS accuracy when the validation data

are used as an LD reference, which we recommend in practice.

The variance of the trait can be partitioned into a heritable part

and the noise, i.e., VarðYÞ ¼ h2
gQþ ð1� h2

g ÞI, where h2
g denotes the

heritability explained by the genotyped variants, and Q ¼ XX0=M
is the SNP-based genetic relationship matrix. We can obtain a trait

with the desired covariance structure if we sample the betas

independently with mean 0 and variance h2
g=M. Note that if the ef-

fects are independently sampled, then this also holds true for corre-

latedgenotypes, i.e.,when there isLD.However, LDwill increase the

variance of heritability explained by the genotypes as estimated

from the data (as a result of fewer effective independent markers).

If all samples are independent and all markers are unlinked and

have effects drawn from a Gaussian distribution, i.e.,

bi�iidNð0; ðh2
g=MÞÞ, then this is an infinitesimal model,37 where

all markers are causal. Under this model, the posterior mean can

be derived analytically, as shown by Dudbridge15:

E
�
bi j ~b

� ¼ E
�
bi j ~bi

� ¼  h2
g

h2
g þ M

N

!
~bi:

Interestingly, with unlinked markers, the infinitesimal shrink

factor times the heritability, i.e., 
h2
g

h2
g þ M

N

!
h2
g ;

is the expected squared correlation between the unadjusted PRS

(with unlinked markers) and the phenotype, regardless of the

underlying genetic architecture.38,39

An arguably more reasonable prior for the effect sizes is a non-

infinitesimal model, where only a fraction of the markers are

causal. For this, consider the following Gaussian mixture prior:

bi�iid

8>><>>:
N

 
0;

h2
g

Mp

!
with probability p

0 with probability ð1� pÞ;

where p is the probability that a marker is drawn from a Gaussian

distribution, i.e., the fraction of causal markers. Under this model,

the posterior mean can be derived as (see Appendix A)

E
�
bi j ~bi

� ¼
 

h2
g

h2
g þ

Mp

N

!
pi
~bi;

where pi is the posterior probability that the i
thmarker is causal and

can be calculated analytically (see Equation A1 in Appendix A).

In our simulations, we refer to this Bayesian shrink without LD as

Bpred.
LDpred: Bayesian Approach in the Presence of LD
If we allow for loci to be linked, then we can derive posterior mean

effects analytically under a Gaussian infinitesimal prior (described

above). We call the resulting method LDpred-inf, and it represents

a computationally efficient special case of LDpred. If we assume

that distantmarkers are unlinked, the posteriormean for the effect

sizes within a small region l under an infinitesimal model is well

approximated by
1, 2015



E
�
bl j ~bl

;D
�
z

 
M

Nh2
g

I þDl

!�1

~b
l
:

Here,Dl denotes the regional LDmatrix within the region of LD,

and ~b
l
denotes the least-squares-estimated effects within that re-

gion. The approximation assumes that the heritability explained

by the region is small and that LD with SNPs outside of the region

is negligible. Interestingly, under these assumptions the resulting

effects approximate the standard mixed-model genomic BLUP ef-

fects. LDpred-inf is therefore a natural extension of the genomic

BLUP to summary statistics. A more detailed derivation is given

in Appendix A. In practice, we do not know the LD pattern in

the training data, and we need to estimate it by using LD in a refer-

ence panel.

Deriving an analytical expression for the posteriormean under a

non-infinitesimal Gaussian mixture prior is difficult, and thus

LDpred approximates it numerically by using an approximate

MCMC Gibbs sampler. This is similar to the Gauss-Seidel

approach, except that instead of using the posterior mean to up-

date the effect size, we sample the update from the posterior distri-

bution. Compared to the Gauss-Seidel method, this seems to lead

to less serious convergence issues. The approximate Gibbs sampler

is described in detail in Appendix A. To ensure convergence, we

shrink the posterior probability of being causal by a fixed factor

at each big iteration step i, where the shrinkage factor is defined

as c ¼ minð1; ðbh2

g=ð~h
2

g ÞiÞÞ, where bh2

g is the estimated heritability

based on an aggregate approach (see below), and ð~h2

g Þi is the esti-

mated genome-wide heritability at each big iteration. To speed

up convergence in the Gibbs sampler, we used Rao-Blackwelliza-

tion and observed that good convergence was usually attained

with fewer than 100 iterations in practice (see Appendix A).

Estimation of the Heritability Parameter

In the absence of population structure and assuming independent

and identically distributed mean-zero SNP effects, the following

equation has been shown to hold:

E
�
c2
j

� ¼ 1þNh2
g lj

M
;

where c2
j is the c2-distributed test statistic at the jth SNP, and

lj ¼
P

k½r2ðj; kÞ � ð1� r2ðj; kÞ=N � 2Þ�, summing over k neighboring

SNPs in LD, is the LD score for the jth SNP. Taking the average of

both sides over SNPs and rearranging, we obtain a heritability

estimate:

~h
2

g ¼
�
c2 � 1

�
M

lN
;

where c2 ¼Pjðc2
j =MÞ and l ¼Pjðlj=MÞ. We call this the aggregate

estimator, and it is equivalent to LD-score regression32–34 with

intercept constrained to 1 and SNP j weighted by 1=lj. Prediction

accuracy is not predicated on the robustness of this estimator,

which will be evaluated elsewhere. Following the conversion pro-

posed by Lee et al.,40 we also report the heritability on the liability

scale.

Practical Considerations

When LDpred is applied to real data, two parameters need to be

specified beforehand. The first parameter is the LD radius, i.e.,

the number of SNPs that we adjust for on each side of a given

SNP. There is a trade-off when we decide on the LD radius. If the

LD radius is too large, then errors in LD estimates can lead to

apparent LD between unlinked loci, which can lead to worse effect
The Americ
estimates and poor convergence. If the LD radius is too small, then

we risk not accounting for LD between linked loci.We found that a

LD radius of approximatelyM/3,000 (the default value in LDpred),

where M is the total number of SNPs used in the analysis, works

well in practice; this corresponds to a 2 Mb LD window on average

in the genome. We also note that LDpred is implemented with a

sliding window along the genome, whereas LDpred-inf is imple-

mented with tiling LD windows, because this is computationally

more efficient and does not affect accuracy. Regarding choice of

the LD panel, its LD structure should ideally be similar to the

training data for which the summary statistics are calculated. In

simulations, we found that the LD reference panel should contain

at least 1,000 individuals.

