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Abstract

The question of adaptive mesh generation for approximation by splines has been studied for a number of
years by various authors. The results have numerous applications in computational and discrete geometry,
computer aided geometric design, finite element methods for numerical solutions of partial differential
equations, image processing, and mesh generation for computer graphics, among others. In this paper we
will investigate the questions regarding adaptive approximation of C2 functions with arbitrary but fixed
throughout the domain signature by multilinear splines. In particular, we will study the asymptotic behavior
of the optimal error of the weighted uniform approximation by interpolating and quasi-interpolating
multilinear splines.
c© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let the domain D be the unit cube [0, 1]d ⊂ Rd , d ∈ N and d ≥ 2. However, any bounded
connected region that can be represented as a finite union of cubes can be treated analogously.

Let L∞(D) be the standard space of essentially bounded measurable functions defined on D
with the usual sup-norm ‖ · ‖∞. Given a positive continuous function Ω(x) on D, define the
weighted uniform norm ‖ · ‖∞,Ω of f ∈ L∞(D) as

‖ f ‖∞,Ω := sup {| f (x)|Ω(x) : x ∈ D} = ‖ f Ω‖∞.
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Let �N = {Ri }
N
i=1 be an arbitrary partition of the domain D into N parallelepipeds (or boxes)

Ri with sides parallel to coordinate axes. We shall refer to such a partition as a box partition.
Let P∗1 be the space of polynomials linear in each of its d variables. Given a function

f ∈ L∞(D) and a partition �N we shall consider the multilinear spline s( f,�N ) defined as
follows:

1. On the interior of each box Ri , i = 1, . . . , N , we define s ( f,�N ) to be the polynomial from
P∗1 which interpolates f at the vertices of Ri .

2. For every point x in the union of the boundaries of boxes Ri , i = 1, . . . , N we define the
value of s ( f,�N ) to be the average value at x of all polynomial interpolants on the boxes
whose boundaries contain x .

Observe that, by construction, splines s ( f,�N ) interpolate the function f at the vertices of
the partition �N . However, in general, they are not necessarily continuous.

We shall call a sequence of partitions {�N }
∞

N=1 admissible if it satisfies the condition

sup
N

N
1
d max

R∈�N
diam(R) <∞. (1)

Throughout this paper we shall consider only admissible box partitions.
The quantity

RN ( f ) := inf
�N
‖ f − s( f,�N )‖∞,Ω (2)

where inf is taken over all admissible box partitions �N of the domain D into N boxes we shall
call the optimal error of interpolation. An explicit form and the exact value of RN ( f ), as well
as the explicit construction of the optimal partition for every particular function f , can be found
only in trivial situations. It was shown by below, De Loera, and Richter-Gebert in 2000 [4] that
it is not possible to construct an adaptive algorithm for optimal mesh (partition) generation that
runs in polynomial time.

That is why it is interesting to study the asymptotics of the optimal error RN ( f ) as N →∞
for a given function f ∈ C2 and to construct an asymptotically optimal sequence of box
partitions, i.e. a sequence of partitions {�∗N }

∞

N=1 of D such that

lim
N→∞

‖ f − s( f,�∗N )‖∞,Ω
RN ( f )

= 1. (3)

Note that the problem formulated above is interesting for functions of arbitrary smoothness
as well as for various classes of splines (for instance, for splines of higher order, interpolating
splines, best approximating splines, best one-sided approximating splines, etc.). In the univariate
case general questions of this type have been investigated by many authors. The results obtained
in this case are more or less complete and have numerous applications (see, for example, [21]).

Fewer results are known in the multivariate case. The classical statement of Fejes Toth
indicated in [15] on approximation of convex bodies by inscribed polytopes in Hausdorff
metric can be considered as the first result in this direction. Gruber [16] proved this result and
generalized it to the arbitrary dimension, using the ideas from [1,13]. We [2] proved similar result
for the weighted uniform norm. Related interesting results on approximation of convex bodies
by various polytopes have been obtained by Böröczky [6], Böröczky and Ludwig [7].

