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INTRODUCTION 

We present a basic, equational framework for categories of partial 
morphisms and systematically relate those structures to the classically 
known total ones. Partial functions have become a subject of interest, 
among others, in the context of proof theory (Scott’s (1979) logic of partial 
elements), recursion theory (Di Paola and Heller, 1984; Rosolini, 1986), 
and semantics of programming languages (Plotkin, 1985). Recently 
Eugenio Moggi (1985, and also his forthcoming thesis) presented a detailed 
account of partiality in the I-calculus, including difficult syntactic aspects 
(Church-Rosser). We refer to those works for an informal account of the 
importance of formalisms of partial functions in the respective application 
fields. 

What is presented here is the categorical counterpart of Moggi’s I,- 
calculus, although we do not present a formal equivalence proof (we refer 
to Pino, 1987). Thus as in previous work of Curien (1987, 1986) we adopt 
as much as possible the categories-as-syntax point of view. This paradigm, 
applied to the usual A-calculus and Cartesian closed categories, has already 
led to a new method of compiling and executing functional programs 
(Categorical abstract machine (Curien et al., 1987). 

The work should have applications in the area of type systems for 
programming languages (Obtulowicz (1982) investigated in his thesis 
categories of partial maps as models of intuitionistic logic). Also, due to 
their equational nature, the structures presented here might be a field of 
experimentation for automated categorical reasoning. 

In our axiomatic presentation we start from an ordered-enriched 
50 

0890-5401/89 $3.00 
Copyright 0 1989 by Academic Press. Inc. 
All rights of reproduction in any lam reserved. 



PARTIALITY, CARTESIAN CLOSEDNESSS, TOPOSES 51 

category structure, where the order models the “less defined than” 
intuition. We insist on the partial counterpart of the terminal object, which 
plays the role of a domain classifier. We investigate the connection between 
the well-known total structures (product, exponential) and their partial 
counterparts (partial product, partial exponential). However more than the 
Cartesian closed structure is needed to build partial exponentials out of a 
total structure. We show that important notions developed by other 
authors, such as liftings and complete objects, domains and ranges, can be 
developed inside our formalism. Much of the material in the paper was 
originally presented in Obtulowicz (1982) and circulated by the second 
author in various meetings as early as the year 1981. The only merit of the 
presentation here lies in important simplifications both in definitions and 
proofs, more work on equational presentations, and the quoted synthesis 
effort. The notion of partial topos, a category with partial products and 
partial exponentials where all partial monos have partial inverses, was not 
present in (Obtolowicz, 1982) (it appears, independently, in Carboni, 
1985). Many of our constructions are also (independently) pointed out in 
(Rosolini, 1986; Carboni, 1985). The resuit that partial toposes can be 
described equationally (8.7) is specific to our work. 

The plan is as follows: the first section introduces the loosest concept of 
partiality: a (pre)order structure on arrows of a category together with 
distinguished sets of maximal arrows. Section 2 introduces the partial 
Cartesian (pCC) structure, which allows the development of the notions of 
domains, restrictions, and ranges in Section 3. Partial exponentials are 
introduced in Section 4. Total structures and partial structures are related 
in Sections 5 (total from partial; a very simpie partial inversibility axiom 
suffices to recover a topos) and 6 (partial from total): the constructions are 
“inverse” enough to exploit properties of toposes to get more properties of 
partial toposes using known folklore of toposes, and reciprocally to gain 
more insight on toposes by proving that a Cartesian closed category (CCC) 
is a topos iff its associated partial category is partially Cartesian closed. 

Our main interest in partiality arises from the fact that partial toposes 
enjoy equational descriptions (like CCCs, but unlike toposes, for which 
extended notions of equationality over graphs are needed, as was shown in 
(Burroni, 1981), which are discussed in Section 8. The pCC structure 
enjoys a number of quite different equational presentations, and, in 
particular, partially Cartesian categories are closely related to Rosolini’s 
p-categories, Hoehnke’s &t-symmetric categories (Hoehnke, 1977; 
Schreckenberger, 1984), and Carboni’s (1985) bicategories of partial maps. 
Some of these comparisons are also carried out in a recent survey of 
Robinson and Rosolini (1986), so we refer to this paper for some (parts of) 
proofs. 
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1. PARTIAL MORPHISMS AND LIFTINGS 

We define categories of partial morphisms, and prove basic properties of 
those very loose structures. Roughly we show, slightly generalizing con- 
structions of Giuseppe Longo and Eugenio Moggi, how one can “add a 
bottom” to a domain as a trick to handle a partial function as a total one. 

Our notation for arrows is as follows: 

f:a+h, Id,:a+a, (f:a-+b); (g:b+c): a+c 

aab via ((r:a + b), (s:b + a)) when r; s = Id. 

DEFINITION 1.1. A category of partial morphisms, or PC, is a category @ 
endowed with the following structure: 

- @ has an order-enriched category structure, i.e., every homset a -+ b 
is equipped with a partial order <, called restriction; moreover, a dis- 
tinguished subset of maximal arrows, called total, is given; identity arrows 
are total; composition is monotonic and preserves total arrows. 

Of course in our examples we intend that the subset of total arrows be 
proper. Take the category PSET of sets and partial functions (it will enjoy 
all the properties discussed in the paper), then clearly Ix. l/x: [w + Iw is not 
total. 

Actually the results of this section hold in an even more general setting, 
replacing “partial order” by “preorder” (and keeping “maximal” w.r.t. the 
preorder, not the induced order, hence f maximal means f < g 3 f = g, 
not only g 6 f ). 

An important subcase of PC’S weakened in this way is provided by 
pointed categories, as introduced in Di Paola and Heller (1984). 

DEFINITION 1.2. A pointed category is a category @ having arrows 
0 . a -+ b for all objects a, b, s.t. for all f:a’ + a, g: b -+ b’, l&h. 

f;Oa.6=00’.6, O&b; g=Oa,Li. 

The same category PSET can also be viewed as a pointed category. Take 
as 0 the everywhere undefined functions. 

FACT. A pointed category has (essentially, see above) a pC structure, 
where zeros are minimum. 

Proof: Take as total arrows those f s.t. for all h, 

h;f=O*h=O. 
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Define f< g iff for all h s.t. h; f is total, 

h;f =h; g. 

d is clearly a preorder. Suppose that f is total and f < g. Then 
Id; f = Id; g, since Id; f is total. Suppose that f, g are total; then 

h;f;g=O*h;f=O*h=O. 

For the monotonicity we first notice that if f; g is total, then f is total. 
Indeed, 

h;f=O=>h;f;g=O*h=O. 

Suppose f < f ‘, g Q g’, and h; f; g total. Then h; f; g = h; f; g’, and, h; f 
being total, h; f = h; f'. Finally we show 0 d f for all f: Suppose that h; 
0 = 0 is total. Then Id; 0 = 0 implies Id = 0, whence we deduce, for any 
k:a + 6, k = k; Id = k; 0 = 0, so that we are necessarily in the degenerate 
case of one point homsets a + b for all a, b, where obviously h; 0 = h; f 
holds. 1 

Remark. The pC structure on PSET induced by its pointed category 
structure coincides with the one introduced above directly. But, as one of 
the referees kindly pointed out, this may not be the case for subcategories 
of PSET closed under the pointed category structure: take the category of 
topological spaces and open (i.e., mapping opens to opens) partial 
functions. Then total arrows are only maps defined on a dense subset, 
while the partial order is more than the restriction order (if f < g then g 
must be undefined at some points where f is also undefined, for instance, at 
points in 

Notdon. In a pC total arrows give rise to a subcategory C, of C, 
having all the objects of @ and s.t. the arrows in a -+T b are the total 
arrows in a + b. 

Of course not much can be said with so few axioms. Nevertheless they 
seem to have the adequate level of generality for basic properties relating 
partial and total arrows to be stated. The following notions (1.3, 1.4) of 
liftings and complete objects are adapted from Longo and Moggi (1984) 
and Asperti and Longo (1985). The notion of lifting will be central in 
relating partial structures to total ones (see in particular the proof of 5.5). 

DEFINITION 1.3. A pC has liftings when 

- for any object a there is an object af, called &ing of a, such that 
for each object b there is a bijection r‘b,o (written simply zh (or even t) when 
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the reference to a is clear) from b + a to b jTaT s.t. for all f: c -+ 6, 
g:b -+ a, one has 

.f; Th( 8) G ~c(f: g). 

Category theorists refer to that kind of weak naturality as lax naturality. 
More specifically in an order-enriched category, given two functors F, G, a 
lax natural transformation between F, G is a family of arrows 6,: Fa -+ Ga 
s.t. for any f: a + b, 

Thus the definition says that the family t; l is lax natural from Lb. b + T at 
to Ab.b+a. 

Remark. Notice that when f is total, then the equality holds in the 
definition. Thus lifting is right adjoint to the forgetful functor, i.e., inclusion 
g : CT + C. The functorialization of t is, as usual, for f: a -+ 6, 

ff = t.r,Jex,; f). 

Warning. Notice that the adjunction property is not a definition of 
lifting, since the adjunction deals only with the naturality arising as a 
special case of lax naturality (cf. definition). 

However, in at least two special cases the definition reduces to the 
adjunction property. This is true when the pC structure is induced by a 
pointed category structure (as in Longo and Moggi, 1984; Asperti and 
Longo, 1985). This is also true when coreflexives split. We defer this second 
case to Section 5 and deal now with the first. 

FACT. If @ is a pointed category, then lax naturality is a consequence of 
naturality ranging over total arrows f: c + b. 

Proof Take any f: c -+ b and suppose that h; f; rb( g) is total. Then h; f, 
h are total, hence 

(h; f-1; zd 8) = $h; f; g), k T&-i 8) = dk f; g). 1 

Here are some basic properties of a pC with liftings. 

FACT. Lifting is unique up to isomorphism. 

Proof: By lax naturality. 1 

Remark. All the other structures introduced in the paper can be easily 
checked to be also unique up to isomorphism. This will not be mentioned 
anymore. 



PARTIALITY, CARTESIAN CLOSEDNESSS, TOPOSES 55 

FACT. a a aT via (in,, ex,), where 

in, = r,(Id), ex, = (r,r)-‘(Id) 

(notice that in, is total) and where a is a retraction in Q= (if the context is 
mainly total, then a should be stressed into ap). 

Proof By naturality. 1 

Remark. Actually we have more than a retraction, we have an 
adjunction 

in, + ex, 

(i.e., in,; ex, = Id (9 in,; ex, 2 Id) and ex,; in, d Id), by lax naturality 
(not mere naturality!). 

What follows makes only sense in the framework of retractions. 

FACT. t;’ extends to b + ut. 

Proof. Set ti( g) = g; ex, for g :b + at; it is easily checked that the 
restriction of rb to total arrows is T;‘. 1 

We are now interested in a stronger condition. 

