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We show that any randomized algorithm that runs in space S and
time T and uses poly(S) random bits can be simulated using only O(S)
random bits in space S and time T+poly(S). A deterministic simulation
in space S follows. Of independent interest is our main technical tool:
a procedure which extracts randomness from a defective random
source using a small additional number of truly random bits. ] 1996
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1. INTRODUCTION

The relative power of deterministic and randomized algo-
rithms is a basic question in complexity theory. Despite
much effort very little is known. In this paper we consider
this question when the complexity measured is space. Is
randomized-space(S) stronger than deterministic-space(S)?

While several nontrivial deterministic simulations of ran-
domized-space are known [2, 15, 16], this question is still
completely open. No simulation of randomized-space(S) is
known which uses less than O(S 2) deterministic space, a
simulation which can be achieved by Savitch's theorem
[17].

Indeed, from Savitch's proof it follows that a language
accepted by a randomized-space(S) machine using R random
bits is also accepted by a deterministic-space(S log(R�S))
machine. There is only one result that improves this
bound for some R. Namely, Ajtai, Komlos, and Szemeredi

showed that any randomized-space(S) algorithm using only
O(S2�log S) random bits can be simulated deterministically
in space(S) [1]. In this paper we improve upon this result
and give a deterministic simulation of algorithms using
poly(S) random bits.

What we obtain is a pseudo-random generator. Our
generator converts O(S) truly random bits to poly(S) bits
that look random to all space(S) machines. The generator
can be computed in space S and time polynomial in S. It is
thus possible to reduce the number of random bits used by
any space(S) algorithm from poly(S) to O(S) without a
large penalty in time or space. Our main theorem can be
stated as the following.

Theorem 1. Any randomized algorithm A that runs in
space S and time T and uses poly(S) random bits can be
simulated using only O(S) random bits in space S and time
T+poly(S). The distribution of the output of the simula-
tion is within statistical distance of exp(&S1&#) from the
distribution of the output of A. Here S=S(n)�log n,
T=T(n)�n, and #>0 is an arbitrary constant.

If one only cares about space then O(S) random bits can
clearly be simulated deterministically by running through
all possibilities for the random bits.

Corollary 1. Any language accepted by a randomized
Space(S ) algorithm that uses only poly(S) random bits can
be accepted deterministically in Space(S).

For polynomial-time algorithms it is probably more
natural to state our main result as the following.

Corollary 2. Any randomized polynomial time algo-
rithm running in space S can be simulated in polynomial time
using only O(S+n:) random bits with statistical error
exp(&n:$), for any constants :>:$>0.

Several classes of randomized algorithms run naturally in
linear space and thus can be simulated using only a linear
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number of random bits. Examples include walks on ``rapidly
mixing Markov chains'' (as in [12]) and random genera-
tion using the ``rejection method.'' A particularly interesting
example is uniform generation of prime numbers which,
using this corollary, can be approximated (within small
statistical distance) using a linear number of random bits
(see [15] for more details).

We remark that the results of [15] imply that random-
ized space S polynomial-time algorithms may be simulated
using O(S log n) random bits, so Corollary 2 is only inter-
esting when S=n0(1).

Our main technical tool is a construction of the following
kind of function which we call an extractor. To motivate
this, suppose we have a set A/[0, 1]n with |A|�2$n and
suppose we have a random element from A. Thus, we have
$n bits of randomness, but in an unusable form. Our aim is
to extract from this distribution a nearly uniform distribu-
tion. To do this we will use a small additional number of
truly random bits.

Definition 1. A distribution D on [0, 1]n is called a
$-source if for all x # [0, 1]n, D(x)�2&$n.

Definition 2. Let E: [0, 1]n_[0, 1]t � [0, 1]m. E is
called a ($, =)-extractor if for every $-source D, the distribu-
tion of E(x, y) b y induced by choosing x from D and y
uniformly in [0, 1]t is within statistical distance of = from
the uniform distribution (on [0, 1]m_[0, 1]t.)

The Leftover Hash Lemma of [10]1 gives an extractor
with t>n. Our main construction is an extractor with tRn.

Lemma 1. For any parameters $=$(n) and ===(n) with
1�n�$� 1

2 and 2&$n�=�1�n, there exists an easily com-
putable (and explicitly given) ($, =)-extractor E: [0, 1]n_
[0, 1]t � [0, 1]m, where t=O(log =&1 log2 n log $&1�$) and
m=0($2n�log $&1).

Note that the upper bounds on $ and = are given only to
make our expressions simpler. In fact, for smaller $ and =, it
is more difficult to construct the extractor, so t is larger and
m is smaller. For our application we use $ equal to a con-
stant and ==1�poly(n). We therefore advise the reader to
ignore the dependence on $ in the first reading.

We also show a lower bound on the quality of any
extactor: t=0(log =&1+log n) for constant $>1. Thus,
ignoring the dependence on $, the size of t is within an
O(log2 n) factor of optimal. We can shave off another factor
of log n by using expander graphs. This improvement is not
needed for our application so we do not use it here.

In fact, one virtue of our construction is that it is elemen-
tary: the only tools we use are the ``Leftover Hash Lemma''
and k-wise independence. Our use of these tools is based on
the methods of [21]. Indeed, the extractor can be viewed as

a simplification and extension of the algorithms in [21],
although in one sense the extractor is weaker (see below).