The second parameter is the fraction p of non-zero effects in the

prior. This parameter is analogous to the p value threshold used in

PþT. Our recommendation is to try a range of values for p (e.g., 1,

0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3E�4, 1E�4, 3E�5, 1E�5; these

are default values in LDpred). This will generate 11 sets of SNP

weights, which can be used for calculating polygenic scores. One

can then use independent validation data to optimize the param-

eter, analogous to how the p value threshold is optimized in the

PþT method.

Whenusing LDpred,we recommend that SNPweights (posterior

mean effect sizes) are calculated for exactly the SNPs used in the

validation data. This ensures that all SNPs with non-zero weights

are in the validation dataset. In practice, we use the intersection

of SNPs present in the summary-statistics dataset, the LD reference

genotypes, and the validation genotypes. If the validation cohort

contains more than 1,000 individuals, with the same ancestry as

the individuals used for theGWAS summary statistics, thenwe sug-

gest using the validation cohort as the LD reference as well. These

steps are implemented in the LDpred software package.

Simulations
We performed three types of simulations: (1) simulated traits and

simulated genotypes; (2) simulated traits, simulated summary sta-

tistics, and simulated validation genotypes; and (3) simulated

traits based on real genotypes. For most of the simulations, we

used the point-normal model for effect sizes as described above:

bi�iid

8>><>>:
N

 
0;

h2
g

Mp

!
with probability p

0 with probability ð1� pÞ:

For some of our simulations (Figure S5), we sampled the non-

zero effects from a Laplace distribution instead of a Gaussian dis-

tribution. For all of our simulations, we used four different values

for p (the fraction of causal loci). For some of our simulations

(Figure S1), we sampled the fraction of causal markers within a re-

gion from a Beta(p, 1 � p) distribution. This simulates a genetic ar-

chitecture where causal variants cluster in certain regions of the

genome. We then obtained the simulated trait by summing up

the allelic effects for each individual and adding a Gaussian-

distributed noise term to fix the heritability. The simulated geno-

types were sampled from a standard Gaussian distribution. To

emulate LD, we simulated one genotype or SNP at a time to

generate batches of 100 correlated SNPs. Each SNP was defined

as the sum of the preceding adjacent SNP and some noise, where

they were scaled to correspond to a fixed squared correlation be-

tween two adjacent SNPs within a batch. We simulated genotypes

with the adjacent squared correlation between SNPs set to 0 (un-

linked SNPs) and 0.9 (SNPs in LD).
an Journal of Human Genetics 97, 576–592, October 1, 2015 579
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Figure 2. Comparison of Four Prediction
Methods Applied to Simulated Traits
Prediction accuracy of the four different
methods listed in Table S1 when applied
to simulated traits with WTCCC geno-
types. The four subfigures correspond to
p ¼ 1 (A), p ¼ 0.1 (B), p ¼ 0.01 (C), and
p ¼ 0.001 (D) for the fraction of simulated
causal markers with (non-zero) effect sizes
sampled from a Gaussian distribution. To
aid interpretation of the results, we plot
the accuracy against the effective sample
size, defined as Neff ¼ ðN=MsimÞM, where
N ¼ 10,786 is the training sample size,
M ¼ 376,901 is the total number of SNPs,
and Msim is the actual number of SNPs
used in each simulation: 376,901 (all chro-
mosomes), 112,185 (chromosomes 1–4),
61,689 (chromosomes 1 and 2), and
30,004 (chromosome 1). The effective
sample size is the sample size that main-
tains the same N/M ratio if all SNPs are
used.
In order to compare the performance of ourmethod at large sam-

ple sizes, we simulated summary statistics that we used as training

data for the PRSs.We also simulated two smaller samples (2,000 in-

dividuals) representing independentvalidationdata and a LD refer-

ence panel. When there is no LD, the least-squares effect estimates

(summary statistics) are sampled from a Gaussian distribution,bbi

�� bi�iidNðbi; ð1=NÞÞ, where bi are the true effects. To simulatemar-

ginal effect estimates without genotypes in the presence of LD, we

first estimate the LD pattern empirically by simulating 100 linked

SNPs for 1,000 individuals for a given value (as described above)

and average over 1,000 simulations. This matrix captures the LD

pattern in the validation data given that we simulate it by using

the same procedure. Using this LD matrix D, we then sample the

marginal least-squares estimateswithin a regionof LD (SNP chunk)

as bb �� b�iidNðDb; ðD=NÞÞ, where D is the LD matrix.

For the simulations in Figure 1B and Figures S1, S3, and S4, we

simulated least-squares effect estimates for 200,000 variants in

batches of LD regions with 100 variants each (as described above).

We then simulated genotypes for 2,000 validation individuals and

averaged over 100–3,000 simulated phenotypes to ensure smooth

curves. Depending on the simulation parameters, the actual num-

ber of repeats required for achieving a smooth curve varied. For the

simulations in Figure 1A and Figure S2, we simulated the least-

squares estimates independently by adding an appropriately

scaled Gaussian noise term to the true effects.

When simulating traits by using the Wellcome Trust Case Con-

trol Consortium (WTCCC) genotypes (Figure 2), we performed

simulations under four different scenarios representing different

number of chromosomes: (1) all chromosomes, (2) chromosomes

1–4, (3) chromosomes 1 and 2, and (4) chromosome 1. We used

16,179 individuals in the WTCCC data and 376,901 SNPs that

passed quality control (QC). In our simulations, we used 3-fold

cross-validation, whereby 1/3 of the data were validation data

and 2/3 were training data.
WTCCC Genotype Data
We used the WTCCC genotypes41 for both simulations and anal-

ysis. After performing QC, pruning variants with missing rates
580 The American Journal of Human Genetics 97, 576–592, October
above 1%, and removing individuals with genetic relatedness co-

efficients above 0.05, we were left with 15,835 individuals geno-

typed for 376,901 SNPs, including 1,819 individuals with bipolar

disease (BD), 1,862 individuals with coronary artery disease

(CAD), 1,687 individuals with Crohn disease (CD), 1,907 individ-

uals with hypertension (HT), 1,831 individuals with rheumatoid

arthritis (RA), 1,953 individuals with type 1 diabetes (T1D), and

1,909 individuals with type 2 diabetes (T2D). For each of the seven

diseases, we performed 5-fold cross-validation on affected individ-

uals and 2,867 control individuals. For each of these analyses, we

used the validation data as the LD reference data when using

LDpred and when performing LD pruning.
Summary Statistics and Independent Validation

Datasets
Six large summary-statistics datasets were analyzed in this study.