DEFINITION 1.4. If a a r af, then we say that a is complete (again if the 
context is mainly total one may write a instead of aT). 

Notice that the difference here is that we want the projection to be total. 
Indeed one may keep the same injection. 

FACT. Zf a a T at via (i, j), then also a a T uT via (in,, out,) for some 
out,, where in, is as above. 

Proo$ Take out, = z,t(ex; i; ex); j. 1 

The complete objects have the following characterization. 

PROPOSITION 1.5. Complete objects are exactly those objects a satisfying 

Vb,Vf:b+a, 3f: b-+ *a.f bf. 

Proof Take f = Tb(f ); out,. By definition 

f;in,=f;T,(Id)< Tdf;Id)=~~(f). 
Hence 

f=f;in,;out,dt,(f);out,=f. 

643/80/1-S 
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Reciprocally, take the pair (in,, ex,). Then 

in,; ex, 3 in,; ex, = Id. 

Hence in,; ex, = Id, Id being maximal. 1 

FACT. Lifings are complete objects: one has at a,aTt through 
(in,t, T,Tf(ex,t; ex,)). 

Proof: Remark ex,t = ex,T ; r,r(ex,) < rOTT(ex,t; ex,). 1 

FACT. Total retracts of complete objects are complete. 

Proof Use the above characterization: if b a T a through (i, i), for any 
f: c + b f ; i ; j is a total extension of f, since 

f=f;i;j<f;i;j. 1 

2. PARTIAL CARTESIAN STRUCTURE 

We introduce a partial counterpart of Cartesian structure and list a 
number of easy consequences of the definition. The basic ideas of this 
section as well as the following one can be illustrated in PSET: 

- the terminal object (.> of SET becomes a domain classifier: a 
partial function f: a -+ { .} is just a subset a’ of a. 

- There is a maximum, total! =1x. 1.1: a -+ (.I. 

- If f: a -+ b is a partial function, then f; ! is just the domain of 
definition of J: 

- when f: a + b, g: a + c are partial functions, the partial function 
(f, g): a -+ b x c is defined exactly when J g are; moreover (f, g); Fst 
(where Fst is the first projection, a total function) is not f in general, but 
the restriction of f to the domain of g. This provides an alternative 
approach to the description of the domain of definition of a partial 
function. 

- If f: a + b is a partial function, then (Id, f ); Fst is the restriction 
of the identity to the domain of definition off: 

DEFINITION 2.1. A pC is called partially Cartesian, or pCC, when it has 
the following additional structure: 

- a distinguished object t, called domain class$er, and for every 
object a an arrow !,: a + t s.t. 

(tl) !, is maximum in a + t for every a 
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(t2) the total arrows are exactly those arrows f: a -+ b s.t. f; !* = !, 

(t3) iff,f’,g:a+bares.t.f,f’<gandf;!,<f’;!,,thenf<f’ 
(t4) if h, h’: a + b are s.t. h < h’, then for any g: b--f t 

h; g = (h’; g) n (h; !)J; 

- for all objects a, b, a partial product given by an object .a x b, 
projection arrows Fst,,,: a x b + a, Snd,,: a x b + 6, and a pairing 
operation, associating (f; g): a + b x c with f: a --, b, g: b + c s.t. 

(~1) Fst,,br Snd,, are total 

(~2) pairing is monotonic in both arguments 

(p3) for any h: a -+ b x c, (h; Fst,.,., h; Snd,,,,) = h 

(p4) for all f: a +b, g:a+c, (Lg); F%,,GS, (f, g>; Snd,,<g 

(~5) naturality: for all f: a + b, g : a + c, h : d + c, h; (f, g ) = 

(kf, k g> 
(~6) forallf:a+b, g:a+c, (f,g);!bxc=(f;!b)n(g;!C). 

We have to check that the axiom (t2) is sound. Suppose f; !b = !,, and 
f<f’. Then f’: !b> !,, hence f’: !b= !,; f=f’ follows by (t3). This 
definition of total arrows has the desired stability properties: Id,; !0 = !,; 
suppose f: a + b, g: b + c are s.t. f; !b = !,, g; !c= !b; then f; g; !c= 
f; !b = !,* 

Remark. The division between axioms (t i) and (pi) is rather artificial. 
It will be clear from Sections 3 and 8 that (t2), (t3), (t4) can be rephrased 
in the (pi) style. In Section 8, a purely equational description will be given. 

Remark. Hidden in (tl) is the lax naturality of !, 

f;!<! 

which plays an important role in other axiomatizations of the same 
concept (especially by Aurelio Carboni (1985), see Section 8). 

Notation. A useful abbreviation is f x g = (Fst; f, Snd; g); this is 
justified because it turns x into a functor. 

Now we show some properties of a pCC. First, the definition of totality 
ensures 

FACT. If f; g is total, then f is total. 

Proof. One has g; ! < ! by (tl ); hence by monotonicity ! = f; g; ! 6 b; !, 
and f; ! = ! by maximality. 1 

The partial product structure provides a characterization of the restric- 
tion ordering: 
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FACT. f <g iff (J g);Snd=J 

Proof: Suppose (f, g); Snd =f; by (~4) f Q g. Suppose f < g; by (~4) 
(f, g); Snd < g, and by monotonicity f; ! < g; !. By (pl), (p6), 

(S, g); Snd; ! = (L g); ! = (f; !) n (g; !) =f; !. 

Hence (f, g); Snd = f by (t3). g 

Here are some identities: 

FACT. - !r=Id,, !rxo=Fst,%,, !OX,=Snd,, 

- (.Lf>;Snd=f, (f, g);Fst= (s,f>;Snd 
- (.Lg>=<g,f); (Snd,Fst). 

Proof When there is a maximum, any maximal is maximum; for the 
next identities, use (f, f ); Snd <f, (f, g); Fst, (g, f ); Snd <f; the final 
one is proved by (pS), the preceding ones, and (~3). 1 

As a consequence of the first identity in the last fact we get 

FACT. For each a, a --+ t is an in&semi-lattice. 

Proof By specializing (~6). 1 

Notice also 

FACT. - if f Q g, then (f, g); Fst = f 

-f~giff<.Lg)=(f,f). 
Proof: (f, g); Fst <f = (f, f ); Fst d (A g); Fst. For the second 

statement use (~3). 1 

The following is our first statement on comparing partial and total 
structures. There will be others (Sections 5 and 7). 

PROPOSITION 2.2. The pCC structure in @ yields a Cartesian structure 
in CT. 

Proof: For every object 6, !b is the unique total arrow in b + t, since 
any total arrow, being maximal, must be the maximum; if f, g are total, 
clearly 

CL g);Fst =A (f g);Snd=g by (~4), (~6), (t3). I 

In Section 5 we shall show some kind of inverse: how to recover a pCC 
out of a Cartesian category, and how far the constructions are “inverse.” 
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We end the section by quoting that partial products of two given objects 
(and the domain classifier object) are easily shown to be all isomorphic, so 
that the property of being a pCC is indeed a property of the order-enriched 
category. This can be done either by direct reasoning on the axioms, or by 
indirect arguments using the Cartesian category @; built out of C (see 
Section 5) as in (Carboni, 1985). 

3. DOMAINS, RESTRICTIONS, AND RANGES 

We discuss the categorical description of the notion of domain of a 
partial function, of range of a (partial) function, and partial notions of epi, 
mono and iso w.r.t. ranges and domains. We also discuss the notion of 
internal equality, which is somehow the partial counterpart of pullbacks 
(see Section 5). For each notion we derive elementary consequences of the 
definition which will be needed later. 

As already discussed at the beginning of Section 2, in a pCC there are 
two natural candidates for expressing the idea of the domain off: a + b: 

- f: ! 
- (Id,f);Fst(<Id). 

The two points of view happen to be isomorphic. For every cp: a + t, 
a:a+a<Id let 

cp” = <Id,, cp >; Fst, a0 = a;!. 

FACT. Icp. cp” and 1a.a’ are inverse order isomorphisms between a + t 
and {a:u+alabId}. 

This isomorphism connects exactly the two definitions of domains. 

DEFINITION 3.1. For h : a + b we write 

Dam’(h) = h; ! and Dam(h) = (Id, h ); Fst. 

FACT. Dam(h) = DomO(h 

This allows us to speak freely about domains, and we shall write safely 
Dom(h)<Dom(k) when it holds, or (see below) h 1 (Dom(k)n Dam(l)). 
We shall use whichever definition of domain will be convenient in each 
case. 

Together with each of these formalizations of domains there comes a 
notion of restriction. 

DEFINITION 3.2. For h: a + b, cp : a -+ t, a: a --+ a d Id, we write 

h r” cp = <h, cp >; Fst, h rDa=a;h. 
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To bring these definitions into agreement, we define more generally a 
notion of restriction w.r.t. an arrow g: a -+ c (i.e., we assume only that g 
has the same source as h); we write 

h r g= (h, g); Fst. 

FACT. - h IgQh 

- r is an extension of both r” and r”. 

Proof: The only nontrivial check is r”: since h 1” a, h r a < h we only 
need to check 

a; h; ! = h; ! n a; ! 

which is an instance of (t4), using a <Id. 1 

The following identities are easily checked: 

FACT. - h rcp=h rcp” 

- h rg=h rDomO(g)=h rDom(g). 

The order on arrows a < Id has a characterization in terms of com- 
position: 

FACT. If a, /I: a + a < Id, then 

a;/?=/l;a=anj?. 

As an immediate consequence a; a = a, (a 6 P * a; B = a) hold. 

proof By symmetry we need only show a; P = a n 0. Using a, P < Id we 
get a; /I < a, /I. We prove the full property first for a = p, i.e., a; a = a. We 
only need to check a; a; ! = a; !, which is done by (t3) (f < Id). Coming 
back to the general case, suppose h <a, B; then h = h; h < a; 8. 1 

The key properties of restrictions are, for all f, g, h of appropriate types: 

FACT. - k (f rcp)=(kf) r (k cp) 
- (f r g); h = (f; h) r g. 

ProoJ: The first is obvious by (~5); for the second we can replace g by 
Dam(g), r by r”. I 

As consequences of the second equality we get 

FACT. - f 1 g = f if g is total and, more technically, 

~ (f, g>; (Fst;cp,Snd;~);!=(f;cp)n(g;rl/). 
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Proof. For the first take h = ! and replace g by DomO( g); for the 
second we have 

=Mcp)n(g;I//), 

noticing Dom( (g; tj) r f) < Dom( g), 
follows. 1 

and using the property which 

Here are other useful properties: 

) n Dom(h FACT. - (f r g) 1 h =f r (Dom(g 

- <f lg,h)=<f,h) rg 

- (f lkg rh)=<f,g) rh 
- x is functorial. 

1) 

The reader will find more identities in Section 8. Now we define ranges. 