In [22] Nadler solved the problem of asymptotically optimal choice of a sequence of triangula-
tions for approximation of C3 functions by piecewise linear functions of best L2-approximation.
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D’Azevedo and Simpson [12] studied the question of triangulating a given set of vertices for
interpolation of a convex quadratic surface by piecewise linear functions. They showed that the
Delaunay triangulation will be optimal for the error in the L∞-norm. For the error in L p-norm
this fact was proved by Rippa [24]. Chen [8] and Chen, Sun, and Xu [9] generalized this result
to arbitrary dimensions.

Later D’Azevedo [11] obtained local error estimates for functions with both positive and
negative curvature. The same estimates were later obtained by Pottmann, Hamann et al. [5,
23] who studied the problem of optimally triangulating the plane for approximating quadratic
functions by piecewise linear functions and suggested some algorithms for constructing function
dependent triangulations of the whole domain.

Huang [19], and Huang, Xu, and Sun [20] considered the problem of variational mesh
adaptation in the numerical solutions of partial differential equations and obtained asymptotic
bounds on the interpolation error estimates in L2 for adaptive meshes that satisfy regularity and
equidistribution conditions. Further references and applications can be found, for instance, in
[14,17,18].

All above mentioned results are for the case of approximation by linear splines. Natural
domain partitions in this case are simplices. However, in applications where preferred directions
exist, box partitions (or generalized rectangular partitions) are sometimes more convenient. The
only known to us result for box partitions is the estimate of the uniform error of interpolation on
rectangular partition by bivariate splines linear in each variable which is due to D’Azevedo [10]
who obtained the local error estimates in this case.

Therefore, we think it is an interesting problem to obtain results similar to the above
mentioned for the class of splines linear in each variable (multilinear splines) defined over box
partitions.

In this paper we shall construct an asymptotically optimal sequence {�∗N }
∞

N=1 of box parti-
tions and determine the exact asymptotic value of RN ( f ) for a function f ∈ C2(D) with fixed
signature (with fixed number of positive and negative second derivatives) throughout the domain.
Even though signature is fixed, the results presented are richer than what has been proved for in-
terpolating by linear splines on Rd , d > 2. In the latter case, while some results exist for positive
definite functions, no results exist in the case of functions of another signature.

The approach we shall undertake is similar to the one used for studying the asymptotics of
the error of approximation by linear splines and is as follows: we first take an intermediate
approximation of the given function f by a quadratic polynomial and then find the error of
approximating the quadratic by multilinear splines. This last problem is solved for quadratic
functions of arbitrary fixed signature. The result is then used to give the error of approximating
a C2 function with (fixed throughout the domain) arbitrary signature. Even though it has not
being done in the current text, it is rather clear how to proceed and extend the obtained results to
approximate an arbitrary C2 function.

In addition, we show that the corresponding multilinear splines {s( f,�∗N )}
∞

N=1 can be con-
structed so that they will be discontinuous only along small number (in comparison with the total
number) of lines.

If we do not require interpolation at every vertex of a partition we can construct an
asymptotically optimal sequence of admissible partitions {�̃∗N }

∞

N=1 and a sequence of continuous
splines {s̃ ( f, �̃∗N )}

∞

N=1 which interpolate f at all but o(N ) vertices of the partition as N →∞.
We shall refer to such splines as quasi-interpolating splines.
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2. Main results and ideas of proofs

For f ∈ C2(D) denote

H( f ; x) :=
d∏

i=1

∂2 f

∂x2
i

(x). (4)

Let us consider for any 0 ≤ k ≤ d the following class of functions

C2
k (D) :=

{
f ∈ C2(D) : ∀x ∈ D

∂2 f

∂x2
i

(x) > 0, 1 ≤ i ≤ k, and

∂2 f

∂x2
i

(x) < 0, k < i ≤ d

}
.