The Psychiatric Genomics Consortium 2 (PGC2) SCZ summary

statistics14 consisted of 34,241 affected and 45,604 control indi-

viduals. For our purposes, we calculated GWAS summary statistics

while excluding the ISC (International Schizophrenia Con-

sortium) cohorts and the MGS (Molecular Genetics of Schizo-

phrenia) cohorts. All subjects in these cohorts provided informed

consent for this research, and procedures followed were in accor-

dance with ethical standards. The summary statistics were calcu-

lated on a set of 1000 Genomes imputed SNPs, resulting in

16.9 million statistics. The two independent validation datasets,

the ISC and MGS datasets, both consist of multiple cohorts with

individuals of European descent. For both of the validation data-

sets, we used the chip genotypes and filtered individuals with

more than 10% of genotype calls missing and filtered SNPs that

had a missing rate more than 1% and a minor allele frequency

(MAF) greater than 1%. In addition, we removed SNPs that had

ambiguous nucleotides, i.e., A/T and G/C. We matched the SNPs

between the validation and GWAS summary-statistics datasets

on the basis of the SNP rsID and excluded triplets, SNPs for which

one nucleotide was unknown, and SNPs that had different nucle-

otides in different datasets. This was our QC procedure for all large

summary-statistics datasets that we analyzed. After QC, the ISC
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cohort consisted of 1,562 affected and 1,994 control individuals

genotyped on ~518,000 SNPs that overlapped with the GWAS

summary statistics. The MGS dataset consisted of 2,681 affected

and 2,653 control individuals after QC and had ~549,000 SNPs

that overlapped with the GWAS summary statistics.

For multiple sclerosis (MS), we used the International Multiple

Sclerosis Genetics Consortium summary statistics.42 These were

calculated with 9,772 affected and 17,376 control individuals

(27,148 individuals in total) for ~465,000 SNPs. As an indepen-

dent validation dataset, we used the BWH/MIGEN chip genotypes

with 821 affected and 2,705 control individuals.43 All subjects pro-

vided informed consent for this research, and procedures followed

were in accordance with ethical standards. After QC, the overlap

between the validation genotypes and the summary statistics

only consisted of ~114,000 SNPs, which we used for our analysis.

For breast cancer (BC), we used the Genetic Associations and

Mechanisms in Oncology (GAME-ON) BC GWAS summary statis-

tics, consisting of 16,003 affected and 41,335 control individuals

(both estrogen-receptor-negative [ER�] and -positive [ERþ] individ-
uals were included in this analysis).44–47 These summary statistics

were calculated for 2.6 million HapMap2 imputed SNPs. As valida-

tion genotypes, we combined genotypes from five different data-

sets: (1) ER� and control individuals from the Breast and Prostate

Cancer Cohort Consortium (BPC3),44 (2) individuals from the

Nurses’ Health Study 2 (NHS2) breast cancer study (BrCa), (3)

affected and control individuals from the Nurses’ Health Study 1

(NHS1) mammographic density study, (4) NHS1 individuals

from the Cancer Genetic Markers of Susceptibility (CGEMS)

study,48 and (5) control individuals from the NHS2 kidney stone

study. All subjects in each cohort provided informed consent for

this research, and procedures followed were in accordance with

ethical standards. None of these 307 affected or 560 control indi-

viduals were included in the GWAS summary-statistics analysis,

and they thus represent an independent validation dataset. We

used the chip genotypes that overlapped the GWAS summary sta-

tistics, which resulted in ~444,000 genotypes after QC.

For CAD, we used the transatlantic Coronary Artery Disease

Genome-wide Replication and Meta-analysis (CARDIoGRAM)

consortium GWAS summary statistics. These were calculated

with 22,233 affected and 64,762 control individuals (86,995 indi-

viduals in total) for 2.4 million SNPs.10 For T2D, we used the

Diabetes Genetics Replication andMeta-analysis (DIAGRAM) con-

sortium GWAS summary statistics. These were calculated with

12,171 affected and 56,862 control individuals (69,033 individ-

uals in total) for 2.5 million SNPs.49 For both CAD and T2D, we

used the Women’s Genomes Health Study (WGHS) dataset as vali-

dation data,50 where we randomly down-sampled the control

individuals. For CAD, we validated the predictions in 923 individ-

uals with cardiovascular disease and 1,428 control individuals, and

for T2D we used 1,673 affected and 1,434 control individuals. We

used the genotyped SNPs that overlapped the GWAS summary sta-

tistics, which amounted to about ~290,000 SNPs for both CAD

and T2D after QC. All WGHS subjects provided informed consent

for this research, and procedures followed were in accordance with

ethical standards.

For height, we used the Genetic Investigation of Anthropo-

metric Traits (GIANT) GWAS summary statistics as published in

Lango Allen et al.6 These were calculated with 133,653 individ-

uals and imputed to 2.8 million HapMap2 SNPs. As a validation

cohort, we used the Mount Sinai Medical Center BioMe cohort,

which consists of 2,013 individuals and was genotyped at

~646,000 SNPs. All subjects provided informed consent for this
The Americ
research, and procedures followed were in accordance with

ethical standards. After QC, the remaining ~539,000 SNPs that

overlapped the GWAS summary statistics were used for the

analysis.

For all six of these traits, we used the validation dataset as the LD

reference data when using LDpred and when performing LD prun-

ing. By using the validation dataset as LD reference data, we were

only required to coordinate two different datasets, i.e., the GWAS

summary statistics and the validation dataset. We calculated PþT

risk scores for different p value thresholds by using grid values

(1E�8, 1E�6, 1E�5, 3E�5, 1E�4, 3E�4, 1E�3, 3E�3, 0.01, 0.03,

0.1, 0.3, 1), and for LDpred we used the mixture probability (frac-

tion of causal markers) values (1E�4, 3E�4, 1E�3, 3E�3, 0.01,

0.03, 0.1, 0.3, 1). We then reported the optimal prediction value

from a validation dataset for LDpred and PþT.
SCZ Validation Datasets with Non-European Ancestry
For the non-European validation datasets, we used the MGS data-

set as an LD reference, given that the summary statistics were ob-

tained with individuals of European ancestry. This required us to

coordinate across three different datasets: the GWAS summary

statistics, the LD reference genotypes, and the validation geno-

types. To ensure sufficient overlap of genetic variants across all

three datasets, we used 1000 Genomes imputed MGS genotypes

and the 1000 Genomes imputed validation genotypes for the

three Asian validation datasets (JPN1, TCR1, and HOK2). To limit

the number of markers for these datasets, we only considered

markers that had a MAF > 0.1. After performing QC and

removing variants with a MAF < 0.1, we were left with 1.38

million SNPs and 492 affected and 427 control individuals in

the JPN1 dataset, 1.88 million SNPs and 898 affected and 973

control individuals in the TCR1 dataset, and 1.71 million SNPs

and 476 affected and 2,018 control individuals in the HOK2

dataset.