One may think of extractors in various ways and con-
texts. We briefly sketch some of these below.

Hashing lemmas. One may view the y's as names of hash
functions hy : [0, 1]n � [0, 1]m, by hy(x)=E(x, y). In this
context we obtain very small families of hash functions
which still have good properties; specifically, they satisfy a
lemma similar to the Leftover Hash Lemma [10].

Expansion. An extractor E defines in a natural way a
bipartite graph on [0, 1]n_[0, 1]m, where x # [0, 1]n is
connected to z # [0, 1]m if there exists y # [0, 1]t such that
E(x, y)=z. As in the constructions of [20, 21], this graph
has good expansion properties, which are better than what
can be obtained using eigenvalue methods. These ideas are
further used in [19].

Weak Random Sources and Deterministic Amplification.
Given an extractor and the first parameter x to it, an algo-
rithm may go over all the possible values of y. It is not
difficult to see that this can be used to simulate BPP using
a $-source [20, 21], or to do ``deterministic amplification''
[11, 8]. For the value of t we obtain, however, the running
time of this simulation will not be polynomial but only
quasi-polynomial. On the other hand, our simulation
satisfies a stronger requirement: it truly approximates the
acceptance probability of a BPP machine. The result of [3]
is similar in this regard, but does not yield an extractor.

2. DEFINITIONS AND NOTATION

Throughout this paper, we use the convention that capi-
tal letters denote random variables, sets, distributions, and
probability spaces; other variables will be in small letters.
Exceptions are R and R$, denoting numbers of random bits,
and S, our space-bound. We often use a correspondence
where the small letter denotes an instantiation of the capital
letter; e.g., x might be a particular input and X the random
variable being uniformly distributed over all inputs.

For ease of reading we also ignore round-off errors,
assuming when needed that a number is an integer. It is not
hard to see that these assumptions do not affect the validity
of our arguments.

All logarithms are meant to the base 2.

Distance between Distributions. Let D1 and D2 be two
distributions on the same space X. The variation distance
between them is

&D1&D2 &=max
Y�X

|D1(Y )&D2(Y)|

= 1
2 :

x # X

|D1(x)&D2(x)|.
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A distribution D on X is called =-quasi-random (on X) if the
distance between D and the uniform distribution on X is at
most =.

A convenient fact to remember is that distance between
distributions cannot be created out of nowhere. In par-
ticular if f : X � Y is any function and D1 , D2 are distribu-
tions on X then & f (D1)& f (D2)&�&D1&D2 &. Here f (D)
denotes the distribution of f (X), where X has distribution D.
Also if E1 and E2 are distributions on Y then &D1_E1&
D2_E2 &�&D1&D2 &+&E1&E2 &.

$-sources. A distribution D on [0, 1]n is called a
$-source if for all x # [0, 1]n, D(x)�2&$n. D is called a
$-source to within = if there exists a $-source D$ such that
&D&D$&�=. A distribution D on the space [0, 1]l1_
[0, 1]l2_ } } } _[0, 1]lk is called a block-wise $-source if, for
1�i�k and for all values x1 # [0, 1]l1, ..., xi # [0, 1]li, we
have that

Pr[Xi=xi | X1=x1 , ..., Xi&1=xi&1]�2&$l,

where the vector of random variables X1 } } } Xk is chosen
according to distribution D. A block-wise $-source is the
same as the PRB source of [6], except that here the block
length is allowed to vary.

3. FOOLING RANDOMIZED SPACE-BOUNDED
MACHINES

Our goal in this section is to use an extractor to construct
a pseudo-random generator for space bounded computa-
tion.

Definition 3. A generator G : [0, 1]n � [0, 1]m is
called a pseudo-random generator for space S with
parameter = if, for every randomized space S algorithm A
and every input to it,

|Pr[A( y) accepts]&Pr[A(G(x)) accepts]|�=,

where x, y are chosen uniformly at random from [0, 1]n,
[0, 1]m, respectively.

In this definition it is implied that A accesses y or G(x) as
though they were the results of random coin tosses, while
also having regular access to its ``real'' input. We count the
space as the total information needed to store the state of
the machine, i.e., the space is the logarithm (base 2) of the
total number of configurations of the machine. For any
space bound S(n)�log n, this changes the definition of
space by at most a constant factor.

Our generators will run on-line in space(S), in the
following sense.

Definition 4. A generator G : [0, 1]n � [0, 1]m is said
to run on-line in space S if its input and output tapes are
one-way and it runs in space S.

In Section 3.1 we will show how a pseudorandom
generator that stretches R bits to RS# bits for #<1 can be
built using an extractor. Then in Section 3.2 we will show
how to compose such generators and stretch the number of
random bits by a factor of Sc for any constant c.

3.1. Expanding R Bits to RS # Bits

Let 0<#<1 be given. We will construct an on-line
pseudorandom generator that stretches R bits to R$=
0(RS #) bits (for all R�(c+1)S for some constant c
described below). Fix the following parameters:

1. t=S 1&#.

2. n is chosen such that the output of the extractor
described in Lemma 1 with input sizes n and t and
parameter $= 1

2 is of length exactly S. Thus n=cS for
some constant c. Note that we may also assume c�4, since
we can always make c larger by ignoring some of the bits
output by the extractor.