DEFINITION 3.3. Call range of f: a + b the minimum arrow @ : b + t, if 
any, s.t. f; $ =f; !. We shall write $ = Ran(f ). If all the arrows have ranges 
we say that C has ranges. 

Arrows do not necessarily have ranges. An example is the category of 
topological spaces and continuous partial functions defined on open sub- 
sets. Then a constant function has no range, in general, since singletons are 
not open, in general. Clearly when f has a range then 

FACT. ~ f; (g i’ Ran(f )I =f; g 
- h rRan(f)=k rRan(f)*f;h=f;k. 

A natural and desirable property of ranges is that c= also holds. 

DEFINITION 3.4. If f: a -+ b has a range and satisfies, for any g, h: b + c, 

f; h = f; k * h r Ran(f) = k r Ran(f ), 

we say that f is a partial epi. 

The definition of partial epi is slightly redundant: that Ran(f) is the 
minimum * s.t. f; * = f; ! is a consequence of 

Again if an arrow has a range it need not be a partial epi. An example is 
the category of partial orders and partial monotone functions f, i.e., s.t. if 
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XEA, x< y, then yeA and f(x)<f(~), where A is the domain of 
definition of J Take for instance f = Id: {x} + {x, y }, where x < y. Then 
Ran(f) = {x, v} and if f; h =f; k h, k can very well disagree on y. 

FACT. Let fl g be partial epis s.t. Ran(f) = Dom( g). Then f; g is a 
partial epi and Ran(f; g) = Ran(g). For any cp : a -+ t, Id 1 cp is a partial epi 
and Ran(Id r cp) = cp. 

Proof: We check f; g; Ran(g) =f; Ran(f) = Dam(f). If f; g; h = 
f; g; k, we use that f is a partial epi, and get (g; h) 1 Ran(f) = (g; k) r 
Ran(f ), i.e., g; h = g; k, since Ran(f) = Dom( g), whence h 1 Ran(g) = 
k r Ran(g). The last assertion is immediate. 1 

The reader will find more properties of ranges after Definition 5.1. 
A stronger property is that of having a partial inverse. 

DEFINITION 3.5. We say that f: a + b has partial inverse g: b -+ a 
(which we shall write f -' ) when 

f;g=Id rf and g;f=Id rs. 

In the next two facts we assume that f has partial inverse g. 

FACT. Ran(f) = g; ! and f is a partial epi. 

ProoJ: f;g;!=(Id rDom(f));!=Dom(f). Suppose f;$=f;!, f;h= 
f; k; then left composing by g yields ( g; ! ) r, II/ = g; !, h l’ Dom( g) = 
k PWs). I 

FACT. g is minimum s.t. f; g = Id 1 f: 

Proof If f; h = Id If, then 

This ensures the uniqueness of the partial inverse. 

DEFINITION 3.6. We say that @ has internal equality when (Id,, Id,) 
has a partial inverse = ~ for any a. We shall use the following abbreviation: 

f-g=(f,g);Ran((Id,Id))=(f,g);=;! 

forf, g:b+a. 

We list some properties of the internal equality: 
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FACT. - = a = Snd,, r Ran( (Id, Id)) = Fst,,, r Ran( (Id, Id)) 

- z < Fst, Snd 

- (Snd, Fst ); s = z (hint: (Snd, Fst)is its own inoerse) 

- j-eg<f;!,frg<g;! 

- j-Ef=f; ! 

- h; (f g) = (h; f) = (h; g). 1 

The following property characterizes the binary internal equality: 

FACT. p<f-gofpp=g rpandpGf;!,g;!. 

Proof. For a, notice 

fr(f-g)=gr(f~g)=(f,g);~. 

For t. one has 

(f=g)np=((.Lg) r~);~;!=(fr~,gr~o;~;!=(fr~);!. I 
In a category with internal equality all homsets have finite lower bounds: 

FACT. (f,g);= =fng. 

Proof If h <f, g, use h = (h, h); =. m 

The binary internal equality is symmetric and “transitive”: 

FACT. -f=g=g=f 
- (f=g)n(g=h)<fzh. 

Proof: For the first property notice (g, f); (Snd, Fst) = (f, g); for 
the second, set p=(f-g)n(g=h); then ,u<f=g implies p<f;!, 
f r p = g r p; we conclude from the similar statements about g, h and the 
above characterization. 1 

These properties justify the notation 

ff g= h= (f= g)n(g- h)= (a(f)=0(g))n(a(g)=4h)), 

where 0 is any permutation of (f, g, h}. 
Our last observation about internal equality is that it is co-lax natural 

(the inequality is reversed). 

FACT. ';f< (fxf); 55. 
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Proof: We have 

(fxf); 5 <(fxf);Fst<Fst;f 

thus it is enough to show =; f; ! < (f xf); = ; !. Using the above charac- 
terization, we are left to check 

(Fst;f) /‘(=;f)= =;f=(Snd;f) r(=;,f) 

(notice = ; f < Fst; f). 1 

Finally we introduce a notion similar for domains to that of partial epi 
for ranges. 

DEFINITION 3.7. We say that f: a -+ b is a partial mono when for any 
g,h:c+a, 

g; A ! = g; !, h;f;!=h;!, g;f=h;f =E- g=h. 

TO get some intuition on the definition, one may restrict to the case 
where g, h have ranges; then the property means 

Ran(g),Ran(h)<Dom(f), g;f=h;f Z- g=h. 

Remark. For total arrows, being partial mono reduces to being mono. 

The following definition will be justified in Section 5. 

DEFINITION 3.8. A partial topos is a pCCC (see 4.i), where all partial 
monos have partial inverses. 

Notice that the definition implies internal equality, since it is easily 
checked that (Id, Id) is a partial mono. Clearly we do not expect that all 
arrows are partial monos, while we shall see that if enough structure is 
given, all arrows are partial epis (see 7.3). 

The categorical notions of ranges and partial epis, monos were defined in 
Di Paola and Heller (1984) in pointed (dominical, see Section 8) 
categories; they also appear in Rosolini (1986), where they are called 
images, range maps, monos in the category of domains (see Section 5), 
respectively. 

4. PARTIAL CARTESIAN CLOSED STRUCTURE 

Now we define the partial counterpart of the exponential. 

DEFINITION 4.1. A pC is called partially Cartesian closed or pCCC if 

- there exists a binary operation =S (or a dP b to stress partiality) of 
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partial exponentiation on objects s.t. for all objects a, b, c there exist 
bijections IZ,,b,r from a x b + c onto a + T b * c which are lax natural, i.e., 
for allf:d+a, g:axb+c, 

f;4g)GA((Fst;f, Snd); g) 

(as for the lifting, the equality holds when f is maximal). 

FACT. As in the case of lifting, one may define an extension 1’ of II-’ s.t. 
g61(I’(g)) for allarrows g:c+a*b. 

Proof Take App,,, =A-‘(Id) and A’(g)= (Fst; g, Snd); App. 1 

Hence any arrow into a = b has a total extension, i.e., a => b is a 
complete object. Here are some properties of a pCCC: 

FACT. - (Fst;A(f),Snd); App=f 

- <l(f), g>; APP= (14 g);J 

Proof For the first notice that the 1.h.s. is P’(l(f)); for the second, 

(14 s>;f= (Id, g>; (WA(f), Snd);App 

= $34 s>; Fst; 4f 1, (14 g>; Snd); APP. 

Then notice (Id, g); Snd = g, and 

(Id,g);Fst;I(f)=Dom(g);;i(f)=~(f) PDom(g)=4f) l’g. I 

FACT. f;n(g)=f;J.(h)o(Fst;f,Snd);g=(Fst;f,Snd);h. 

Proof: e is clear from 

f; l(g)=4<F%.L Snd); g) r.6 

If f; J(g) =f; R(h), then also 

(Fst; f; A(g), Snd); App = (Fst; f; L(h), Snd); App 

and we use (Fst; f; A(g), Snd) = (Fst; L Snd); (Fst; n(g), Snd), by the 
functoriality of x . 1 

To get some intuition about the last equivalence, we can restrict our 
attention to domains, and we get easily as a consequence: for any p: a -+ t, 

The rest of the section investigates some properties of pCCCs, mostly 
inspired by Longo and Moggi (1984) and Asperti and Longo (1985), 
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where, again, apparently only a looser definition (adjunction) appears in 
the pointed category setting. Again, too, another case where the definition 
reduces to an adjunction is when coreflexives split (see next section). 

PROPOSITION 4.2. A pCCC has lftings. 

ProoJ: We take aT = t =+ a, and use that b + T t =~-a is equipotent to 
bx t +a which is equipotent to b +a. Indeed Fsth,,, (Idb, !b) are inverse 
isomorphisms between b x t and b (use (~5) and some of the properties 
proved above). Hence we set for g: b -+ a, r6( g) = L(Fst,,; g); we are only 
left to prove lax naturality: 

f; z*(g)= f; /Z(Fst; g)=L((Fst;f;Snd); Fst; g)=L(Fst;f; g)= tb(f; g) 

(we have used that Snd is total). 1 

PROPOSITION 4.3. Zf the (total) exponential a =z. T b exists in C, and b is 
complete, then a * T b is a total retract of a * b and is complete. 

Proof: The second part of the statement follows from the completeness 
of a * b, and a remark made above. The first part internalizes the 
characterization of complete objects. If b 4 T bT through (in, out), a total 
retraction is obtained through 

(use naturality of A,, of r@,b)xu,b restricted to total arrows, and finally 
that f ,< z(f ); out, hence f = r(f ); out when f is total). 1 

The following remark is due to E. Moggi, who corrected an error in an 
early draft: if C is a pCCC, then the full subcategory of Cr which has as 
objects finite products of partial exponentials is a CCC (hint: define 
a*.(b*c)=(axb)-c). 

5. FROM PARTIAL TO TOTAL 

In this section we show how to obtain total structures out of partial 
ones. The main point of the section is that the total counterpart of a pCCC 
is more than a CCC; it is a CCC with (some) pullbacks, endowed with a 
distinguished class of monos and a classifier for that class. This may be 
viewed as a weak notion of topos. Moreover, a simple condition on a 
pCCC (that partial monos have partial inverses) ensures that the class of 
monos in the associated total category is the class of all monos (turning the 
total category into a topos). 
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The main drawback of CT is that it has not enough objects to yield a 
total exponential for any objects a, b. The following construction enriches 
considerably the collection of “objects.” It is a variant of the classical slice 
category constructions. 

DEFINITION 5.1. Let @ be a pCC. C” is the category whose objects are 
arrows cp : a + t of 43, for any a, and whose arrows f: cp + h II/ are arrows 
f: a + b of @ s.t. 

-ff;!=f;II/<q (we have II/:b+t) (as shown). 

That we have a category, with the composition of C, is a routine 
verification. Notice that Id, = Id r cp. Another obvious observation is that 
for f: cp -+ A II/, wehave f rcp=f: 

There is a more symmetrical formulation of the same construction, based 
on the other notion of domain. Take as objects domains, i.e., arrows c1< Id, 
and as arrows f: a --f /?, arrows f of 43 s.t. 