For the African-American (AFAM) validation dataset, we used

the reported GWAS summary-statistics dataset14 to train on. The

AFAM dataset consisted of 3,361 SCZ-affected and 5,076 control

individuals. Because the AFAM dataset was not included in that

analysis, this allowed us to leverage a larger sample size, but at

the cost of having fewer SNPs. The overlap among the 1000 Ge-

nomes imputedMGS genotypes, the HapMap 3 imputed AFAM ge-

notypes, and the PGC2 reported summary statistics included

~482,000 SNPs (with a MAF > 0.01) after QC. All subjects in the

JPN1, TCR1, HOK2, and AFAM datasets provided informed con-

sent for this research, and procedures followed were in accordance

with ethical standards.
Prediction-Accuracy Metrics
For quantitative traits, we used squared correlation (R2). For case-

control traits, which include all of the disease datasets analyzed,

we used four different metrics. We used Nagelkerke R2 as our pri-

mary figure of merit in order to be consistent with previous

work,1,9,12,14 but we also report three other commonly used met-

rics in Tables S2, S5, S7, and S10: observed-scale R2, liability-scale

R2, and the area under the curve (AUC). All of the reported predic-

tion R2 values were adjusted for the top five principal components

(PCs) in the validation sample (top three PCs for BC). The relation-

ship among the observed-scale R2, liability-scale R2, and AUC is

described in Lee et al.51 We note that Nagelkerke R2 is similar to

the observed-scale R2 (i.e., is also affected by case-control ascer-

tainment) but generally has slightly larger values.
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Figure 3. Comparison of Methods
Applied to SevenWTCCCDiseaseDatasets
The prediction accuracy of different
methodsas estimated from5-foldcross-vali-
dation in seven WTCCC disease datasets:
type 1 diabetes (T1D), rheumatoid arthritis
(RA), Crohn disease (CD), bipolar disease
(BD), type 2 diabetes (T2D), hypertension
(HT), and coronary artery disease (CAD).
The Nagelkerke prediction R2 is shown on
the y axis (see Table S2 for other metrics).
LDpred significantly improved the predic-
tion accuracy for the immune-related dis-
eases T1D, RA, and CD (see main text).
Results

Simulations

We first considered simulations with simulated genotypes

(see Material and Methods). We assessed accuracy by using

squared correlation (prediction R2) between observed and

predicted phenotypes. The Bayesian shrink imposed by

LDpred generally performed well in simulations without

LD (Figure S3); in this case, posterior mean effect sizes

can be obtained analytically (see Material and Methods).

However, LDpred performed particularly well in simula-

tions with LD (Figure S4); the larger improvement (e.g.,

versus PþT) in this case indicates that the main advantage

of LDpred is in its explicit modeling of LD. Simulations un-

der a Laplace mixture distribution prior gave similar results

(see Figure S5). We also evaluated the prediction accuracy

as a function of the sample size of the LD reference panel

(Figure S6). LDpred performs best with an LD reference

panel of at least 1,000 individuals. These results also high-

light the importance of using an LD reference population

with LD patterns similar to the training sample, given

that an inaccurate reference sample will have effects

similar to those of a small reference sample. Below, we

focus on simulations with real WTCCC genotypes, which

have more realistic LD properties.

Using real WTCCC genotypes41 (15,835 samples and

376,901 markers after QC), we simulated infinitesimal traits

with the heritability set to 0.5 (see Material and Methods).

We extrapolated results for larger sample sizes (Neff) by re-

stricting the simulations to a subset of the genome (smaller

M), leading to larger N/M. Results are displayed in

Figure 2A. LDpred-inf and LDpred (which are expected to
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be equivalent in the infinitesimal

case) performed well in these simula-

tions—particularly at large values of

Neff, consistent with the intuition

from Equation 1 that the LD adjust-

ment arising from the reference-panel

LD matrix (D) is more important

when Nh2g=M is large. On the other

hand, PþT performed less well, consis-

tent with the intuition that pruning

markers loses information.

We next simulated non-infinitesimal traits by using real

WTCCC genotypes and varying the proportion p of causal

markers (see Material and Methods). Results are displayed

in Figures 2B–2D. LDpred outperformed all other ap-

proaches, including PþT, particularly at large values of

N/M. For p ¼ 0.01 and p ¼ 0.001, the methods that do

not account for non-infinitesimal architectures (unad-

justed PRSs and LDpred-inf) performed poorly, and PþT

was second best among these methods. Comparisons to

additional methods are provided in Figure S7; in particular,

LDpred outperformed other recently proposed approaches

that use LD from a reference panel13,52 (see Appendix B).

Besides accuracy (prediction R2), another measure of in-

terest is calibration. A predictor is correctly calibrated if a

regression of the true phenotype versus the predictor yields

a slope of 1 and is miscalibrated otherwise; calibration is

particularly important for risk prediction in clinical set-

tings. In general, unadjusted PRSs and PþT yield poorly

calibrated risk scores. On the other hand, the Bayesian

approach provides correctly calibrated predictions (if the

prior accurately models the true genetic architecture and

the LD is appropriately accounted for), avoiding the need

for re-calibration at the validation stage. The calibration

slopes for the simulations using WTCCC genotypes are

given in Figure S8. As expected, LDpred providesmuch bet-

ter calibration than other approaches.

Application to WTCCC Disease Datasets

We compared LDpred to other summary-statistics-based

methods across the seven WTCCC disease datasets41 by

using 5-fold cross-validation (see Material and Methods).