3. R$=(R&n)S#, and l=R$�S. Thus R$=0(RS#).

4. ==l(=$+2&S), where =$ is the quality of output of
the extractor with input sizes n and t and parameter $= 1

2.
Thus ==2&0(S1&#�log2 S).

Description of G.

1. INPUT: x # [0, 1]n, y1 , ..., yl # [0, 1]t.

2. OUTPUT (a string in [0, 1]R$): E(x, y1), ...,
E(x, yl).

Lemma 2. G is a pseudo-random generator for space S
with parameter = running on-line in space O(S).

Proof. The fact that G runs on-line in space O(S) follows
immediately from the fact that E can be computed in
space O(n). To prove that G is a pseudorandom generator
we will show that it fools any space(S) machine M. As in
[1], we model M as a layered multi-graph L with a layer for
each 0�i�l, where each layer has 2S vertices. This will
represent M reading S random bits at a time; the i th layer
of L represents the configuration of M after reading i sets of
S bits. More formally, L consists of vertices (i, j ), and the
edge ( (i, j ), (i+1, k)) appears with the label r iff the S-bit
random string r causes M to go from configuration j to
configuration k (so an edge can appear with many labels).

Denote by Ui the distribution on layer i induced by M
running on a truly random y. Thus Ui [ j] is the probability
that M will be in state j after reading iS random bits. Denote
by Di the distribution on layer i induced by M running on
the output of the generator. The lemma now follows from
the following lemma.

Lemma 3. For all 0�i�l, &Ui&Di&�i(2&S+=$).

45RANDOMNESS IS LINEAR IN SPACE
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Proof. Let X, Y1 , ..., Yl denote random variables
corresponding to the inputs x, y1 , ..., yl being chosen inde-
pendently and uniformly at random.

We prove this lemma by induction on i. It is true for i=0,
since both D0 and U0 are simply concentrated at the initial
configuration of the machine. Suppose it is true for i&1.
Define U j

i and D j
i to be the distributions on level i condi-

tioned upon the (i&1)th vertex being j (where U j
i is for M

running on a truly random input and D j
i for M running on

the output of G). We thus have Ui=�j Ui&1[ j] U j
i and

Di=�j Di&1[ j] D j
i .

Let B be the set of j for which Di&1[ j]�2&2S. For a
fixed j # B consider the distribution of X conditioned upon
reaching vertex (i&1, j ) (and induced by the random
choices of X and of Y1 } } } Yi&1). Since the conditioning can
only increase the probability of each value of X by a factor
of at most 22S, we get that this distribution is a $-source, for
$=(c&2)�c� 1

2. In this case the fact that E is an extractor
implies that the distribution of E(X, Yi) conditioned upon
reaching vertex (i&1, j ) is quasi-random to within =$.
Since the next vertex (on level i) is determined by E(X, Yi),
we get that this vertex (conditioned on visiting (i&1, j )) is
distributed the same (to within =$) in the random and
pseudorandom cases. In other words, &U j

i &D j
i &�=$.

Since there are at most 2S possible values for j we can
bound �j � B Di&1[ j]�2S2&2S=2&S. We can now bound
from above &Ui&Di&. Denote �k |:k | by &:&1 (thus
&Ui&Di &=&Ui&Di&1�2). Then,

&Ui&Di&1=":
j

Ui&1[ j] U j
i &:

j

Di&1[ j] D j
i "1

�":
j

Ui&1[ j] U j
i &Di&1[ j] U j

i "1

+":
j

Di&1[ j] U j
i &Di&1[ j] D j

i "1

�\:
j

|Ui&1[ j]&Di&1[ j] |+ &U j
i &1

+\ :
j # B

|Di&1[ j]|+ &U j
i &D j

i&1

+\ :
j � B

|Di&1[ j]|+ &U j
i &D j

i &1

�&Ui&1&Di&1&1 } 1+1 } 2=$+2&S } 2.

The lemma follows. K

This also concludes the proof of Lemma 2. K

3.2. Composing On-Line Generators

As is the case for poly-time secure pseudorandom gener-
ators, on-line generators can be composed.

Lemma 4. Let G1 : [0, 1]R2 � [0, 1]R1 be a generator
for space S1 with parameter =1 running on-line in space S2 .
Let G2 : [0, 1]R3 � [0, 1]R2 be a generator for space S1+S2

with parameter =2 running on-line is space S3 . Then
G1 b G2 : [0, 1]R3 � [0, 1]R1 is a pseudorandom generator for
space S1 with parameter =1+=2 running on-line in space
S2+S3 .

Proof. The proof follows from the fact that for any space
S1 algorithm A, A(G1( } )) can be implemented on-line in
space S1+S2 . (Recall that, by definition, A treats G1( } ) as
the outcome of random coin flips and thus accesses it
on-line.) K

Our main theorem, from which Theorem 1 is immediate,
now follows easily.

Theorem 2. For any constant &>0 and all polynomials
p, there is (an explicitly given) pseudo-random generator
G: [0, 1]O(S) � [0, 1]p(S) for space S with parameter 2&S1&&

running in time poly(S) and space O(S).