This is the well-known idempotent splitting construction (named such after 
Freyd’s allegories (see forthcoming Freyd and Scedrov, (1988)), which is 
also refered to by others as the Karoubi envelope. Notice that here we do 
not split all idempotents, only the coreflexive ones, i.e., those less than or 
equal to the identity. 

FACT. The two categories are isomorphic. 

Proof. Observe 

- f;t+Q=f;!ef; Mf;ti+f r (f;t4=f~f;DOmW=f 

- f;!epf rq=f=-Dom(cp);f=f: 1 

We shall use whichever definition seems most convenient in each case. 
Our main line is to prove that partial notions on @ infer corresponding 

total notions on Cg, This goal splits into two rather natural subgoals, as 
we learned from Carboni (1985), who independently (and more elegantly) 
proved similar results. First prove that C” inherits the properties of C; 
second prove that if C enjoys the coreflexives splitting property, then Cr 
has the total structure corresponding to the partial structure of C. 
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THEOREM 5.2. rf @ is a pCC (has internal equality) (is a pCCC) (all 
partial monos have partial inverses), then C” inherits that property. 

Proof We do not give all the details. First the PC-structure on C” is 
given by f 6 g iff f < g as arrows of Cc. Total arrows are those f: cp + A $ 
s.t. f; ! = cp. The domain classifier is given by 

- Id: t + f, !‘p = cp. 

Partial products are defined by 

- ux”p=uxp 

- Fst^ =Fst rcrxp, Snd” =Snd rccxfl 

- <.ft g>  ̂ =(Jg>. 

The internal equality is 

-- a= Eu rUXU. 

Yielding the pCCC structure requires more imagination. The trick is the 
internalization of the transformation of any map into a map from, say u to 
/3. We set 

c1= fl = A( (Id x ~1); App; /I) = Id. 

Finally the partial monos of @” are exactly the partial monos of C: observe 
that for f: cp -+ tj 

f;!*=f;II/=f;!. 1 

Before proceeding to the second half of our goal, we need some 
preliminary observations and definitions. First we check that indeed 
coreflexives split in CA. Recall that an arrow f splits when there exist 
r, s s.t. 

- r; s =f, s; r = Id. 

FACT. Splittings of the same arrow are isomorphic. 

Proof Let r; s = r’; s’, s; r = Id = s’; r’. Then s; r’ and s’; r are inverse: 
indeed 

s; r’; s’; r = s; r; s; r. 1 

A pair of arrows r, s s.t. s; r = Id is called a splitting pair (of r; s). 

FACT. s is total and mono. 

Proqf. Notice Id r s 3 Id r s; r. 1 
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FACT. In C” all arrows f d Id split. 

Proof: It is easily seen that such arrows have the form Id I$ : cp + cp, 
where $<cp. Take r=Id rIl/:cp+$, s=Id rII/:r+Q+cp. 1 

Remark. One can prove more: the construction h is the free splitting 
construction w.r.t. the class of arrows to be split. But we shall not need 
that. 

Now we look at the case where C is a pC of all corellexives which split. 
This gives rise to an interesting class of monos. 

Notation. A(C) is the class of arrows s for which there exists r s.t. r, s is 
a splitting pair. 

FACT. Such an r is necessarily unique. 

Proof Notice r’ < r; s; r’ = r if r, r‘ are two of them. 1 

The main property of &Y(c) is the following. 

FACT. There exists a bijection between a + b and (equivalence classes) of 
arrows of the form (s, f) into ax b, where s is in A(C) and f is total. 

Proof Let f: a + b be given, let r, s be a splitting pair of Dom( f ). Then 
(s, s; f ) has the desired type, since s; f; ! = s; r; s; ! = s; ! = !. Conversely 
with (s, g) we associate r; g. We check that the transformations are 
inverse: for one way, 

r;s; f =Dom(f); f =f; 

while for the other, 

Dom(r; g) = Dam(r) and s; r; g = g. 1 

This fact suggests the anticipation of the inverse investigation “from total 
to partial” of Section 6. Given a Cartesian category C, the classical way of 
representing partial functions in C from, say a to b, is by equivalence 
classes of arrows (j, f) into a x b, where j is mono, w.r.t. the equivalence 

(j,f>~(m,s>O(j,f>=i;(m,g) for some is0 i. 

One requires classically that C have finite limits, in order to be able to 
compose partial arrows. All of this may be relativized to a fixed class of 
monos, closed under identities, composition, and pullbacks (thus @ is 
required to have pullbacks of all these distinguished monos); such a class is 
called a dominion by P. Rosolini. Given a dominion 4? on a Cartesian 
category, the category @P(.K1 is defined below. 
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Notation. If h; S = k; g is a pullback square, we write h =f - ‘(g), 
k=g-‘(f), and h;f=k; g=f.‘. g. 

DEFINITION 5.3. Let @ be a category with finite limits. We define the 
category C pc M ) to have the same objects as C, and as arrows from a to b 
the equivalence classes of arrows (j, f ) into a x b, where j is in A. Those 
classes [(j, f)] will be written simply (j, f ) when there is no risk of 
confusion. Identities and composition are given by 

- Id, = (Id,, Id,) : a -+p a 

- (.Lf>;P(m, s>=(f-‘(m);j,m-l(f);s>. 

r-r”- 

I I 

m  

/‘ i i’ 
That we have obtained a category is a routine verification. Notice that @ 

is embedded in C,(,) via the faithful functor r taking f into (Id, f). 
Those will often be identified in the sequel. Notice 

<j,f)iP g= (j,.fi s>, k.(j,f)= CL kfh 

where (j, f);p g stands for (j, f );p(Id, g). 

Notation. We shall write C _, ~ for (C ~ ) _ . 

FACT. @P(M) has a pC structure. UZp(d,.T is isomorphic to C. 

Proof. Define the order on arrows by 

(j,f>~(m,g)o(j,f)=h;(m,g) for some h. 

Take as total arrows those of the form (i, f) where i is iso. That total 
arrows are maximal is the consequence of the following easy fact on isos 
and monos: if i = n; m, i is iso and m is mono, then n is iso. Hence we may 
identify the total arrows of C, and the arrows in @. 

Compositions of total arrows are total because isos are stable under 
composition and pullbacks. Finally, monotonicity of composition is tedious 
but easy: we check it in the left argument. So suppose (j, f ) = h; (j’, f ') 
and set A =f’-l(m): 

(j, f>;p(m, g) = <h-‘(A); h; j’, A-‘(h); m-V’); g> 

= A-‘(h); (A; j’, rn-‘(f’); g). a 
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Now we are in a position to state the definition of our candidates to be a 
total counterpart of a pCCC. This notion has been suggested by one of the 
referees. 

DEFINITION 5.4. A CC C with a dominion JZ has a M-classifier iff the 
embedding functor I’: C + CP(-K) has a right adjoint (denoted -). 

Before we can state the main result of the section we need some 
simplifications arising from the splitting hypothesis. 

FACT. In a pCC, where all coreflexives split, partial monos have partial 
inverses ifs total monos have partial inverses. The definition of liftings and 
pCCC structure can be merely phrased in terms of adjunction. 

Proof. Let f be a partial mono, and r, s split Dam(f). We show that 
s;f is mono. Let g;s;f=h;s;f: Since (g;s);f;!=g;s;!(=g;!) we get 
g;s = h; s, whence g = h. Let f’ be the partial inverse of s; f: We show that 
g; s is the partial inverse off: For one way, observe that Id r g = Id 1 g; s; 
for the other, from s; f; g = Id we get r; s; f; g =f; g = r. 

We show how to recover lax naturality from the adjunction property in 
the case of the pCCC structure. Suppose that r, s split Dom(f ). Then 

r;s; 4(fx IdI; g)=r; 4((s;f) xId); g) by naturality, sincesistotal 

=r; kf); A(g) by naturality, since s; f is total 

=Dom(f);f;4g)=f;4g). I 

Now we can prove the theorem of the section. 

THEOREM 5.5. In the whole statement c is a pCC, where all coreflexives 
split. The following properties hold: 

(i) CT is Cartesian and A!(@) is a dominion on CT s.t. @r,p,.ru(c)I is 
isomorphic to C. 

(ii) If @ has internal equality, then @= has finite limits. 

(iii) If @ is a pCCC, then c7 has a A(@)-classzyier. 

(iv) If @ is a pCCC and has internal equality, then CT is also Cartesian 
closed. 

(v) If @ is a partial topos, then CT is a topos. 

ProojI We do not need the splitting hypothesis to get that CT is car- 
tesian (cf. Section 2). We show that &Y(C) is a dominion. Clearly Id, Id is a 
splitting pair. If r, s and r’, s’ split coreflexives and s’, s are composable, 

643/80/l-6 
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then r; r’, s’; s also split a coreflexive. Now if f: a + b is total and r’, s’ split 
CI’ 6 Id, then we show that 

- (s; f; r’); s’ =s; f 

is a pullback, where Y, s split Id 1 f; a’. We first prove the commutation. 
Since r is epi, it is enough to show a; f = cc; f; a’, i.e., f 1 f; a’ = f; Co r f; a’, 
which is done by checking that the two sides have the same domain. 
Suppose now that g;s’ = h; f: We show that h; r is mediating (uniqueness is 
obvious since s is mono): 

h; r; s = h; (Id 1 f; a’) = h r ( g; s’; cr’) = h 1 g; s’ = h, 

since g, s’ are total. For the other triangle it is enough to check 

h;r;(s;f;r’);s’=h;a;f;tX’=h;a;f=h;f=g;s’. 

The isomorphism has already been proved in a fact above. 
We come to the proof of (ii). Let h: a -+ 6, k: c -+ b, and set 

A = (Fst; h) = (Snd; k). 

A pullback diagram is obtained through A; Fst, A; Snd. 
As for (iii), set a- =t*a (=af, cf. 4.2). And, indeed, classifying M(C) 

reduces to the statement that @ has liftings, since modulo the isomorphism 
of categories G:C,--+@ becomes r:@T-+@T.PC~XC,,. 

\ For (iv) we define two arrows u* b -+a* b : one is meant as the 
identity, the other as the transformation from a partial arrow to a total 
one. We define a aT b as the source of 

(for notations we refer to Section 1 on liftings). 
For (v) we only need to check that starting from a partial topos the class 

d(C) is the class of all monos. This is precisely what the hypothesis that 
any mono in CT has a partial inverse says. 1 

6. FROM TOTAL TO PARTIAL 

As in Section 5, we show that C, has the expected partial properties 
corresponding to those of C. 