Results are displayed in Figure 3. (We used Nagelkerke R2



Figure 4. Comparison of Methods
Training on Large GWAS Summary Statis-
tics for Five Different Diseases
The prediction accuracy is shown for five
different diseases: schizophrenia (SCZ),
multiple sclerosis (MS), breast cancer
(BC), type 2 diabetes (T2D), and coronary
artery disease (CAD). The risk scores were
trained with large GWAS summary-statis-
tics datasets and used for predicting disease
risk in independent validation datasets.
The Nagelkerke prediction R2 is shown on
the y axis (see Table S5 for other metrics).
Compared to LD pruning þ thresholding
(PþT), LDpred improved the prediction
R2 by 11%–25%. SCZ results are shown
for the SCZ-MGS validation cohort used
in recent studies,9,12,14 but LDpred also
produced a large improvement for the in-
dependent SCZ-ISC validation cohort
(Table S5).
as our primary figure of merit in order to be consistent with

previous work,1,9,12,14 but we also provide results for

observed-scale R2, liability-scale R2,51 and AUC53 in Table

S2; the relationship between these metrics is discussed in

the Material and Methods.)

LDpred attained significant improvement in prediction

accuracy over PþT for T1D (p value ¼ 4.4E�15), RA

(p value ¼ 1.2E�5), and CD (p value ¼ 2.7E�8), similar

to previous results from BSLMM26, BayesR,28 and Multi-

BLUP27 on the same data. For these three immune-related

disorders, themajor histocompatibility complex (MHC) re-

gion explains a large amount of the overall variance, such

that it represents an extreme special case of a non-infinites-

imal genetic architecture. We note that LDpred, BSLMM,

and BayesR all explicitly model non-infinitesimal architec-

tures; however, unlike LDpred, BSLMM and BayesR require

full genotype data and cannot be applied to large sum-

mary-statistics datasets (see below). MultiBLUP, which

also requires full genotype data, assumes an infinitesimal

prior that varies across regions and thus benefits from a

different modeling extension; the possibility of extending

multiBLUP to work with summary statistics is a direction

for future research. For the other diseases with more-com-

plex genetic architectures, the prediction accuracy of

LDpred was similar to that of PþT, potentially because

the training sample size was not sufficiently large enough

for modeling LD to have a sizeable impact. The inferred

heritability parameters and optimal p parameters for

LDpred, as well as the optimal thresholding parameters

for PþT, are provided in Table S3. The calibration of the

predictions for the different approaches is shown in Table

S4. Consistent with our simulations, LDpred provides

much better calibration than other approaches.

Application to Six Large Summary-Statistics Datasets

We applied LDpred to five diseases—SCZ, MS, BC, T2D,

and CAD—for which we had GWAS summary statistics

for large sample sizes (ranging from ~27,000 to ~86,000
The Americ
individuals) and raw genotypes for an independent valida-

tion dataset (see Material and Methods). Prediction accu-

racies for LDpred and other methods are reported in

Figure 4 (Nagelkerke R2) and Table S5 (other metrics). We

also applied LDpred to height (a quantitative trait), for

which we had GWAS summary statistics calculated with

~134,000 individuals6 and an independent validation da-

taset. The height-prediction accuracy for LDpred and other

methods is reported in Table S6.

For all six traits, LDpred provided significantly better

predictions than other approaches (for the improvement

over PþT, the p values were 6.3E�47 for SCZ, 2.0E�14

for MS, 0.020 for BC, 0.004 for T2D, 0.017 for CAD, and

1.5E�10 for height). The relative increase in Nagelkerke

R2 over other approaches ranged from 11% for T2D to

25% for SCZ, and we observed a 30% increase in prediction

R2 for height. This is consistent with the fact that our sim-

ulations showed larger improvements for highly polygenic

traits, such as SCZ14 and height.54 We note that for both

CAD and T2D, the accuracy attained with >60,000

training samples from large meta-analyses (Figure 4) is

actually lower than the accuracy attained with <5,000

training samples from the WTCCC (Figure 3). This result

is independent of the predictionmethod applied and dem-

onstrates the challenges of potential heterogeneity in large

meta-analyses (although prediction results based on cross-

validation in a single cohort should be viewed with

caution19). To examine this further, we trained CAD and

T2D PRSs on the WTCCC data, validated them in the

WGHS data, and determined that the prediction accuracy

in external WGHS validation data is substantially smaller

than within the WTCCC dataset (Table S7). Possible expla-

nations for this discrepancy include differences in sample

ascertainment in theWGHS andWTCCC datasets or unad-

justed data artifacts in the WTCCC training and validation

data.

Parameters inferred by LDpred and other methods are

provided in Table S8, and calibration results are provided
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in Table S9; again, LDpred attained the best calibration.

Finally, we applied LDpred to predict SCZ risk in non-Euro-

pean validation samples of both African and Asian descent

(see Material and Methods). Although prediction accu-

racies were lower in absolute terms, we observed similar

relative improvements for LDpred over other methods

(Tables S10 and S11).
Discussion

PRSs are likely to become clinically useful as GWAS sam-

ple sizes continue to grow.15,18 However, unless LD is

appropriately modeled, their predictive accuracy will

fall short of their maximal potential. Our results show

that LDpred is able to address this problem—even

when only summary statistics are available—by esti-

mating posterior mean effect sizes by using a point-

normal prior and LD information from a reference panel.

Intuitively, there are two reasons for the relative gain in

prediction accuracy of LDpred PRSs over PþT. First, LD

pruning discards informative markers and thereby limits

the overall heritability explained by the markers. Second,

LDpred accounts for the effects of linked markers, which

can otherwise lead to biased estimates. These limitations

hinder PþT regardless of the LD pruning and p value

thresholds used.

Although we focus here on methods that only require

summary statistics, we note the parallel advances that

have been made in methods that require raw geno-

types22,24–29,55,56 as training data. Some of those methods

employ a variational Bayes (iterative conditional expecta-

tion) approach to reduce their running time24,25,29,55

(and report that results are similar to those of MCMC29),

but we found that MCMC generally obtains more robust

results than variational Bayes in the analysis of summary

statistics, perhaps because the LD information is only

approximate. Our use of a point-normal mixture prior is

consistent with some of those studies,25 although different

priors, e.g., a mixture of normal, were used by other

studies.23,26,28 One recent study proposed an elegant

approach for handling case-control ascertainment while

including genome-wide-significant associations as fixed ef-

fects;56 however, the correlations between distal causal

SNPs induced by case-control ascertainment do not affect

summary statistics from marginal analyses, and explicit

modeling of non-infinitesimal effect-size distributions

will appropriately avoid shrinking genome-wide-signifi-

cant associations (Figure S2).