Proof. Let p(n)=nc, and choose some #<&. We first
build a generator G1 for space S1=S that stretches the
number of bits by a factor of S # and runs on-line in space S2 ,
as in Section 3.1. We then build a generator G2 for space
S1+S2 stretching by a further S# factor. This is repeated
(c&1)�# times and all of the above generators are composed
together. This gives a generator that stretches the random
bits by a factor of nc&1. Taking R=O(S) concludes the
proof. K

4. A LOWER BOUND

In this section, we give a lower bound on the quality of
any extractor. This means giving a lower bound on t and an
upper bound on m.

Theorem 3. Suppose E: [0, 1]n_[0, 1]t � [0, 1]m is
a ($, =)&extractor, where $�1&1�n and =< 1

2. Then
t�max(log =&1&1, log((1&$)n)) and m<$n+2=.

Proof. First suppose =<2&(t+1). Pick any S�[0, 1]m

with |S|=2m&(t+1). The point is that for each x, the
probability that E(x, y) # S is an integral multiple of 2&t

and, hence, will differ from 2&(t+1) by at least 2&(t+1)>=.
Thus let A be the set of x # [0, 1]n such that for some
y, E(x, y) # S. Then either A or its complement has size at
least 2$n and, therefore , violates the definition of extractor.

To see that t>log((1&$)n), denote by V(x) the 2t-bit
long vector obtained by concatenating the first bit of E(x, y)
for all values of y # [0, 1]t; also for v # [0, 1]2t

; denote
Av=[x|V(x)=v]. It is clear that for any fixed v, if x is
uniformly chosen from Av then the first bit of E(x, y) is
completely determined by y, and thus E(x, y) b y is not
quasi-random. This implies that |Av |<2$n. As the Av 's are a
partition of [0, 1]n we have 22t

2$n�2n so t>log ((1&$) ).

46 NISAN AND ZUCKERMAN
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To see the upper bound on m, we note that if D is quasi-
random to within = on [0, 1]r, then for some z, D(z)<2&s,
where s=r&2=. Otherwise D would place positive prob-
ability on at most 2s strings, so the variation distance from
D to uniform would be 1&2s&r=1&2&2=>=.

Applying this to the (m+t)-bit output E(x, y) b y, we see
that some string must be output with probability at most
22=&m&t. On the other hand, any such string must also have
probability at least 2&$n&t. Thus 22=&m&t�2&$n&t. K

5. EXTRACTING RANDOMNESS

In this section we describe the extractor. There are two
main parts: ``converting'' a $-source into a distribution close
to a block-wise $-source, and using hashing techniques to
extract bits from a block-wise $-source. Because this second
part is easier, we present it first in Subsection 5.2, just after
presenting our tools in Subsection 5.1. The first part is
described in Subsections 5.3 and 5.4, where everything is put
together.

5.1. Tools

5.1.1. k-wise Independent Distributions

We will need to choose, sufficiently randomly but using
few random bits, l elements out of n given elements. The
property we wish to have from the random choice is that,
with high probability, it intersects every given subset of size
$n in at least $l�2 places. The simplest way to do this is using
k-wise independent distributions (see, e.g., [7, 13, 4, 14]). In
order to ensure that no duplicate elements are chosen, we do
the following.

Choosing l out of n Elements. We divide the n elements
into l disjoint sets A1 , ..., Al of size m=n�l ; i.e.,

Ai=[(i&1) m+1, (i&1) m+2, ..., im].

We then use k log n random bits to choose X1 , ..., Xl k-wise
independently, where the range of Xi is Ai , and set S=
[X1 , ..., Xl]. The property we will require is the following.

Lemma 5. Let T � [1, 2, ..., n], |T |�n � $. Suppose
k�$l�6. If S is chosen at random as described above, then

Pr[|S & T |�$l�2]�1&=&wk�2x.

We use the following lemma, which is a special case of
Theorem 2.5 from [18].

Lemma 6. Let Y1 , ..., Yl be k-wise independent 0�1 ran-
dom variables, Y=�l

i=1 Yi , and +=EY. Let :=- ke1�3�+,
and suppose :�1. Then

Pr[|Y&+|>:+]�e&wk�2x.

Proof of Lemma 5. Define the random variables Yi to be
1 iff Xi # T, and 0 otherwise. Let $i=EYi=|T & Ai |�m.
Then for Y=�l

i=1 Yi , EY=�l
i=1 $i�$l. Setting := 1

2 (so
:2e&1�3� 1

6) in Lemma 6 concludes the proof. K

In the above lemma we used t=O(k log n) random bits
to generate the k-wise independent random variables
Y1 , Y2 , ..., Yn . By using more sophisticated techniques
based on random walks on constant degree expanders, we
can reduce the number of random bits to O(k+log n) for
constant $. (``Almost k-wise independent'' spaces do not
appear to give this.) This is done below, but we do not use
it further in this paper.

Lemma 7. Suppose ck�$2l. Then we can use
O(k�$+log n) random bits to pick l random variables
X1 , ..., Xl in H[1, 2, ..., n] such that

Pr[�$2l�16 of the Xi 's lie in T]�1&2&k.

Proof. We combine 10-wise independence and random
walks on expanders in a manner similar to [3]. We divide
[1, 2, ..., n] into m disjoint sets A1 , ..., Am of size p=n�m,
where m=14k�$. Within each set Ai , we use 10 log p bits to
pick a set Si of size l $=l�m using 10-wise independence, as
in Lemma 5 (in fact, pairwise independence would suffice,
but we wish to quote Lemma 5).