Sometimes, we shall say that functions from C2
k (D) have signature (k, d). In the case when k = 0

or k = d we shall say that functions are positive definite.
In addition, for k, d ∈ N ∪ {0} set

γk,d :=


1
8

k
k
d (d − k)1−

k
d , 0 < k < d

d

8
, k = d or k = 0.

(5)

Theorem 1 contains the main result of this paper.

Theorem 1. For any 0 ≤ k ≤ d and f ∈ C2
k (D)

lim
N→∞

N
2
d RN ( f ) = γk,d

(∫
D
|H( f ; x)|

1
2 Ω(x)

d
2 dx

) 2
d

. (6)

Furthermore, there exists a sequence of admissible box partitions {�̃N }
∞

N=1 and a sequence
of continuous quasi-interpolating splines s̃ ( f, �̃N ) such that

lim
N→∞

‖ f − s̃( f, �̃N )‖∞,Ω

RN ( f )
= 1.

Remark. The sequence of splines constructed in the proof of the upper bound in (6) will possess
the following nice property: for each N the constructed spline will be discontinuous along only
a small number, i.e. o(N ) of faces as N →∞ (see Section 5.2).

Let us describe the idea of the proof of the estimate from above. It consists of finding an
appropriate sequence of “good” partitions of D. This is done in the following way:

1. Divide D into a number md
N (which is small in comparison with N ) of equal subregions DN

i .
On each DN

i , instead of f , consider the quadratic part of its Taylor polynomial taken at the
center hi of DN

i (call it P i
2( f, x)). The error of this intermediate approximation is given in

Lemma 1.
The choice of md

N is governed by the following two reasons: there should be few original
subregions in comparison with N , but their size should be small enough to provide the small
enough error of intermediate approximation of f by P i

2 ( f, x).
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2. We find the parameters of the appropriate partition of DN
i by minimizing the error of

multilinear interpolation of P i
2 ( f, x) on DN

i , i = 1, . . . ,md
N . We choose the size of R in such

a way that the overall number nN
i of elements of partition used for DN

i is such that the sum∑md
N

i=1 nN
i is approximately N , and the errors of interpolation on each DN

i are approximately
equal.

3. The final partition of D is the union of partitions of each region DN
i , i = 1, . . . ,md

N .
4. We show that the sequence of partitions which is optimal for the intermediate approximant

(piecewise quadratic function P2 ( f, x)) will be asymptotically optimal for the original
function f .

Having constructed a partition for the fixed N , we interpolate f at the vertices of this parti-
tion. This will produce a multilinear spline which will be discontinuous along “small” number of
edges in the partition. Repeating the construction for every N , we shall obtain a sequence of par-
titions and therefore a sequence of interpolating multilinear splines which will be asymptotically
optimal.

If we “give up” the interpolation at some points (“small” amount of them) of the sequence
of partitions for the sake of having a sequence of continuous multilinear splines, then we shall
refine the obtained on each step partition and then “glue” splines on the neighboring elements
together. The resulting continuous spline we shall call quasi-interpolating spline (see Section 5.2
for detailed construction).

3. Auxiliary statements

The proofs of the following auxiliary statements are straightforward. Similar statements have
been proved, for instance, in [3,2].

Set for f ∈ L∞(D), D ⊂ Rd ,

ω( f, δ) := sup{| f (x)− f (x′)| : |x− x′| ≤ δ, x, x′ ∈ D}, δ ≥ 0, (7)

where |x| := max1≤i≤d |xi | for x ∈ Rd . Set for f ∈ C2(D)

ω∗( f, δ) := max
1≤i, j≤d

{ω( fxi x j , δ)}, (8)

where fxi x j denotes mixed derivative of f with respect to variables x j and xi , i, j = 1, . . . , d.

Lemma 1. Let f ∈ C2(D) and P2(x) denote its quadratic Taylor polynomial at the center x0 of
a cube Dh ⊂ D in Rd with side length equal to h. Then we have the following estimate:

| f (x)− P2(x)| ≤
d2

2

(
h

2

)2

ω∗
(

f,
h

2

)
, x ∈ Dh, (9)

where ω∗( f, t) is defined in (8).