Although LDpred is a substantial improvement over ex-

isting methods for using summary statistics to conduct

polygenic prediction, it still has limitations. First, the

method’s reliance on LD information from a reference

panel requires that the reference panel be a good match

for the population from which summary statistics were ob-

tained; in the case of a mismatch, prediction accuracy

might be compromised. One potential solution is the
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broad sharing of summary LD statistics, which has previ-

ously been advocated in other settings.57 If LDpred uses

the true LD pattern from the training sample, and there

is no unaccounted long-range LD, then we expect little

or no gain in prediction accuracy with individual-level ge-

notype information. Second, the point-normal mixture

prior distribution used by LDpred might not accurately

model the true genetic architecture, and it is possible

that other prior distributions might perform better in

some settings. Third, in those instances where raw geno-

types are available, fitting all markers simultaneously (if

computationally tractable) might achieve higher accuracy

than methods based on marginal summary statistics.

Fourth, as with other prediction methods, heterogeneity

across cohorts might hinder prediction accuracy; our re-

sults suggest that this could be amajor concern in some da-

tasets. Fifth, we assume that summary statistics have been

appropriately corrected for genetic ancestry, but if this is

not the case, then the prediction accuracy might be misin-

terpreted19 or might even decrease.58 Sixth, our analyses

have focused on common variants; LD reference panels

are likely to be inadequate for rare variants, motivating

future work on how to treat rare variants in PRSs. Despite

these limitations, LDpred is likely to be broadly useful in

leveraging summary-statistics datasets for polygenic pre-

diction of both quantitative and case-control traits.

As sample sizes increase and polygenic predictions

become more accurate, their value increases, both in clin-

ical settings and for understanding genetics. LDpred repre-

sents substantial progress, but more work remains to be

done. One future direction would be to develop methods

that combine different sources of information. For

example, as demonstrated by Maier et al.,59 joint analysis

of multiple traits can increase prediction accuracy. In addi-

tion, using different prior distributions across genomic re-

gions27 or functional annotation classes60 could further

improve the prediction. Finally, although LDpred attains

a similar relative improvement when using non-European

samples as validation samples, the lower absolute accuracy

than in European samples motivates further efforts to

improve prediction in diverse populations.
Appendix A: Estimating the Posterior Mean

Phenotype

Under the assumption that the phenotype has an additive

genetic architecture and is linear, then estimating the pos-

terior mean phenotype boils down to estimating the poste-

rior mean effects of each SNP and then summing their

contribution in a risk score.
Posterior Mean Effects Assuming Unlinked Markers

and an Infinitesimal Model

Wewill first consider the infinitesimal model, which repre-

sents a genetic architecture where all genetic variants

are causal. The classic example is Fisher’s infinitesimal
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model,37 which assumes that genotypes are unlinked and

that effect sizes have a Gaussian distribution (after normal-

izing by allele frequency).

Assume that bi are independently drawn from a

Gaussian distribution bi � Nð0; ðh2=MÞÞ, where M denotes

the total number of causal effects ðbiÞ. Then, we can derive

a posterior mean given the marginal ordinary least-squares

estimate ~bi ¼ ðXiYÞ=N. The least-squares estimate is

approximately distributed as

~bi � N

 
bi;

1� h2

M
N

!
;

where N is the number of individuals. The variance can be

approximated further, VarðbiÞz1, when M is large. With

this variance, the posterior distribution for bi is

bi j ~bi � N

  
1

1þ M

h2N

!
~bi;

1

N

 
1

1þ M

h2N

!!
:

This suggests that a uniform Bayesian shrink by a factor of

1

1þ M

h2N

is appropriate under Fisher’s infinitesimal model.

Other possible choices of prior distributions for the ef-

fects include Laplace distributions. However, calculating

the posterior mean under this model is non-trivial but

can be solved numerically.61 Alternatively, the posterior

mode has a simple analytical form.62 The posterior mode

under a Laplace prior is in fact the LASSO estimate.63 If

we assume that the sum of the effects has variance h2

and that the genetic markers are uncorrelated, then the

posterior mode estimate is

_bi ¼ signðbiÞmax

 
0; j bi j �

ffiffiffiffiffiffiffiffi
h2

2M

r !
:

Interestingly, the posterior mode effects for estimated

effects below a given threshold are set to 0, even though

all betas are causal in the model.
Posterior Mean Effects Assuming Unlinked Markers

and a Non-infinitesimal Model

Most diseases and traits are not likely to be strictly infini-

tesimal, i.e., follow Fisher’s infinitesimal model.37 Instead,

a non-infinitesimal model, where only a fraction of the ge-

netic variants are truly causal and affect the trait, is more

likely to describe the underlying genetic architecture. We

canmodel non-infinitesimal genetic architectures by using

mixture distributions with a mixture parameter p, which

denotes the fraction of causal markers. More specifically,

we will consider a spike-and-slab prior with a 0 spike and

a Gaussian slab (see Figure S9).
The Americ
Assume that the effects are drawn from a mixture distri-

bution as follows:

bi �

8><>:N

�
0;

h2

Mp

	
with probability p

0 with probability ð1� pÞ
:

Another way of writing this is to use Dirac’s delta func-

tion, i.e., write bi ¼ puþ ð1� pÞv, where u � ð0; ðh2=MpÞÞ
and v � dbi . Here, dbi denotes the point density at bi ¼ 0,

which integrates to 1. We can then write out the density

for ~bi as follows:

f
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�
~bi j bi
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We are interested in the posterior mean, which can be ex-

pressed as

E
�
bi j ~bi

� ¼ ZN
�N

bif
�
~bi j bi

�
f ðbiÞRN

�N
f
�
~bi j bi

�
f ðbiÞdbi
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Hence, we only need to calculate the following definite

integral:ZN
�N

bif
�
~bi j bi

�
f ðbiÞdbi ¼

p

2p
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Thus, the posterior mean is

E
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where
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Alternatively, by realizing that the posterior probability

that bi is sampled from the Gaussian distribution given ~bi
is exactly
P
�
bi � Nð,; ,Þ j ~bi

� ¼ f
�
~bi j bi � Nð,; ,Þ�f ðbi � Nð,; ,ÞÞ
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(Equation A1)
we can rewrite the posterior mean in a simpler fashion. If

we let pi ¼ Pðbi � Nð,; ,Þ��~biÞ denote the posterior probabil-

ity that bi is non-zero or Gaussian distributed (Equation

A1), then it becomes

E
�
bi j ~bi

� ¼
 

1

1þ Mp

h2N

!
pi
~bi :

Posterior Mean Effects Assuming Linked Markers and

an Infinitesimal Model

Following Yang et al.,52 we can obtain the joint least-

squares effect estimates as

bbjoint ¼ D�1~bmarg;

where D ¼ XX0=N is the LD correlation matrix, and ~b de-

notes the vector of marginal least-squares effects (which

is approximately equal to the joint least-squares estimate

if SNPs are unlinked). In practice, the LD matrix is M3M

and possibly singular, e.g., if two (or more) markers are in

perfect linkage. If the LD matrix D is singular, the joint

least-squares estimate does not have a unique solution.