Let Ti=T & Ai , and $i=|Ti |�p. We say that dimension i
is important if $i�$�2. There must be at least $m�2�7k
important dimensions. Now set the constant c in the state-
ment of the lemma large enough so that $l $�120. By
Lemma 5, if i is important then Pr[|Si & Ti |�$l $�4]�0.99.
Call such a set Si good.

We now use an explicitly constructible constant-degree
expander graph G on p10 nodes, with second largest eigen-
value in absolute value at most 1

10. For example, we can use
a power of the one in [9] with sufficiently many self-loops
to eliminate the negative eigenvalues. We then take a ran-
dom walk for m steps from a uniformly random start vertex.
The vertex visited at the i th step defines a set Si �Ai as
above. We set S=�m

i=1 Si .
To analyze this, we need the following modification of a

lemma from [11] (see also [8]).

Lemma 8. Suppose that for 1�i�7k, Wi �[1, 2, ..., N],
|Wi |�0.99N, and Gi is a regular expander multigraph on N
nodes with corresponding transition matrix having second
largest eigenvalue in absolute value at most 1

10 . Perform a
random walk from a random initial start vertex, and then use
graphs G1 , ..., G7k to take the next 7k steps and visit vertices
v1 , ..., v7k . Then

Pr[>7k�2 of vi # Wi]�1&2&k.

Now consider only the first 7k important dimensions. Let
Gi denote G ri (G to the power ri , corresponding to a walk

47RANDOMNESS IS LINEAR IN SPACE
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on G for ri steps), where ri is the number of dimensions
between the (i&1)th important dimension and the i th.
Then Lemma 8 applies, and

Pr[>$m�4 of Si are good]�1&2&k.

Note that if there are $m�4 good Si , then |S & T |�$ 2l�16,
and the proof is complete.

We remark that we can improve the dependence on $ in
two ways: first, by using the generator of [15] for the bits
of the random walk; second, by redefining i as important if
$i # Ij=(2&(1+j ), 2&j], where j is chosen so that the sum of
the $i in this interval is maximum. K

5.1.2. Universal Hashing

We will use universal hash functions [5]. Formally, let H
be a set of functions h: [0, 1]n � [0, 1]m.

Definition 5. (Carter�Wegman). H is called a univer-
sal family of hash functions if for any x1{x2 # [0, 1]n and
y1 , y2 # [0, 1]m we have that

Prh # H[h(x1)=y1 and h(x2)=y2]=2&2m.

We will require the Leftover Hash Lemma of [10].

Lemma 9. (Leftover Hash Lemma [10]). Let X/
[0, 1]n, |X | �2r. Let k>0, and H be a universal family of
hash functions mapping n bits to r&2k. Then the distribution
(h, h(x)) is quasi-random within 1�2k (on the set H_
[0, 1]r&2k), where h is chosen uniformly at random from H,
and x uniformly from X.

The following is a corollary of the proof of the Leftover
Hash Lemma.

Corollary 3. Let D be a distribution on [0, 1]n such
that for all x # [0, 1]n, D(x)�2&r. Let k>0, and let H be a
universal family of hash functions mapping n bits to r&2k
bits. Then the distribution (h, h(x)) is quasi-random within
1�2k (on the set H_[0, 1]r&2k), where h is chosen uniformly
at random from H, and x according to D.

5.2. Hashing to Get Quasi-Randomness

In this subsection we present a function which extracts a
quasi-random string from a block-wise $-source.

Function C. The function has three parameters: $, the
quality of the source; l1 , ls , the largest and smallest block
sizes.

1. INPUT: x1 # [0, 1]l1 } } } xs # [0, 1]ls ; y # [0, 1]2ls.
Here li&1 �li=(1+$�4) for 1<i�s.

2. We assume for each i a fixed universal family of
hash functions Hi=[h: [0, 1]li � [0, 1]$li �2]. Each func-
tion in Hi is described by 2li bits.

3. hs � y
4. For i=s downto 1 do hi&1 � hi b hi (xi)

5. OUTPUT (a vector in [0, 1]m): h0 , excluding the
bits of hs .

Lemma 10. Let D be a block-wise $-source on
[0, 1]l1+ } } } +ls. If X=X1 } } } Xls is chosen according to D and
Y is chosen uniformly at random in [0, 1]2ls, then the distribu-
tion of C(X, Y) b Y is quasi-random to within 2 } 2&$ls �4.

Proof. We will prove by induction from i=s down to
i=0 the following claim, which clearly implies the lemma.

Claim. For any sequence of values x1 } } } xi , the distribu-
tion of hi conditioned on X1=x1 , ..., Xi=xi , is quasi-
random to within =i , where =i=�s

j=i+1 2&$lj �4.

This claim is clearly true for i=s. Now suppose it is true
for i+1. Fix the conditioning X1=x1 , ..., Xi=xi , and let
Di+1 denote the induced distribution on Xi+1. Since, by the
induction hypothesis, for every xi+1 , the induced distribu-
tion on hi+1 is quasi-random, we have that the distribution
((Xi+1 , hi+1)) is within =i+1 of the distribution Di+1_
Ui+1 , where Ui+1 is the uniform distribution on Hi+1.