THEOREM 6.1. If @ is a Cartesian category with a dominion A, @P(uI/, is 
a pCC, where all corefexives split. If, moreover, @ is Cartesian closed and 
has a A-classifier, then @P(AAo is a pCCC. If @ has finite limits, then cP has 
internal equality. Zf @ is a topos, then cP is a partial topos. 
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Proof. Establishing the pCC structure is routine. Splitting follows from 
the observation that (m,f) < (Id, Id) iff m=f, and then (m, Id), 
(Id, m> split (m, m>. 

For the pCCC structure, take a *T b = a * b”, and remember that 
naturality is enough (cf. last section). For the internal equality take 

= =((Id,Id),Id):axa-r.a. 

Finally we check that partial monos in C, have partial inverses. First 
notice that (j, f) is a partial mono iff f is mono. Indeed it is easy to check 

Cm, g);p(j,f);p!=<m, g);.!-g-‘(j)=Id 

so that (j, f ) is a partial mono iff 

(g-r(j)=h-‘(j)=IdJ’(g);f=j-r(h); g+g=h) 

*(g=g’;j,h=h’;j, g’;f=h’;f*g=h) 

*(g’;f=h’;f*g’=h’). 

Now it is very easy to check that (j, f) has (f, j) as partial inverse. 1 

The theorem has an important consequence: indeed there exist partial 
toposes; build Cp out of your favorite topos C. Notice that partial con- 
tinuous functions do not yield a partial topos, but only a pCCC. Following 
Plotkin (1985) we build a category PCont taking as objects the partial 
orders, where all increasing sequences have lubs, and as arrows the partial 
continuous functions, i.e., the partial monotone (cf. Section 3) functions f 
with domain of definition A s.t. 

- if (x,) is an increasing sequence and U x, E A, then x, E A for some 
m andf(Ux,)=U{f(x,)ln~m}. 

FACT. PCont is a pCCC; it is also a pointed category whose induced pC 
structure is the same as the one induced by partial products. 

Total arrows are just ordinary continuous functions, defined everywhere. 
Notice that the partial order bf on arrows (i.e., in, say, D --* E) is distinct 
from the partial order Ge in the structure of D =S E: 

f <,- g iff g(x) is defined and g(x) =f(x) whenever f(x) is defined 

S<, g iff g(x) is defined and f(x) < g(x) whenever f(x) is defined. 

These orders are often called flat, extensional (or pointwise), respectively, 
whence the subscripts above. 

FACT. In PCont all coreflexives split, 
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We recall the following fact: 

FACT. The category Cont of cpo’s and continuous functions is not 
balanced (epi + mono # iso). 

Proof: The trouble is with monotonicity. Take D = {x, y}, two partial 
orders < r, 6 2 defined by 

a<,a,b<,b, a$,a,b62b,aQ2b. 

Then id : (D, Q r) -+ (0, < 2) is mono and epi, but not iso since its inverse is 
not even monotone. 1 

FACT. PCont is not a partial topos. 

Proof. By the two properties above, noticing PCont. = Cont. 1 

7. RELATING THE CONSTRUCTIONS 

In this section we first sum up the relationships between the construc- 
tions of Sections 5 and 6. This will help us to prove more properties of 
partial toposes (7.3, 7.5) and to give a characterization of toposes (7.4). 

The first proposition of this section relates the two constructions of total 
categories, the direct one and the indirect one. 

PROPOSITION 7.1. When @ is a pCC, there is a full and faithful functor 
from cr to @g, which preserves the product structure, and, if C is a pCCC, 
its restriction to the full subCCC of @= ( f: c remark after 4.3) preserves the 
Cartesian closed structure. 

Proof Define F(a) = !,, F(f) = f: Notice !, x T !b = Fst; !, n Snd; 
!b= !oxb. The last part of the statement amounts to a check that for 
any a, b, 

1(App; (Id, !);App):((t==-a)*(t*b))-+((t*a)*b) 

is iso in C,from !taa~r- !,ab onto !(,*oj=.b, which is tedious but easy. 1 

The following proposition sums up how far the p and T constructions are 
inverse. 

PROPOSITION 7.2. Zf @ is a CC with a dominion JY, @ and C,(,,,, are 
isomorphic. There exists a full and faithful structure-preserving functor from 
@ to a=;,.,,,,,, z @“, if@ is a pCC. This embedding becomes an equivalence 
when coreflexives split in @. 
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Hence there is a dissymetry: the equivalence does not hold, in general, in 
the T,P direction. This can be repaired by weakening the requirements on a 
dominion. Let us call weak dominion a class A of monos on a CC C s.t. 

- for any f:a+b, m:b’-+bEA f-‘(m) exists, and for any 
n:a+a’EA f-(m); nEA. 

Clearly a weak dominion is a dominion iff it contains all identities. Given a 
weak dominion on C, C:P(VK) is defined as in the case of a dominion, except 
that the objects are only those objects a of @ s.t. Id,EA. 

FACT. @p(Mj is a pCC, where A is a weak dominion. 

Notice that this does not extend well to CCCs: the candidate for being a 
partial exponential is not necessarily and object of CPcAj. Now we have to 
put a weak dominion structure on Cc for a pCC C. 

FACT. The class WA(C) of arrows of the form Id r (p:(p + !, satisfies 
the conditions listed above. 

FACT. @ = ~h&X(C))~ where @ is a pCC and A is as in the above fact. 

But even if we do not have, in general, an equivalence, the arrows of 
CA = G,P(“m)) are arrows of @ (with more information). In some cases, 
this will allow us to prove a property by first proving that it holds for all 
PC’S with a given structure whenever it holds for all @ds, where C ranges 
over all categories with the matching structure. The rest of the section 
investigates applications of this method. 

Remark. The correspondence in 7.2 can be lifted to an adjunction 

- A@.@; +A@.C, 

with the slight difficulty that we have to deal with (C,^),, which is not as 
simple as (but is equivalent to) CPsT (we refer to Obtulowicz, 1982, for 
details). 

In the next proposition we use a property of toposes (preservation of 
epis by pullbacks) to prove a property of partial toposes. 

PROPOSITION 7.3. In a partial topos @, all morphisms are partial epis. 

Prooj It is easy to see that f: a + b is a partial epi iff f: !, + !b is a par- 
tial epi in C”. So we are reduced to prove that for any topos C, CP has the 
property of the statement. Notice that the range of any (j, f ): a + p b, if 
any, is the minimum m s.t. f-‘(m) = Id, i.e., the minimum m s.t. f = g; m 
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for some g. A basic property of toposes is that Im(f) satisfies precisely this 
property (where f = f *; Im(f) is the epi-mono factorization off), so that 

- Ran((j, f>) = Wf). 
Now we show that (j, f) is a partial epi: 

= (j,f>;d4 h>-f-'(m)=f-'(n), m-'(f); g=n-'(f);h 

We want to prove 

i.e., 

- m.‘.Im(f)=n:.Im(f) 

- mP’(Im(f)); g= n-‘(Im(f)); h. 

We use the decomposition f =f*; Im(f). For the first we show that 
M= Im(f))‘(m) and N= Im(f)-‘(n) are equivalent. We use f*-‘(M) = 
f*-‘(N)=A d an that f* is epi. It is enough to prove that M-‘(N) (hence 
symmetrically N-‘(M)) is epi (hence iso since it is mono). We work on the 
cube made out off*, M, N, and write F= m-‘(f*): 

We have 

F-‘(M-i(N))=/‘(f*-‘(N))=A-‘(A)=Id, 

i.e., F= F’; M-‘(N) for some F’, so that M-‘(N) is epi. For the second 
equality we may now suppose 

AC-‘(f*) = N-‘(f*) = B. 
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We use m-‘(f)= B;m- ‘(Im(f)) and that B is epi: 

m-‘(f); g= n-‘(f); h am-‘(Im(f)); g = n-‘(Im(f)); h. 1 

The next result provides a characterization of toposes. 

THEOREM 7.4. A Cartesian closed category b= which has pullbacks is a 
topos iff C, is a pCCC. 

Proof: If C is a topos, then CP is a pCCC by Theorem 6.1. Reciprocally 
we suppose that C is a CCC and CP is a pCCC. Since C,, is isomorphic 
to 62, it is enough, by 5.5, to prove that CP is a partial topos, which is easy 
by noting that we just use that @ has finite limits in the proof that partial 
monos have partial inverses. 1 

The final result of the section uses that toposes have initial objects and 
coproducts. We shall need the following fact. 

FACT. In a category with binary products and an initial object 0 s.t. 
a x 0 z 0 for all objects a, then for any object b 

b-,O#@=>b=O. 

Proof: Let f: b + 0 and set f’ = (Id, f ); i,-,‘,: b + 0, where ib;10 is the 
inverse of the unique i,,,: 0 + b x 0. Then 

ib; f’=i,=Id, f’;ib=f’;ibxO;Fst=Id. [ 

PROPOSITION 7.5. Every partial topos has zeros making it into a pointed 
category. Those zeros are minimum. Moreover, for all pairs of arrows 
f,g:a+bs.t. (f;!)n(g;!)=O,f,ghavealubfug. 

Proof: Let @ be a partial topos. If we know that the statement holds for 
C”, then it holds for @, noticing that the preservation of products implies 
the preservaton of the order. So we are left to prove the statement for CP, 
where @ is a topos. We use that toposes have initial objects. Then using 
Cartesian closedness we notice that, if 0 is the initial object, for any objects 
a, 6, 

Oxa+bxO+(a*b)= (ioSb}; 

hence 0 x a is initial, i.e., 0 x a x 0. 
We take in CP Oa,b=iaxb= (i,, ib ). That i, is mono is an immediate 

consequence of the fact quoted before the proposition. Another con- 
sequence is that for any f: a + b, i,, Id, provide a pullback for f, ib, so that 
0 ‘,,b;P(j,f)=o? (j?f);POn,b = 0 for any (j, f) with suitable source, 
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target. For any (j,f):a+pb, (j,f) rO=((j,f),O)P;PFst, and we 
check easily ((j,f), O),= (i, i). Finally, suppose ((j:c+a,f);P!)n 
((m:d+a,g);.!)=O,i.e., j:. m = 0, i.e., O,, 0, form a pullback of j, m. 
This is known as the property of being disjoint. Then, by a simple 
application of the preservation of coproducts by pullbacks, we get that 
[j, m]: c + d --) a is mono (see Goldblatt, 1984, p. 119, for details). We take 

- (if> u Cm, g> = (Li ml, LX 81). 
Indeed (j,f) =in 1; ([j, m], [f,g]), where inl: c+c+d is the left 
injection of the coproduct, and, if (j, f) = p; (n, h), (m, g) = q; (n, h), 
then 

CL ml = Cp; n, 4; nl= CP, 41; n. I 

Warning. We have not proved that the pC structure induced by the 
zeros is the same as the pC structure determined by the products, and we 
may guess from the funny pC structures on pointed categories exhibited in 
Section 1 that they are different, in general. But the two preorders have the 
same minimums (namely the zeros), and total arrows, i.e., s.t. Id r f = Id, 
are total as defined with zeros, i.e., g; f= 0 * g = 0 (see Section 8). 