For a fixed a ∈ Rd and an arbitrary box R denote

R + a = {x+ a, x ∈ R}.

Lemma 2. For the given quadratic function

Q(x) =
d∑

i=1

Ai x2
i , (10)
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any box R, and a ∈ Rd errors (in any L p-norm) of multilinear interpolation of Q(x) at the
vertices of R and R + a are equal.

Lemma 3. The interpolant of the quadratic function (10) on the d-dimensional box Rd
:=∏d

i=1[−hi , hi ] is a constant function

s(Q, Rd) :=

d∑
i=1

Ai h
2
i .

Proofs of last two statements are simple linear algebra exercises.

4. Interpolation of quadratic functions with arbitrary signature

Let the quadratic form

Q(x) =
k∑

i=1

x2
i −

d∑
i=k+1

x2
i (11)

for 0 ≤ k ≤ d be given.

Lemma 4. Let Q be the quadratic function of form (11), let Rd
:=
∏d

i=1[−hi , hi ], and let P be
the unique polynomial from P∗1 interpolating Q at the vertices of Rd . Then

‖Q − P‖L∞(Rd ) = max
{

h2
1 + · · · + h2

k, h2
k+1 + · · · + h2

d

}
. (12)

Proof. We shall proceed by induction on the number of variables. To prove the basis of induction
we need to consider two cases d = 2, k = 1 and d = 2, k = 2.

Case 1. Let the quadratic form

Q(x, y) = x2
− y2

and an arbitrary rectangle R2
:= [−h1, h1] × [−h2, h2] be given.

By Lemma 3, the bilinear interpolant to the function Q(x, y) on the rectangle R, denoted by
TQ,R(x, y), is a constant equal to

TQ,R(x, y) = h2
1 − h2

2.

Observe that, because of the symmetry, the error in the uniform norm on R is the same as the
error on [0, h2] × [0, h1].

Denote the difference between the function Q(x, y) and the interpolant TQ,R(x, y) by

δ(x, y) := x2
− y2

− h2
1 + h2

2. (13)

Clearly, the point (0, 0) is the only critical point in [0, h2] × [0, h1] of this function. The value
of the difference (13) at this point is

|δ(0, 0)| = |h2
1 − h2

2|.

In addition, observe that on the boundary of [0, h2] × [0, h1] we have

δ(x, h2) = x2
− h2

1, and δ(h1, y) = y2
− h2

2
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and, hence, maximal values of the difference are

|δ(0, h2)| = h2
1 and |δ(h1, 0)| = h2

2.

Therefore, the error in the uniform norm can be rewritten as follows:

max{|h2
1 − h2

2|, h2
1, h2

2} = max{h2
1, h2

2}, (14)

and the statement of the lemma is proved in the Case 1.
Case 2. Similarly to the Case 1 we can show that the error of interpolation of the quadratic

form

Q(x, y) = x2
+ y2

on an arbitrary rectangle R = [−h1, h1] × [−h2, h2] by multilinear polynomial which in this
case is going to have a form

TQ,R(x, y) = h2
1 + h2

2.

In addition, note that the error in the uniform norm on the rectangle R is the same as the error on
[0, h2] × [0, h1].

Denote the difference between function Q(x, y) and interpolant TQ,R(x, y) by

δ(x, y) := x2
+ y2

− h2
1 − h2

2. (15)

Clearly, the point (0, 0) is the only critical point of this function inside R. The value of difference
(15) at this point is

δ(0, 0) = h2
1 + h2

2.

In addition, observe that on the boundary of [0, h2] × [0, h1] we have

δ(x, h2) = x2
− h2

1, and δ(h1, y) = y2
− h2

2

and, hence, the maximal values are

|δ(0, h2)| = h2
1 and |δ(h1, 0)| = h2

2.