Thus, the distribution of hi is within =i+1 of the distribu-
tion obtained by picking xi+1 according to Di+1 , and hi+1

independently and uniformly at random in Hi+1. Using
Corollary 3 this second distribution is quasi-random to
within 2&$li+1 �4. K

The algorithm is more subtle than at first appears. In
particular, it is important that the above algorithm proceeds
``backwards,'' i.e., that the block-wise $-source outputs the
biggest blocks first, but we start hashing with the smallest
blocks first. Otherwise, say the distribution of Xs&1 could be
an arbitrary $-source depending on xs . Then since hs&1 also
depends on xs&1 , hs&1 and xs&1 would not be close to
independent, and we could not apply Corollary 3.

5.3. Extracting a Block

Now we show how to convert a $-source into a distribu-
tion close to a block-wise $-source. In order to do this, we
must be able to obtain smaller blocks which are close to
$-sources. In this section we show how to obtain one such
block.

The idea to do this is as follows. Intuitively, a $-source
has many bits which are somewhat random. We wish to
obtain l of these somewhat random bits. This is not
straightforward, as we do not know which of the n bits are
somewhat random. We therefore pick the l bits at random
using k-wise independence.

Function B. The function has four parameters: n, the
size of the original input; l, the size of the output; k, the
amount of independence used; and $, the quality of random-
ness needed.
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1. INPUT: x # [0, 1]n; y # [0, 1]t (where t=O(k log n)).

2. Use y to choose a set [i1 } } } il]/[1 } } } n] of size l as
described in Section 5.1.1.

3. OUTPUT (a vector in [0, 1]l): xi1 } } } xil (here xj is
the j th bit of x).

Lemma 11. If D is a $-source on [0, 1]n and X is chosen
according to D, then for all but an = fraction of y # [0, 1]t

the distribution of B(X, y) is within = from a $$-source,
where $$=c$�log $&1 and ==max(2&ck, 2&c $$l) for some
sufficiently small positive constant c.

The intuition for this is perhaps best seen by considering
a simple proof to a slightly weaker conclusion: for all but an
= fraction of the ys the distribution of B(X, y) has 0($l )
entropy. The distribution on X clearly has entropy H(X) of
at least $n. Let qi be the conditional entropy of Xi condi-
tioned on X1 } } } Xi&1. From information theory, we know
that �n

i=1 qi=H(X)�$n. Again from information theory
we have that the entropy of the output is at least �l

j=1qij .
All that is needed to complete the proof is that when
[i1 } } } il] are chosen using k-wise independence, the above
sum is, with high probability, close to its expected value $l.

The rest of this section is devoted to proving the slightly
stronger conclusion, that the output is near a $$-source. Our
proof tries to retain the structure of the above proof but,
since we do not have the powerful tools of information
theory at our disposal, the proof is not very simple. The dif-
ficulty is perhaps best appreciated by observing that it is
possible that for all y, B(X, y) is not a $$-source (for any $$),
but only statistically close to a $$-source.

Fix a $-source D. We need the following definitions
(which are relative to D).

Definition 6. For a string x # [0, 1]n and an index
1�i�n, let

pi (x)=PrX # D[Xi=xi | X1=x1 , ..., Xi&1=xi&1].

Index i is called good in x if pi (x)< 1
2 or pi (x)= 1

2 and xi=0.

The part of the definition with pi (x)= 1
2 is to ensure that

exactly one of xi=0 and xi=1 is good, for a given prefix.
This is used in Lemma 14.

Definition 7. x is :-good if there are at least :n indices
which are good in x.

Definition 8. For S�[1, 2, ..., n], x is :-good in S if
there are at least : |S| indices in S which are good in x.

Definition 9. S is :-informative to within ; if

PrX # D[X is :-good in S]�1&;.

Denote by Sy the set of l indices chosen using the random
bits y in the manner described in Section 5.1.1. We will
prove two lemmas which together clearly imply Lemma 11.

Lemma 12. PrY[SY is $$-informative to within =]�1&=.

Lemma 13. Fix a set of indices S=[i1 } } } il] that is
$$-informative to within =. Then, the distribution of Xi1

} } } Xil
induced by choosing X according to D is =-near a $$-source.

5.3.1. Proof of Lemma 12

We first need the following lemma showing that most x's
have many good indices.

Lemma 14. PrX # D[X is not :-good]�2&c1 $n, where
:=c1 $�log $&1 for some absolute positive constant c1 .

Proof. Let us count the number of x's that are not
:-good. There is a natural 1�1 correspondence between
sequences in [good, bad]n and strings x; namely one in
which i is bad in x whenever the i th element of the sequence
is ``bad.'' Thus. the number of x's that are not :-good is at
most the number of n-bit strings with less than an ``good''
locations, i.e., �W:nX&1

i=0 ( n
i ). Since D is a $-source, the

probability of each string is at most 2&$n, so

PrX # D[X is not :-good]�2&$n :
w:nx

i=0
\n

i+�2&c1 $n

for c1 small enough. K

Proof of Lemma 12. Denote k$=min(k, $l�6). For any
fixed :-good string x, we can apply Lemma 5 to the set of
good indices and obtain

PrY[x has :l�2 good indices in SY]>1&4e&k$�2.