8. EQUATIONAL PRESENTATION OF PARTIAL TOPOSES 

The main result of the section is that partial toposes admit an equational 
characterization (Theorem 8.7). This is a rather simple observation up to 
the partial Cartesian closed structure, but one needs more imagination for 
partial toposes: we use apparently stronger equations than the partial 
inversibility axiom. Before coming to this main result (8.7), we spend some 
time on various systems of equations (as well as other nonequational 
descriptions) of the pCC structure. This variety shows that the pCC struc- 
ture is rich enough to enjoy quite different definitions, and stable enough to 
ensure that all the approaches developed independently to capture it indeed 
agree. The reader not interested in these meanders can skip directly to 8.7 
after 8.1. 

PROPOSITION 8.1. Let C be a category equipped with operafions on 
objects and arrows as in 2.1. @ is a pCC iff the following identities hold 
(greek letters denote arrows into t, f r g is an abbreviation for (f, g); Fst): 

(1) f rf=f 
(2) f rh rh)=f rv rd 
(3) f rh rw=(f rg) rh 
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(4) frwo=frwd 
(5) (fig) rh=(frw;g 
(6) (m rh=cfrk) 
(7) (f,g> rh=(f,gre 
(8) f; (slh)=<f;k!Yf;h) 
(9) (Fst, Snd ) = Id 

(10) (f,g>;Fst=(g,f);Snd 
(11) Id r ! = Id 

(12) ! rcp=cp. 

Proof: Checking the equations is an easy exercise, using the same tricks 
as in Sections 2 and 3. We check the other direction. 

We observe that the two equations about ! guarantee that the 
isomorphism LX between a + t and the set of arrows f: a + a s.t. f < Id 
holds. First notice 

- h r (f; g)=h r (f; (Id rd) 
-f rg=f rk9. 

Indeed 

h r(f;w rd)=h nf r(f;d)=h r((f;g) rf) 
=h r((f rf);d=h r(f;d 

f r hi !)=f r k (Id r w=f r g. 
Remember cr(cp) = Id r cp, d(f) = f; !, 

a(or’(f))=Id r(f;!)=Id rf=f 

~+Xcp)) = (Id r up); 1 = 1 r cp = cp. 

That a is monotonic will result from the proof of monotonicity of ‘6;7Y 

below. Also 

- Id /‘f=Idof;!=!. 

Indeed if Id r f = Id, 

!=(Id If);!=! rf=! r(f;!)=f;! 

and if f; ! = !, 

Id rf=Id r(f;!)=Id r!=Id. 
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We show that f < g given by g f f = f, total arrows f given by Id r f = Id 
yield a PC. < is reflexive, antisymmetric, transitive, using respectively (l), 
(2), (3); for the right monotonicity, use the following easy consequence 
of (8): 

- (k g) r (kf)=k (g rf1. 

For the left monotonicity, suppose f < g; then 

f;h=(g rf);h=(g;h) rf<g;h. 

The other axioms of a pC will follow from the proof of the axioms about t 
(cf. Section 2). (tl) is just (12). 

(t3) Assume g rf=f, g ff’=f’, (f’; !) r(f; !)=f; !. First we 
notice 

Then 

(j-r; !) r(f; !)=m 9 rf=(ff rf); !. 

f’rf=g ru-’ rf)=g v-=1: 
(pl) Consequence of (9); indeed, using Id f (Fst, Snd) = Id, 

Id rFst=Id rFst rSnd fFst=Id rFst rSnd=Id. 

(t4) We can use the “maximal implies maximum” argument to get 
from (pl) 

- Fst,,=Snd,,=!,,,. 

NOW assume h’ r h = h, (h’; !) r I,G = I,+ = (h’; cp) I+; we deduce, using (lo), 

(hi 44 r II/ = w d r h) r II/ = * r h = ti r (hi 9 = (k 9 r + = +. 
(~2) Use (4), (6), (7). 

(~4) Use (3), (1). 
(~6) By remarks above (~6) is equivalent to 

- Id r (f, g) = w r t-1 n (Id r d. 
Indeed Id f (f, g)=Id rf r g<Id rf by (~4); suppose Id rf rk=k= 
Idrgrk;thenremarkIdrfrgrk=k. 1 

We can make some variations on the set of axioms. The following set 
stresses on domains as endomorphisms (in the context of this section we 
abbreviate DomD(f) = Id f f into Dam(f)). 

PROPOSITION 8.2. The presentation (2)-(5) is equivalent to (2’)- (5’) 
below, where Dam(f) stun& for (Id, f ); Fst: 
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(2’) f r g=Dom(g);f 
(3’) Dom(f; g) = Dom(f; Dom( g)) 

(4’) Dom(f); Dom( g) = Dom( g); Dam(f) 

(5’) DON CL g> I= Dam(f); Dom( g). 

Proof First we prove (2’)-(5’): 

Dom(g);f=(Id r d;f=5f r g. 
(3’) is an instance of the first equality checked in the proof of 8.1. For (4’) 
we first notice 

- f rId=f by (2’) and (l), 

(Id rfw rd=,w rd rf=m rf) rg=ud rgw rf) 
Id r (f, g> =4,2,3 (Id r 8) rf =(I4 (Id r d) rf =5 w r d; w rf). 

Reciprocally we prove (2)-(5) from (2’b(5’). First we notice 

- Dom(Dom( g)) = Dom( g) as an instance of (3’) for f= Id 

- Dom(Dom(f); Dam(g)) = Dam(f); Dam(g) from (5’) and the 
previous equality 

f r (g r h) =2s Dom(Dom(h); g); f =3z Dom(Dom(h); Dom( g)); f 

=Dom(h);Dom(g);f=,,(f rd l'h 

=4,Dom(g);Dom(h);f=(f r W rg 

fr(g,h)=,,Dom((g,h));f= 5rDomW;Dom(h);f 

(fig) rh=Domw;f;g=(f rm. I 
Here is yet another presentation of the same theory (less what regards the 
domain classifier), due to P. Rosolini (1986), where the structures are 
called p-categories. 

PROPOSITION 8.3. The presentation (1 )-( 10) augmented by 

- d=(Id,Id) 

- fx g= (Fst;f, Snd; g) 

is equivalent to the following presentation where (1 ‘I), (2”) express 
functoriality, (3”)-(5”) express naturality of the diagonal and the projec- 
tions, (6”)-(12”) express some kind of coherence conditions between those 
functors, and (13”)-(14”) express the naturality of the commutativity, 
associativity: 
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(1”) IdxId=Id 

(2”) (f;g)x(h;k)=fxh;gxk 

(3”) A;fxf=f;A 

(4”) Fst;f=fx Id; Fst 

(5”) Snd; f = Id x f; Snd 

(6”) A; Fst = Id 

(7”) A; Snd = Id 

(8”) A;FstxSnd=Id 

(9”) Id x Fst; Fst = Fst 

(10”) Id x Snd; Fst = Fst 

(11”) FstxId;Snd=Snd 

(12”) SndxId;Snd=Snd 

(13”) /?;gxf=fxg;p, where/?=(Snd,Fst) 

(14”) a; (fxg)xh=fx(gxh);a, where a= ((Fst, Snd; Fst), Snd; 
Snd ) augmented by 

- <L g>=A;f xg 

(we have omitted types, i.e., objects, which are clear from the context, and we 
assume that x has highest precedence). 

Remarks. (1) The definition stresses that, in the partial case, only 
Fst: la.a x b + Aa.a, not Fst: I(a, b). ax b -+ n(a, b).a is natural. 

(2) It should be clear from what follows that a, fl are actually natural 
equivalences, and, although we do not have a formal proof of it, that a 
“semi-groupoidal” structure holds, i.e., coherence of commutativity and 
associativity follows from the other axioms. 

(3) (5”) (or (4”)) is redundant, i.e., the naturality of one projection 
follows from the naturality of the other projection, in the context of the 
other axioms. 

proof of 8.3. The proof is very tedious. We only give samples. Here is 
the proof of (1”) (we use (f r h, g>= (f, g rh)): 

(Fst; f, Snd; h ); (Fst; g, Snd; k > 

= ((Fst;f; g) r(Snd; h), (Snd;h;k) r(F.Q;f)) 

= (Fst; f; g, ((Snd; h; k) r (Snd; h)) r (Fst; f) > 

= (l%t; f; g, (Snd; h; k) r (Fst;f)) 

= (Fst; f; g, Snd; h; k). 
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Reciprocally (1 ), (8), (9), (2’) are easy. (10) is proved in the same way as 
the redundancy above. For (3’) we first prove 

- Id x f; Fst = Id x Dom( f ); Fst, 

Id x Dom( f ); Fst = Id x A; (Id x f ); Id x Fst; Fst 

= Id x A; Id x (Id x f ); Id x Snd; Fst 

= Id x A; Id x (Id x f; Snd); Fst 

= Id x A; Id x Snd; Id x f, Fst 

= Id x (A; Snd); Id x f; Fst = Id x f; Fst. 
Then 

Dom(f; g) = A; Id x f; Id x g; Fst = A; Id x f; Id x Dom( g); Fst 

= Dom(f; Dam(g)). 
We sketch (7): 

(fig) rh=A;AxId;(fxg)xh;Fst 

(f,g rh)=A;IdxA;fx(gxh);IdxFst. 

We get (7) if we prove 

- A;AxId=A;IdxA;a 

- a; Fst = Id x Fst. 

For the first, we use 

- A; Id x A; Snd; Snd = Id 

- A; Id x A; Snd; Fst = Id 

- Id x A; Fst = Fst (use (9”)), 

A; Id x A; CI = A; (A; Id x A) x (A; Id x A); 

(A; Fst x (Snd; Fst)) x (Snd; Snd) = A; y x Id, 

where y = A; Id x A; A; Fst x (Snd; Fst)). The same kind of surgery yields 

y=A;(IdxId)=A. 

For the second we use (2’), (3’), and 

- Dom(Snd) = Id (use (lo”)), 

a; Fst = (A; Fst x (Snd; Fst)) r (Snd; Snd) = A; Fst x (Snd; Fst) 

= A; Fst x Snd; Id x Fst = Id x Fst. 

(4’), (5’), and (6) are proved in a similar, more tedious way. 1 
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Proposition 8.1 suggests that p-categories are essentially pCCs less the 
domain classifier; this is stressed by the following proposition (proof left to 
the reader ). 