However, if the individuals in the training data do not

display family or population structure, the genome-wide

LDmatrix is approximately a banded matrix, which allows
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local adjustment for LD instead. To formalize these ideas,

we introduce some notation. Let li denote the ith locus or

region withMli markers. In addition, let bðiÞ denote the vec-
tor of true effects that are in the ith region, and similarly let
~b
ðiÞ

denote the corresponding marginal least-squares esti-

mates in the region. Under this model, we can derive the

sampling distribution for effect estimates at the ith region,

i.e., ~b
ðiÞ ��bðiÞ. The mean is Eð~bðiÞ ��bðiÞÞ ¼ DðiÞbðiÞ, where

DðiÞ ¼ XðiÞXðiÞ0=N is the LD matrix obtained from the

markers in the ith region, i.e., XðiÞ. Furthermore, the condi-

tional covariance matrix is

Var
�
~b
ðiÞ j bðiÞ� ¼ E

�
~b
ðiÞ0~b

ðiÞ j bðiÞ�� E
�
~b
ðiÞ j bðiÞ�E�~bðiÞ j bðiÞ�0

¼ 1

N2
E
�
XðiÞ�XðiÞ0 bðiÞ þ ε

��
XðiÞ�XðiÞ0 bðiÞ þ ε

��0 j bðiÞ
�

��DðiÞbðiÞ��DðiÞbðiÞ�0
¼ �DðiÞbðiÞ��DðiÞbðiÞ�0 1

N
E
�
XðiÞ

ε

�
XðiÞ

ε

�0 j bðiÞ
�

��DðiÞbðiÞ��DðiÞbðiÞ�0
¼ XðiÞ 1

N2
E
�
εε

0 j bðiÞ��XðiÞ�0 ¼ 1� h2
li

N2
XðiÞ�XðiÞ�0

¼ 1� h2
li

N
DðiÞ ;

where h2
li

denotes the heritability explained by the

markers in the region, i.e., XðiÞ. If we assume that the heri-

tability explained by an individual region is small, then

this simplifies to Varð~bðiÞ �� bðiÞÞ ¼ DðiÞ=N. This equation is
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particularly useful for performing efficient simulations of

effect sizes without simulating the genotypes. Given an

LD matrix, D, we can simulate effect sizes and correspond-

ing least-squares estimates. Similarly, for the joint estimate,

we have

E
�bbðiÞ

joint j bðiÞ
�
¼ bðiÞ

and

Var
�bbðiÞ

joint j bðiÞ
�
¼ 1� h2

li

N

�
DðiÞ��1

:

In the following, we let b (and ~b) denote the effects

within a region of LD. We furthermore assume that these

markers only explain a fraction, h2
l , of the total phenotypic

variance, and h2
l %h2. Given a Gaussian prior distribution

b � Nð0; ðh2=MÞÞ for the effects and the conditional distri-

bution ~b
��b, we can derive the posterior mean by consid-

ering the joint density:

f
�
~b; b
� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffijD jp

0@ N

2p
�
1� h2

l

�
1AM

2

3 exp

8<:N
�
~b�Db

�0
D�1

�
~b�Db

�
2
�
1� h2

l

�
9=;
�

Mp

2ph2

	�M
2

3 exp



M

2h2
b0b

�
:

We can now obtain the posterior density for ~b
�� b by

completing the square in the exponential. This yields a

multivariate Gaussian with mean and variance as follows:

E
�
b j ~b� ¼  

1

1� h2
l

Dþ M

Nh2
I

!�1

~b ;

Var
�
b j ~b� ¼ 1

N

 
1

1� h2
l

Dþ M

Nh2
I

!�1

;

where h2 denotes the heritability explained by theM causal

variants, and h2
l zkh2=M is the heritability of the k effects

or variants in the region of LD. If M[ k, then 1� h2
l be-

comes approximately 1, and the equations above can be

simplified accordingly. As expected, the posterior mean

approaches the maximum-likelihood estimator as the

training sample size grows.
Posterior Mean Effects Assuming Linked Markers and

a Non-infinitesimal Model

The Bayesian shrink under the infinitesimal model implies

that we can solve it either by using a Gauss-Seidel

method64,65 or via MCMC Gibbs sampling. The Gauss-

Seidel method iterates over the markers and obtains a

residual effect estimate after subtracting the effect of

neighboring markers in LD. It then applies a univariate

Bayesian shrink, i.e., the Bayesian shrink for unlinked
The Americ
markers (described above). It then iterates over the genome

multiple times until convergence is achieved. However, we

found the Gauss-Seidel approach to be sensitive to model

assumptions, i.e., if the LD matrix used differed from the

true LD matrix in the training data, we observed conver-

gence issues. We therefore decided to use an approximate

MCMC Gibbs sampler instead to infer the posterior

mean. The approximate Gibbs sampler used by LDpred is

similar to the Gauss-Seidel approach, except that instead

of using the posterior mean to update the effect size, we

sample the update from the posterior distribution.

Compared to the Gauss-Seidel method, this seems to lead

to less serious convergence issues. Below, we describe the

Gibbs sampler used by LDpred.

Define q as follows:

q �



1 with probability p
0 with probability ð1� pÞ :

Then, we can write b ¼ qu, where u � Nð0; ðh2=MpÞIÞ.
Hence, we can write the multivariate density for b as

f ðbÞ ¼
YM
i¼1

 
p

ffiffiffiffiffiffiffiffiffiffiffi
Mp

2ph2

r
exp



� Mp

2h2
b2
i

�
þ ð1� pÞdbi

!
:

The sampling distribution for ~b given b is

f
�
~b j b� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffijD jp

0@ N

2p
�
1� h2

l

�
1AM

2

3 exp
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�
~b�Db

�0
D�1

�
~b�Db

�
2
�
1� h2

l

�
9=;:

(Equation A2)

As usual, we want to calculate the posterior mean, i.e.,

E
�
b j ~b� ¼ Z bif

�
~b j b�f ðbÞR

f
�
~b j b�f ðbÞdb db;

which now consists of twoM-dimensional integrands. Any

multiplicative term that does not involve b in the two

integrands factors out. Because the integrand consists of

2M nontrivial additive terms, we result to numerical ap-

proximations to sample from the posterior and estimate

the posterior mean effects.