Using Lemma 14 it follows that

PrX , Y[X has :l�2 good indices in SY]

�1&4=&k$�2&2&c1 $n.

Set $$=:�2 and ==- 4e&k$�2+2&c1 $n. We will now use
Markov's inequality in the following way. Let Ay=
PrX # D[X is not $$-good in Sy]. Thus AY is a random
variable determined by Y. From the above analysis,
EY[AY]�=2. Therefore, by Markov, PRY[AY�=]�=. In
other words,

PrY[SY is $$-informative to within =]�1&=. K

5.3.2. Proof of Lemma 13

Proof. We will divide the probability space P corre-
sponding to D into many subspaces Pr and prove that in
each Pr the corresponding distribution Dr is near a
$$-source. To do this, first observe that we can alter P a
negligible amount by assuming that all conditional proba-
bilities Pr [Xi=0 | X1=x1 , ..., Xi&1=xi&1] are rational.
Then we can view P as generated by the following process:
first, n numbers r1 , ..., rn , are chosen independently and
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uniformly in the range [1 } } } R] for some R. Then the string
x is generated deterministically bit by bit according to some
deterministic functions: xi=fi (x1 , ..., xi&1 , ri). (The func-
tion fi simply fixes the conditional probability of xi given
x1 } } } xi&1).

Our subspaces will be obtained by fixing the values of ri

for all indices i not in S. For any (n&l )-tuple of numbers r,
we consider the space Pr to be obtained by fixing ri to be the
value specified by r for all i � S; choosing ri at random for all
i # S; and then generating x using the functions fi . Let Er be
the distribution of Xi1 } } } Xil induced when X is chosen
according to Dr , and let E be the distribution of Xi1 } } } Xil
induced when X is chosen according to D.

We say that x is consistent with r if PrX # Dr[X=x]>0.
This implies in particular that for all i � S, xi=
f (x1 , ..., xi&1 , ri).

For each r define

=r=PrX # Dr[X is not $$-good in S].

We will show the following.

Lemma 15. For any fixed r, Er is =r -near a $$-source.

Before we prove this lemma, let us see how this implies
Lemma 13. For each r let E� r be a $$-source that is =r close
to Er . It is easy to see that the distribution E� which is
defined to be the average of the E� r's is a $$-source and its
distance from E is the average of the =r 's which is exactly
PrX # D[Xis not $$&good in S]�=. K

Before we prove Lemma 15, we require the following
lemma.

Lemma 16. If x is $$-good in S and consistent with r, then
Er(xi1 } } } xxl)�2&$$l.

Proof. By definition,

Er(xi1 } } } xil)=PrX # Dr[Xi1=xi1 , ..., Xil=xi1].

We compute the above quantity as

`
l

j=1

Pr[Xij=xij | Xi1=xi1 , ..., Xij&1
=xij&1

].

Note that for each i � S we have that

PrX # Dr[Xi=xi | X1=x1 , ..., Xi&1=xi&1]=1,

since Xi=f (X1 b } } } b Xi&1, ri)=xi . It follows that for
each j,

PrX # Dr[Xij=xij | Xi1=xi1 , ..., Xij&1
=xij&1

]

is equal to

PrX # Dr[Pr[Xij=xij | X1=x1 , ..., Xij&1
=xij&1].

For each i # S, the distribution of Xi conditioned on
X1=x1 } } } Xi&1=xi&1 is exactly the same in Dr and in D as
in both spaces it is given by f (x1 , ..., xi&1 , ri), where ri is
chosen at random. It follows that the above expression is
equal to

PrX # D[Pr[Xij=xij | X1=x1 , ..., Xij&1=xij&1].

The assumption that x is $$-good in S means that for at
least $$l of the possible j 's the corresponding factor is less or
equal to 1

2. This completes the proof of the claim. K

We are now ready to prove Lemma 15.

Proof. Let z # [0, 1]l. We say that z is big if Er(z)>2$$l.
We first claim that

PrZ # Er[Z is big]�=r .

To see this first observe that by definition

PrZ # Er[Z is big]=PrX # Dr[Xi1
} } } Xil is big].

By Lemma 16, and the fact that PrX # Dr[X is consistent with
r]=1, we have that the above quantity is bounded from
above by

PrX # Dr[X is not $$-good in S]==r .

We can now obtain a $$-source E� r which is =r -close to Er ,
by simply taking each big z and dividing it probability
amongst the z's with lowest probability. The distance from
Er is at most the probability of these big z's which is at
most =r . K

5.4. Description of the Extractor

The only thing left to explain is how extracting small
slightly random blocks can be used to obtain a distribution
close to a block-wise $-source. We do this after describing
the extractor more precisely. Unfortunately, the extractor
requires a large number of parameters. How they are chosen
is summarized below. The reader is advised to skip to the
extractor description, and only use this parameter list as a
reference.

Parameters. 1. The parameters n, =, and $ are given.
We assume 1�n�$� 1

2 and 2&$n�=�1�n.

2. $$=c($�2)�log(2�$), where c from Lemma 11. Thus
$$=3($�log $&1).

3. l0 is the largest integer such that ��
i=1 l0 �(1+$$�4) i

�$n�4. This is used in Lemma 17. Thus l0=0($2n�log $&1).