Therefore, in Case 2 the error is equal to

max{h2
1 + h2

2, h2
1, h2

2} = h2
1 + h2

2. (16)

This completes the proof of the basis of induction.
Next let us consider form (11) with signature (k, d − k) when 0 < k < d . As before we can

see that the interpolant to (11) on R is the constant

TQ,R(x) =
k∑

i=1

h2
i −

d∑
i=k+1

h2
i .

Denote the difference between the function and the interpolant by

δ(x) := Q(x)− TQ,R(x).

Let us investigate critical points of this function. For brevity of computation, let us denote

Sk :=

k∑
i=1

h2
i , S(i)k :=

k∑
j=1, j 6=i

h2
j , Sd :=

d∑
i=k+1

h2
i , S(i)d :=

d∑
j=k+1, j 6=i

h2
j .
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As before, the center 0 is the only critical point of δ(x) inside R. The value of the difference at
the center is

δ(0) = |Sk − Sd | . (17)

Let us consider the error on the boundary.
On the face xi = hi in the case when i ≤ k form (11) becomes

k∑
j=1, j 6=i

x2
j −

d∑
j=k+1

x2
j (18)

and the error by hypothesis of induction is

max
{

S(i)k , Sd

}
. (19)

Similarly, on the face xi = hi in the case when i > k form (11) becomes

k∑
j=1

x2
j −

d∑
j=k+1, j 6=i

x2
j , (20)

and the error by hypothesis of induction is

max
{

Sk, S(i)d

}
. (21)

Therefore, the global error is

∆ = max
{
|Sk − Sd | , max

1≤i≤k
max

{
S(i)k , Sd

}
, max

k+1≤i≤d
max

{
Sk, S(i)d

}}
= max

{
max

1≤i≤k
max

{
S(i)k , Sd

}
, max

k+1≤i≤d
max

{
Sk, S(i)d

}}
= max

{
max

{
max

1≤i≤k
S(i)k , Sd

}
,max

{
Sk, max

k+1≤i≤d
S(i)d

}}
= max

{
max

1≤i≤k
S(i)k , Sk, Sd , max

k+1≤i≤d
S(i)d

}
= max {Sk, Sd} .

The lemma is proved. �

Next we shall compute the minimal value of the error ∆ for the quadratic form (11) with
signature (k, d − k). Denote by

∆̃ := min
hi

{
k∑

j=1

h2
j ,

d∑
j=k+1

h2
j

}
, (22)

where min is taken over all hi such that the volume 2d ∏d
i=1 hi is fixed (= V ). In the next two

lemmas we shall provide the value of ∆̃ in the case of the quadratic form (11) with signature
(k, d − k) when k 6= 0, d (Lemma 5) and in the case of positive definite quadratic form
Q(x) =

∑d
i=1 x2

i (Lemma 6).
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Lemma 5. The minimal L∞-error of interpolation of quadratic form (11) by a polynomial from
P∗1 on all d-dimensional boxes of fixed volume V is

∆̃ =
1
4

k
k
d (d − k)1−

k
d V

2
d . (23)

Proof. Due to Lemma 2 we may consider only boxes Rd
=
∏d

i=1[−hi , hi ] centered at the origin.

To minimize the l∞-norm of the vector
(∑k

j=1 h2
j ,
∑d

j=k+1 h2
j

)
given by expression in (12),

we minimize the lp-norm of this vector (with an arbitrary p) of (12), i.e. the expression

((
k∑

j=1

h2
j

)p

+

(
d∑

j=k+1

h2
j

)p) 1
p

, (24)

under assumption that the volume of the box is fixed (= V ) and take the value of the minimum
when p = ∞.

Indeed, if for some set M ⊂ Rd we denote

‖x∗p‖lp = inf
x∈M
‖x‖l p = Ap,

‖x∗‖l∞ = inf
x∈M
‖x‖l∞ = A∞,

then it is not difficult to check that

lim
p→∞

Ap = A∞. (25)

Indeed, obviously A∞ ≤ Ap, for any p. On the other hand,

Ap = ‖x
∗
p‖lp ≤ ‖x

∗
‖lp ≤ ‖x

∗
‖l∞ + εp.