An alternative approach to obtaining the posterior

mean is to sample from the posterior distribution and

then average over the samples to obtain the posterior

mean. In our case, we know the posterior up to a

constant, i.e.,

f
�
b j ~b�ff

�
b; ~b
� ¼ f

�
~b j b�f ðbi j b�iÞf ðb�iÞ;

where b�i denotes all the other effects except for the effect

of the ith marker. Note that ðbi j b�iÞf ðb�iÞ ¼ f ðbÞ. We can

use this fact to sample efficiently in a MCMC setting,

where we sample one marker effect at a time in an iterative
an Journal of Human Genetics 97, 576–592, October 1, 2015 587



fashion (the conditional proposal distribution is therefore

univariate).

A Gibbs sampler is an efficient MCMC that can be

used whenever the marginal conditional posterior distri-

butions can be derived. For our purposes, these are the

conditional posterior distributions of the effects, i.e.,

f ðb j ~b; b�iÞ, where b�i refers to the vector of betas

excluding the ith beta. We can write the posterior distribu-

tion as follows:

f
�
b j ~b; b�i

� ¼ f
�
~b; b
�

f
�
~b; b�i

� ¼ f
�
~b j b�f ðbÞ

f
�
~b j b�i

�
f ðb�iÞ

¼ f
�
~b j b�f ðbiÞ
f
�
~b j b�i

�
¼ f

�
~b j b�f ðbiÞR

f
�
~b j b�f ðbiÞdbi

:

Sampling from this distribution is not trivial. However,

we can partition the sampling procedure into two

parts, such that we first sample whether the effect is

different from 0 and then if it is different from 0, we can

assume it has a Gaussian prior. To achieve this, we first

need to calculate the posterior probability that a marker

is causal, i.e.,

P
�
bi ¼ 0 j ~b; b�i

� ¼ P
�
bi ¼ 0; ~b; b�i

�
P
�
~b; b�i

�
¼ P

�
bi ¼ 0; ~b j b�i

�
P
�
bi ¼ 0; ~b j b�i

�þ Z
bis0

f
�
~b j b�f ðbiÞdbi

:

Obtaining an analytical solution to this is non-trivial;

however, if we assume that Pðbi ¼ 0 j ~b; b�iÞz
Pðbi ¼ 0 j ~bi; b�iÞ, then we can simply extract the effects of

LD from other effects on the effect estimate ~bi and then

use the marginal posterior probability that the marker is

causal from Equation A1 instead, i.e., Pðbi ¼ 0 j ~bi; b�iÞz
pi. If we sample the effect to be non-zero and again

make the simplifying assumption that f ðbi j ~b; b�iÞz
f ðbi j ~bi; b�iÞ, then we can write out its posterior distribu-

tion, extract the effects of LD on the effect estimate, and

sample from the marginal (without LD) posterior distribu-

tion derived above. More specifically, the marginal poste-

rior distribution for bi becomes

f
�
bi j ~b; b�i

�
zf
�
bi j ~bi; b�i

� ¼ �1� pi
�
dbi þ pihðbiÞ;

where hðbiÞ is the Gaussian density for the posterior distri-

bution conditional on bis0, i.e.,

bi j ~bi; b�i; bis0 � N

  
1

1þ M

h2N

!
~bi;

1

N

 
1

1þ M

h2N

!!
:

Other Considerations for LDpred

Although LDpred aims to estimate the posterior mean

phenotype (the best unbiased prediction), it is only guar-
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anteed to do so if all the assumptions hold. Because LDpred

relies on a few assumptions (both regarding LD and math-

ematical approximations), it is an approximate Gibbs

sampler, which can lead to robustness issues. Indeed, we

found LDpred to be sensitive to inaccurate LD estimates,

especially for very large sample sizes. To address this, we

set the probability of setting the effect size to 0 in the

Markov chain to be at least 5%. This improved the robust-

ness of LDpred as observed in both simulated and real data.

If convergence issues arise when LDpred is applied to data,

then it might be worthwhile to explore higher values for

the 0-jump probability.

Finally, throughout the above derivation of LDpred, we

assumed that the LD information in the training data

was known. However, in practice that information might

not be available, and instead we need to estimate the LD

pattern from a reference panel. As long as the LD reference

panel is representative and contains at least 1,000 individ-

uals, this assumption does not seem to affect performance

in simulations.
Appendix B: Conditional Joint Analysis

To understand the conditional joint (COJO) analysis as

proposed by Yang et al.,52 we implemented a stepwise

COJO analysis in LDpred. The COJO analysis estimates

the joint least-squares estimate from the marginal least-

squares estimate (obtained from GWAS summary statis-

tics). If we define D ¼ XX0=N, then we have the following

relationship:

bbjoint ¼ ðDÞ�1~b :

This matrix D has dimensions M3M and might be

singular. However, as for LDpred, we can adjust for LD

locally if the individuals in the training data do not

display family or population structure, in which case the

genome-wide LD matrix is approximately a banded

matrix. In practice, COJO analysis with all SNPs suffers

a fundamental problem of statistical inference, i.e., it

infers a large number of parameters (M) by using N

samples. Hence, if N < M, we do not expect the method

to perform particularly well. We verified this in simula-

tions (see Figure S7A). By restricting to ‘‘top’’ SNPs and

accounting for LD by using a stepwise approach (as

proposed by Yang et al.52) we alleviate this concern. How-

ever, although this reduces overfitting when N < M, this

approach also risks discarding potentially informative

markers from the analysis. Nevertheless, by optimizing

the stopping threshold via cross-validation in an in-

dependent dataset, the method performs reasonably well

in practice, especially when the number of causal

markers in the genome is small. In contrast, LDpred

conditions on the sample size and accounts for the

noise term appropriately (under the model), leading to

improved prediction accuracies regardless of training

sample size.
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Supplemental Data

Supplemental Data include 9 figures and 11 tables and can be

found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2015.09.001.
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