PROPOSITION 8.4. The p-categories, i.e., the categories equipped with an 
operation x on objects and operations ( ), Fst, Snd on arrows (of arity 
2,0,0) and satisfying (l)-( 10) (or the equivalent presentations of 8.2, 8.3) 
are exactly those pC categories satisfying (pl)-(~5) (cj 2.1) (5’), (3’), as 
well as the following, where Dom( f) = (Id, f ); Fst: 

(~7) the total arrows are exactly those arrows f: a + b s.t. 
Dam(f) = Id 

(~8) zf f, f ‘, g: a + b are s.t. f, f’ < g and Dam(f) < Dom(f ‘), then 
fGf' 

(The reader should compare (5’) with (~6) and (3’), (p7)-(~9) with 
(tl )-(t4).) I 

The last proposition allows us to use more natural arguments than solely 
explicit equational reasoning for proving properties of p-categories. As an 
example we show a last variation on (1 )-( 12), which has been suggested by 
Robinson and Rosolini (1986). Of course equational completeness guaran- 
tees that we could have produced a complete equational proof (Exercise: 
do it for the next proposition!). 

PROPOSITION 8.5. In 8.1 (12) can be replaced by (12’) or (13’) below 

(12’) Fst; (Id, ! ) = Id 

(13’) Fst;!=Snd, 

where the typing is left to the reader. The pCCs are exactly the p-categories 
@ such that @r has a terminal object. 

Proof. We first prove (13’), which implies (12’) by (8), (9). We know 
that Fst is total, i.e., Fst; ! = !, and, remember from Section 2, Snd = ! by 
the “maximum-maximal” argument. We show (12’) * (13’) * (12), by 
nonequational arguments. From (Fst, Fst; ! ) = Id we get (Fst, Fst; ! ); 
Snd = Snd, and using that Fst is total we reduce the 1.h.s. to Fst; !. For (12) 
we compose by (Id, cp ): 

cp = (Id, cp ); Snd = (Id, cp ); Fst; ! < Id; ! = ! . 

Now we prove the second assertion. We already know one direction from 
Section 2 and the propositions above. Suppose that t, !, define a terminal 



PARTIALITY, CARTESIAN CLOSEDNESSS, TOPOSES 85 

object in Cr. Then (11) holds since !, is total, being an arrow of Cr; (13’) 
holds because both sides are total, thus equal to !. i 

Remark. One more formulation is, putting together (11) and (12’): the 
pCCs are exactly the p-categories with an object 1 and arrows !,: a + 1 s.t. 
(Id,, !,) and Fst,, are inverse isos between a and a x 1, for every object a. 

We describe now yet another way of looking at the same concept of par- 
tial Cartesian structure, starting from a symmetric monoidal structure. 
Indeed the pioneering work in the field of categorical partiality was done 
by H.-J. Hoehnke (1977), in this setting. We also integrate in the next 
exposition results of J. Schreckenberger (1984). Finally, still another recent 
approach to categorical partiality has been proposed by A. Carboni (1985). 
All these definitions agree with ours and Rosolini’s, as we show below. 

Let us first recall that a symmetric monoidal category can be described 
equationally as a category @ equipped with a functor x : @ -+ C, a 
distinguished object 1, and natural equivalences 

Ass: @(a, 6, c).a x (b x c)) -, (l(a, b, c). (a x b) x c) 

Com:l(a,b).axb+A(a,b).bxa 

IdL: (la. 1 x a) + (&a) 

satisfying 

Ass; Ass = (Id x Ass); Ass; (Ass x Id) 

IdL = Ass; (IdL x Id) 

Com(a, b); Com(b, a) = Id 

Ass; Corn; Ass = (Id x Corn); Ass; (Corn x Id). 

We do not write the equations which state the functoriality of x, the 
naturality and inversibility of Ass, Corn, IdL. Together with the four 
coherence axioms above they yield an equational presentation of symmetric 
monoidal categories. As is well known the main interest of the above 
presentation is that these properties are enough to ensure coherence. 

COHERENCE THEOREM. Given two linear objects S, T (i.e., S, T are terms 
built with 1, x , and variables, and a variable may appear at most once in the 
term), all terms between S, T are equal in the theory of symmetric monoidal 
categories. 

Proof MacLane (1971). 1 

Remark. Notice that the restriction to linear objects is not explicit in 
MacLane (1971), which takes a more abstract view, not of arrows in the 
category C, but of arrows in @” + @ (natural transformations): in this view 
there is no risk of confusing Corn: ax a + a x a and Id: ax a + a x a, since 
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they are instances of natural transformations which do not have the same 
functors as targets. 

Remark. In the presentation above the right identity IdR: a x 1 + a is 
not primitive; it is defined as IdR = Corn; IdL. 

The partial Cartesian structure on a symmetric monoidal category is 
imposed by axioms involving arrows A, : a -+ a x a, !, : a + 1. 

PROPOSITION 8.6. Let C be a symmetric monoidal category equipped with 
a natural transformation A: la.a + Aa.a x a and an arrow !,: a + 1 for each 
object a. The following are equivalent: 

I (Hoehnke). The set of properties 

(i) for any closed term f; ! = ! 

(ii) A; (! x Id); IdL = Id 

(iii) A;((Idx!)x(!xId));(IdRxIdL)=Id. 

II (Schreckenberger). The equational properties (ii), (iii), and 

(iv) (!, x !b); IdR = !oxb. 

III. Any object has a unique structure of commutative comonoid, which 
is given by A , !, where the comonoid structure is described by (ii) and 

(coass) A;(IdxA);Ass=A;AxId 
(cocom) A; Corn = A. 

Moreover, any of these definitions is equivalent to the assertion that @ is 
a pCC. Here are the codings: 

Snd = (! x Id); IdL 

Fst = (Id x !); IdR ( = Corn; Snd) 

CL g>=A;(fxg). 

Conversely, for a pCC 

Ass = (( Fst, Snd; Fst ), Snd; Snd) 

Corn = Snd x Fst 

(Ass - ’ left to the reader) 

IdL=Snd,IdL-‘=(!,Id) 

A = (Id, Id). 

Remarks. By definition of IdR and naturality of Corn we get from (ii) 

(ii’) A; (Id x !); IdR = Id. 

Notice also that III is not an equational presentation. 
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Before proving the proposition we state some consequences and variants 
of definitions I, II. 

FACT. - (f;g=Id)+f:!=! 

- for any closed term f into 1, S= !, 

(v) !1 = Id,. 

Proof: Clearly the second assertion follows from the last and (i). The 
lirst and last properties are derivable from (ii) and the naturality of A. Here 
is the first: 

f; ! = d; (Id x !); IdR; f; ! = A; ((f; !) x !); IdR = A; (j- x Id); (! x !); IdL 

=f; A; (Id x g); (! x !); IdL =f; A; (! x Id); (Id x (g; !)); IdL 

=f;A;(!xId);IdL;g;!=f;g;!=!. 

For the last we go through the steps: 

- (s, Id); Fst =f: 

We get 

A; (j-x Id); (Id x !); IdR = A; (Id x !); (f x Id); IdR = A; (Id x !); IdR;f=f: 

From IdL( 1) = IdR( 1 ), which holds by coherence, and (iii) we deduce 

- (Id, !)= (!, Id). 

Then we establish 

- !;!=!. 

Indeed we compute 

! = A; (Id x !); IdR; ! = A; (Id x !); (! x Id); IdR = !; A; IdR 

Id=A;(Idx!);IdR=A;(!xId);IdR=A;IdR;! 

and 

Now we can prove 

!=!;A,IdR;!=!;!. 

!=(!,Id);Fst=(Id,!);Fst=A;(Idx!);(Idx!);IdR 

=A;(Idx!);IdR=Id. 1 

Remark. As quoted by Schreckenberger the original definition of 
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Hoehnke was more redundant than I: it contained the two first properties 
of the above fact. 

FACT. In the presence of (ii) and the naturality of A, (iv) is equivalent to 

-- (iv’) (!, x !h); !, x I = !oxb. 

Proof. Notice that since IdR is iso one has by the last fact, 

IdR(l);!,=!,,, 

which again by the last fact reduces to IdR( 1) = ! I x,. u 

Remark. Indeed Schreckenberger proposed (iv’) rather than (iv). 

Proof of 8.6. Setting IV for the property of being a pCC, according to 
one of the characterizations given before the statement, the plan of the 
proof is: 

IV * I =%- II = IV * III * II. 

IV =E= I. If @ is a pCC, let Ass, Corn, IdL, and their inverses be defined 
as above. We know from a remark above that IdL, IdL -i are indeed 
inverses, and from (14”) that Ass is natural. We check the naturality of 
IdL: 

(Id x f ); IdL = (Fst, Snd; f ); Snd = Snd; 1: 

The inversibility of Ass as well as the coherence equations are easily 
checked, using systematically (f, g); Fst = f when g is total. The 
naturality of A is (3”). Iff;g=Id, then !=f;g;!$f;!, thus f;!=!. For 
(i) we have to check that total arrows compose (which is part of the 
definition of a PC), and that if J g are total, so is f x g: observe 

(Fst;f,Snd;g);!=(Fst;f;!)n(Snd;g;!). 

(ii), (iii) are just (7”), (S”), noticing 

(! x Id); IdL = (Fst; ! , Snd); Snd = Snd. 

I 3 II. Obvious: (iv) is an instance of a property quoted in a fact above. 
II 3 IV. Proving (l”)-( 12”) is almost routine; we show (4”), (9”) only: 

(4”) (Id x !); IdR; f = (Id x !); (f x Id); IdR = (fx Id); Fst 

(9”) (Id x Fst); Fst = (Id x A); IdR, where 

A=(Idx!);IdR;!=(!x!);IdR=!, 

using IdR = IdL by coherence. 
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(11) is (ii), using IdL( 1) = Snd by (v), and (12’) follows since IdL is iso. 
We are left with (13”) and (14”); it is enough to show 

Corn = (Snd, Fst ) 

Ass = (( Fst, Snd; Fst ), Snd; Snd). 

It is enough to prove, following Hoehnke, II =z- III’, where III’ is III 
without uniqueness. Indeed, 

Corn = A; (Fst x Snd); Corn = A; Corn; (Snd x Fst) 

= (Snd, Fst) 

(( Fst, Snd; Fst ), Snd; Snd > 

= b; (Ax Id); ((Fst x (Snd; Fst)) x (Snd; Snd)) 

= A; (Id x A); (Fst x ((Snd; Fst) x (Snd; Snd))); Ass 

= A; (Fst x (A; (Snd x Snd); (Fst x Snd)); Ass = Ass. 

So we are left with III’: cocom is proved by first observing 

Fst = (Id x !); Corn; IdL = Corn; (! x Id); IdL = Corn; Snd. 

We get 

A; Corn = A; Corn; A; (Fst x Snd) = A; ((A; Corn; Fst) x (A; Corn; Snd), 

where A; Corn; Fst = A; Snd = Id. 
coass requires an explicit use of coherence. From (ii), (iii) we can reduce 

the proof off= g to f; Fst = g; Fst and f; Snd = g; Snd. Indeed, 

f=f;A;(FstxSnd)=A;((f;Fst)x(f;Snd)). 