Last two estimates combined imply (25).
Denote the length of the sides of the box by hi , i = 1, . . . , d. The assumption of volume

being fixed is equivalent to

22d
d∏

i=1

h2
i = V 2. (26)

The standard routine of minimizing (24) leads to the only solution of the minimization prob-
lem

h2
1 = · · · = h2

k =: x, h2
k+1 = · · · = h2

d =: y.

Taking this into consideration together with assumption (26) which now can be rewritten as

xk yd−k
= V 22−2d ,

we can find x and y:

x =

(
d − k

k

)(1− k
d )(1−

1
p ) V

2
d

4
, and y =

(
d − k

k

)− k
d (1−

1
p ) V

2
d

4
. (27)
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In the case p = ∞ we have

x =
1
4

(
d − k

k

)(1− k
d )

V
2
d , and y =

1
4

(
d − k

k

)− k
d

V
2
d .

Therefore,

hi =
1
2

(
d − k

k

) d−k
2d

V
1
d , i ≤ k, (28)

h j =
1
2

(
d − k

k

)− k
2d

V
1
d , j > k. (29)

Hence, the minimal value ∆̃ of the error ∆ is

∆̃ =
1
4

k

(
d − k

k

)(1− k
d )

V
2
d =

1
4

k
k
d (d − k)1−

k
d V

2
d . � (30)

Lemma 6. The minimal L∞-error of interpolation of positive definite quadratic form by a
polynomial from P1 on all d-dimensional boxes of fixed volume V is

∆̃ =
d

4
V

2
d . (31)

Proof. Clearly, the minimum of the function
∑d

i=1 h2
i with additional assumption (26) is

achieved when all hi are equal, i.e. h1 = h2 = · · · = hd := h. From condition (26) we also have

h =
V

1
d

2
, and, hence, ∆̃ = min

hi

{
d∑

i=1

h2
i

}
= dh2

= d
V

2
d

4
. �

Now let the quadratic form

Q(x) =
d∑

i=1

Ai x2
i (32)

with Ai > 0 for all 0 ≤ i ≤ k and Ai < 0 for all k + 1 ≤ i ≤ d be given.

Lemma 7. The L∞-error of interpolation of quadratic form (32) by polynomials P1 on the d-
dimensional box P of volume V (P) is

1
4

k
k
d (d − k)1−

k
d

V (P)

√√√√ d∏
i=1

|Ai |


2
d

. (33)

Proof. For the given quadratic form Q(x) =
∑d

i=1 |Ai |x2
i let us consider a linear transformation

F such that

(Q ◦ F)(u) =
d∑

i=1

u2
i . (34)
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In other words,

F(u) =
(

u1
√
|A1|

, . . . ,
ud
√
|Ad |

)
. (35)

Observe that the determinant of the inverse of this transformation is

det(F−1) =

√√√√ d∏
i=1

|Ai |. (36)

Let us consider the box F−1(P) which clearly has the volume

V (F−1(P)) = V (P) det(F−1). (37)

Combining the result of the previous lemma about the error of interpolation on the box F−1(P)
with (36) and (37), we obtain (33). �

Similarly, in the case of positive definite form we obtain the following statement.

Lemma 8. The error of interpolation of the positive definite quadratic form by polynomials P1
on the d-dimensional box P of volume V (P) is equal to

d

4

V (P)

√√√√ d∏
i=1

Ai


2
d

. (38)

5. Error of interpolation of C2 functions defined on [0, 1]d . Estimate from above

5.1. Estimate from above for interpolating splines

Lemma 9. Let f ∈ C2
k (D). Then

lim sup
N→∞

N
2
d RN ( f )

γk,d

(∫
D |H( f ; x)|

1
2 Ω(x)

d
2 dx

) 2
d

≤ 1. (39)