4. For each i, set li=li&1 �(1+$$�4). This is needed to
define the function C.

5. k is chosen so that 2&ck=(=�8n)2, where c is from
Lemma 11. Thus k=O(log =&1).
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6. s is chosen to be the largest integer such that
ls�k�$$. This is needed to apply Lemma 11. (This also
implies 2&$$ls�=�4, as needed to apply Lemma 10 in the
proof of Lemma 1.) Thus ls=O(log =&1 log $&1�$), and
s=O(log n log $&1�$).

7. t1=k log n. Thus t1=O(log =&1 log n).

8. t2=2ls . Thus t2=O(log =&1 log $&1�$).

9. The length of the second parameter to E is given by
t=st1+t2 . Thus t=O(log =&1 log2 n log $&1�$).

10. The length of the output of E is given by
m=2l0&2ls . Thus m=0($2n�log $&1).

Description of E. 1. INPUT: x # [0, 1]n; y1 # [0, 1]t1, ...,
ys # [0, 1]t1; y0 # [0, 1]t2.

2. For i=1 } } } s do zi � B(x, yi). (We use B with
parameters n, li , k, $�2).

3. OUTPUT (a vector in [0, 1]m): C(z1 } } } zs , y0).
(We use C with the parameters $$, l1 , ls .)

The following lemma tells us that the distribution of the
zi 's is close to a block-wise $-source.

Lemma 17. For all but =�4 fraction of possible values of
y1 } } } ys , the distribution of Z1 b } } } b Zs induced by choosing
X according to distribution D is within =�4 of a block-wise
$$-source.

Before we prove this lemma let us see how it implies the
main lemma.

Main Lemma (Lemma 1). For any $-source D the dis-
tribution of E(X, Y) b Y induced by choosing X according
to D and Y uniformly in [0, 1]t is =-quasi-random on
[0, 1]m_[0, 1]t.

Proof. By Lemma 17 for all but =�4 fraction of values of
y1 } } } ys the distribution on the z's is within =�4 of a block-
wise $$-source. For each such value of the y's, by Lemma 10,
the output concatenated with y0 is quasi-random within
=�2+=�4. Add the =�4 ``bad'' y's and the lemma follows. K

We now return to the proof of Lemma 17.

Proof of Lemma 17. Let us first give the intuition.
Lemma 11 tells us how to extract one slightly random block
from a $-source. When we extract the second (or s th) block;
however, we must ensure that it is still slightly random con-
ditional on the first block. The reason the last blocks are
slightly random is that we are conditioning on at most
l1+l2+ } } } +ls&1<$n�4 bits of information, so we are
still left with a 3$�4-source and, with high probability,
a $�2-source. We now formalize this.

Call a vector y1 } } } yi good if the distribution of Z1 } } } Zi

is within i=�(4n) from a block-wise $$-source. We now prove
by induction on i that all but an i=�(4n) fraction of y } } } yi are
good. As s�n, this suffices to prove the lemma.

Fix a vector y1 } } } yi&1 that is good. We will show that for
all but =�(4n) fraction of yi 's, the vector y1 } } } yi is also good.
We call the vector of values z1 , ..., zi&1 tiny if

Pr[Z1=z1 and } } } and Zi&1=zi&1]�2&$n�2.

Since there are at most 2l1+ } } } +li&1�2$n�4 possible values
for z1 } } } zi&1 , Pr[Z1 } } } Zi&1 is tiny]�2&$n�4�=�(16n).

For any z1 } } } zi&1 consider the distribution Dz1 } } } zi&1

defined to be the distribution on X conditioned on
Z1=z1 } } } Zi&1=zi&1. It is clear that if z1 } } } zi&1 is not
tiny then for all x # [0, 1]n: Dz1 } } } zi&1

(x)�2&$n�2D(x), and
thus Dz1 } } } zi&1

is a $�2-source. Let Eyi , z1 } } } zi&1
denote the dis-

tribution of Zi induced by choosing X according to
Dz1 } } } zi&1

. Applying Lemma 11 to Dz1 } } } zi&1
, we conclude

that for every non-tiny choice of z1 } } } zi&1 for all but an
(=�8n)2 fraction of yi's, Eyi, z1 } } } zi&1

is within (=�8n)2 of a
$$-source.

Applying Markov's inequality in a way analogous to that
in Lemma 12, we conclude that for all but at most an =�(4n)
fraction of yi 's.

Prz1 } } } zt&1_Eyt, z1 } } } zt&1
is not within \ =

8n+
2

of a $$-source&
�=�(16n)+Pr[z1 } } } zi&1 is tiny]

�=�(8n).

We conclude the induction step by observing that the
above inequality implies that y1 } } } yi is good. To get a
block-wise $$-source that is close to the distribution of
Z1 } } } Zi , we start with the block-wise source that is close to
the distribution of Z1 } } } Zi&1 (given by the induction
hypothesis) and ``extend it'' by choosing a $$-source on Zi

for each value of z1 } } } zi&1. If Eyi , z1 } } } zi&1
is within (=�8n)2 of

a $$-source, we choose the close $$-source. All the other
possible values of z1 } } } zi&1 occur with low probability, so
we can use, e.g., the uniform distribution. The total error is
(i&1) =�(4n) for the original block-wise source, (=�8n)2 on
the ``good'' z's, and =�(8n) for the ``bad'' z's, all together less
than i=�(4n). K
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