Call A=A; (AxId), B=A;(IdxA);Ass: 

A; Fst = A; (A x Id); (Id x !); IdR = A; (Id x !); (A x Id); IdR 

= A; (Id x !); IdR; A = A. 

For computing B; Fst we use the coherence Ass; IdR = Id x IdR: 

B;Fst=A;(IdxA);Ass;(Idx!);IdR=A;(IdxA);(Idx(Idx!));Ass;IdR 

= A; (Id x A); (Id x (Id x !)); (Id x IdR) = A. 

For computing A; Snd we use ! I = Id,, whence A; IdL = Id: 

A; Snd = A; ((A; !) x Id); IdL 

and A;!=A;(!x!);IdL=!;A;IdL=!. 
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For computing B; Snd we use the coherence Ass; (IdL x Id) = IdL: 

B; Snd = A; (Id x A); Ass; (! x Id); IdL 

= A; (Id x A); Ass; ((! x !) x Id); (IdL x Id); IdL 

= A; (Id x A); (! x (! x Id)); Ass; (IdL x Id); IdL 

=A;(IdxA);(!x(!xId));IdL;IdL 

= A; (Id x A); (! x (! x Id)); (Id x IdL); IdL 

= A; (! x Id); (Id x A); (Id x (! x Id)); (Id x IdL); IdL 

=A;(!xId);IdL=Id. 

IV 2 III. From IV * I we already know that the category is symmetric 
monoidal. IV +- III’ is established much in the same way, using again 
systematically (f, g); Fst = f when g is total. For the uniqueness, we 
observe that if A:, !b satisfy 

A’; (Id x !‘); IdR = Id 

A’ = A’; (Snd x Fst ). 

We get, setting A = A’; Fst = A’; Snd 

Id = (A, A ); (Id x !‘); Fst = (A, A; !’ ); Fst < A. 

Thus A = Id, and the equality is now (Id, !‘); Fst = Id, i.e., !’ is total, 
whence !‘= !. 

III *II see Robinson and Rosolini (1986). Only (iii) and (iv) have to 
be proved, which is done by using coherence and uniqueness. 1 

Remarks. Definition I is Hoehnke’s definition of pre-dht-symmetric 
categories (dht-symmetric categories have, moreover, a zero object 0 
satisfying a x 0 = 0 (not only a x 0 x 0) for all a); definition II is Schrecken- 
berger’s equational characterization of pre-dht-symmetric categories, and 
definition III is an adaptation of Carboni’s notion of a bicategory of partial 
maps, where we forget about the additional locally ordered bicategory 
structure, which among others allows Carboni to axiomatize orders which 
may be different from the canonical pC structure on a pCC (cf. the 
discussion on “flat” and “extensional” in Section 6). 

The main drawback of this bunch of definitions is that they have an 
inherent redundancy: the canonical natural equivalences are both primitive 
and defined in terms of Fst, Snd, i.e., A, !. The redundancy is visible from 
the proof of 8.6, where only part of the axioms of coherence are used to 
prove II *IV. Thus the equational presentation of Schreckenberger is 
surely not minimal. 
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Among the three definitions, III looks the most elegant and the least 
arbitrary. It suggests looking at the ways of extracting a pCC from a 
symmetric monoidal category @. It should be true that, taking as objects 
structures (a, A, !), where a is an object of @ and (A, !) is a commutative 
comonoid structure on it, as arrows between (a, d , !) and (a’, A’, !‘) those 
f: a +c CI’ s.t. f; A’ = A; (f x f) in @, we should get a pCC, where binary 
products are defined as in the proof of III *II above. 

Summarizing, here are all the equivalent definitions of a pCC that we 
have exhibited: 

EQUATIONAL DEFINITIONS. - (l)-(12) and the variants obtained by 
replacing (2)-(5) by (2’)-(5’), or (12) by (12’) or (13’), or (l)-(10) by 
(l”)-(14”) 

- Schreckenberger’s equations of a pre-dht-symmetric category. 

- p-category with an object 1 and arrows into it s.t. the obvious 
arrows between ax 1 and a for any a are inverse isos 

NONEQUATIONAL DEFINITIONS. - p-category @ with a terminal object 
in CT 

- Hoehnke’s original definition of a pre-dht-symmetric category 

- symmetric monoidal category s.t. every object carries a unique 
commutative comonoid structure, and s.t. the multiplications are natural, 

To end this discussion of partial products, we point out that the 
dominical categories of Di Paola and Heller (1984) are the pointed 
p-categories where the two induced pC structures coincide, and where, 
moreover, for all appropriate f; g, 0, 

(f;g)=O*f=Oorg=O. 

Now we axiomatize partial toposes equationally. 

THEOREM 8.7. Let @ be a pCC. If, moreover, @ is equipped with the 
operations on objects and urrows of 4.1, then UZ is a pCCC iff 

(13) A(f); ! = ! 

(14) (Fst;4f),Snd);App=f 
(15) J((Fst;f; Snd); App) rf=f: 

A pCC has internal equality iff it is equipped with arrows = : a x a --* a, jtir 
all objects a, s.t. 

(16) (Id, Id);- =Id 

(17) E-; (Id, Id)=Id r =. 
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A pCCC with internal equality is a partial topos if it has arrows 
aa: (a =S t) -3 a, for all objects a, and satisfies 

(18) 1(=;!);a=Id 

(19) f-;f=Id r(f-.) for all f:a+b, where fP=A(Fstz 
(Snd; f)); aa. 

Proof Only the last statement requires a proof. Suppose that the iden- 
tities hold. We show that all partial monos have partial inverses. First we 
prove 

- (Fst; h) z (Snd; h) = z; h; ! , when h is a partial mono. 

2 does not require the hypothesis on h. We just have to notice 

(Fst; h) z (Snd; h) = ((Fst; h) n (Snd; h)); !. 

Now we use that h is a partial mono, i.e., mono in CG, so that the follow- 
ing diagrams are pullback diagrams in Cp , setting A = (Fst; h) 2 (Snd; h): 

h; ! Id rh +h; ! A sd r A , h; ! 

h;!---i;--’ ! h;! h ! 

Let k: A + h; ! be the iso identifying the two diagrams, i.e., 

k; ! = k; h; ! = A, k=Fst rA=Snd rA, 

noticing k; (Id r h) = k r k; h = k r k = k. We are left to show 

- A < E ; !, Fst; h; !, 

since by (t4) (z;!)n(Fst;h;!)= -;h;!. 
For the first use Fst r A = Snd r A and notice = ; ! = Fst E Snd; for the 

second, A = k; h; ! < Fst; h; ! . 
Now we prove that h has a partial inverse. (19) is half of the statement; 

by easy calculations we get 

h; I(Fst = (Snd; h)) = J(A) r h = ,I(( E; !) r (Fst; h; !)) r h = A( =; !) r h. 

Hence h;h-=(,I(=;!) fh);a=Id rh. 
Now we show that if @ is a partial topos, then arrows a, can be defined 

s.t. (18), (19) hold. By Section 7, it is enough to work in CP, where @ is a 
topos. We know that 3 = ((Id, Id}, Id), hence 

- ~p(~;!)=(Id,K),whereK=l(p(((Id,Id),!))), 

where p is the natural bijection of 5.4. 
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We only have to check that K is mono, because then we shall set 

- o=(K,Id) 

and (18) will hold as an instance of partial inversibility. We have, setting 
K’= ((Id, Id), !), 

g;K=h; K=>(gxId);p(K’)=(hxId);p(K’) 

~((Id,g),!)=(Id,h),!)~g=h, 

using (gxId)-‘((Id,Id))= (Id, g). 
Now we prove (19). By easy calculations we get 

- Fst = (Snd;,<j, f>) = CL j), !>, 

so that, setting L = A(p( ((1; j), !))), 

- (j,f)- = (Id, L);,(K, Id) = (L-‘(K), K-‘(L)). 

We investigate the pullback of K, L. We have, setting L’ = ((f; j), !), 

g;K=h; L.=> <Id, g> = (h-‘(f),f-‘(WL 

using (h x Id)-‘( (f; j)) = (h-‘(f), S-‘(h); j); so 

- g=f-‘(h);j, h=f-‘(h);f: 

In particular, for g= K-‘(L), h= L-‘(K), setting B=f-‘(L-‘(K)), 

- Kp’(L)=B;j, L-‘(K)= B;f. 

Hence (j, f )- = (B;f, B;j), so that 

(j,f>-;p<j,f)=(B;f;B;f)=Id r(B;f)=Id l'(j,f-. I 

As a final remark we would like to mention the work of E. Moggi 
(1985) which throws some light on the deductive power of the equational 
systems of this section. Moggi establishes precise links between call by 
value and partiality. It is clear that (I)-( 15) of 8.1, 8.5 can be viewed as a 
weak theory of CCCs (they are consequences of the equations describing 
CCCs (see, for example, Curien, 1986). Now this weakening is, in a sense 
made precise by Moggi (1985), the counterpart of the weakening of 
b-equality which forbids stating 

(;lx.M)N= M[x 4- N] 

unless N is a value, where a value is any variable, any abstraction, or any 
application N1N2, where N,, N, are values and N, is not an abstraction. 
Moggi shows that, using the well-known interpretation of I-calculus into 
categories, we only use the weaker equations of pCCCs to validate the call 
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by value equality. Moreover, he also gets completeness of the interpretation 
by appropriately internalizing the equality in the translation, as we briefly 
suggest now. First the statement above, which we restrict to the case 
M = X, is, formally 

E(N) + (ix.x)N= N, 

where E( _ ) is D. Scott’s (1979) existence predicate. 
We refer to Curien (1986) for definition of the categorical translation of 

a l-expression. Here, if [NJ = B, we get [(nx.x)NJ = (IZ(Snd), B); App. 
We need an intepretation of E( _ ) and ~ = ~. We set, following Moggi 

(19851, 

- lrJw)I = cm; ! 
- [M=Aq=[h!q~[N-J 

and we translate a statement P,, . . . . P, + P into 

Upll r WY! n - n ITP,ll)= Ml n ... n IIPJ. 

We check the validity on our example. We use the second equality stated 
after 4.2, called Beta in Curien (1986) because it allows us to start 
simulating a P-reduction. We get 

(A(Snd), B); App = (Id, B); Snd = B (Id is total!), 

whence 

[(lx.x)N= w = Br B= B;! (cf. after 3.6) 

and the translation (B 3 B) r B; ! = (B; ! ) r (B; ! ) is proved. As a hint for 
believing in completeness, we stress that the translation of 

I-- (Ix.x)N= N 

cannot be proved. Indeed we should have 

(BEB) I!=!, i.e., B;!=B 

which does not hold, in general. 
This suggests further investigation of the equational presentations of this 

section as a combinatory version of call-by-value evaluation. Due to their 
operational significance, it would be worthwhile to get decision procedures 
for them. 
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