Proof. Let f ∈ C2(D) be given. For a fixed ε ∈ (0, 1) and for every N we define

m N := min

{
m > 0 :

d2

2

(
1

2m

)2

ω∗
(

f,
1

2m

)
≤

ε

N
2
d

}
, (40)

where ω∗( f, δ) is a function defined in (8). Observe that for m N defined in such a way it is true
that m N →∞ as N →∞. In addition,

N
2
d

m2
N

→∞, as N →∞, (41)
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i.e. m N = o(N
1
d ) as N →∞. Indeed, by the definition of m N for all large enough N we have

N
2
d

m2
N

=
(m N − 1)2

m2
N

N
2
d

(m N − 1)2

≥ ε
8

d2

(m N − 1)2

m2
N

(
ω∗
(

f,
1

2(m N − 1)

))−1

→∞, as N →∞,

since
(

m N−1
m N

)2
→ 1 and ω∗

(
f, 1

2(m N−1)

)
→ 0 as N →∞. Hence, (41) is proved.

Let us divide the unit cube D into cubes with side length equal to 1
m N

and denote the resulting

cubes by DN
l , l = 1, . . . ,md

N . Next let us take the center point xN
l in each cube DN

l and set

AN ,l
i, j :=

1
2
∂2 f

∂xi∂x j
(xN

l ), i, j = 1, . . . , d, l = 1, . . . ,md
N .

In addition, denote by

H(xN
l ) :=

d∏
i=1

AN ,l
i,i , l = 1, . . . ,md

N .

Set the number of elements to be used on DN
l to be

nN
l :=

N (1− ε)|H(xN
l )|

1
2 Ω(xN

l )
d
2

md
N∑

j=1
|H(xN

j )|
1
2 Ω(xN

j )
d
2

 , l = 1, . . . ,md
N . (42)

It is essential that nN
l →∞ when N →∞. This follows from the estimate

nN
l ≥

N (1− ε)min
x∈D
{|H( f ; x)|}

1
2 min

x∈D
{Ω(x)}

d
2

md
N‖H‖

1
2
∞‖Ω‖

d
2
∞

 , (43)

together with (41), and the fact that minx∈D{Ω(x)} > 0 and minx∈D{|H( f ; x)|} > 0.
Now for k 6= 0, d let us set

hN
l :=

1
2

(
d − k

k

) d−k
2d
(

1

md
N nN

l

) 1
d

, 1 ≤ i ≤ k, l = 1, . . . ,md
N , (44)

h̃N
l :=

1
2

(
d − k

k

)− k
2d
(

1

md
N nN

l

) 1
d

, k + 1 ≤ i ≤ d, l = 1, . . . ,md
N . (45)

For the positive definite form, i.e. k = 0 or k = d we set

hN
l = h̃N

l :=
1
2

(
1

md
N nN

l

) 1
d

, l = 1, . . . ,md
N . (46)
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The intersection of the lattice

[LhN
l , (L + 1)hN

l ]
k
× [Lh̃N

l , (L + 1)h̃N
l ]

d−k, L ∈ Z, l = 1, . . . ,md
N , (47)

with DN
l provides the partition of DN

l , l = 1, . . . ,md
N .

The union of partitions of each DN
l , l = 1, . . . ,md

N , provide the partition of D. Denote it by
�∗N (D). It can be easily seen that due to definitions (44) and (45), combined with the estimate
(43), the constructed partition satisfies (1) and, hence, is admissible.

Let us show that the sequence of obtained in such a way partitions {�∗N (D)}
∞

N=1 will be
asymptotically optimal.

By fN denote the piecewise quadratic function constructed in the following way. On DN
1 we

set fN to be
∑d

i=1 AN ,1
i,i x2

i . Then for l > 1 on DN
l \ ∪

l−1
j=1 DN

j we set

fN (x) :=
d∑

i=1

AN ,l
i,i x2

i .

To estimate the error RN ( f ) we observe that

RN ( f ) ≤ ‖ f − s( f,�∗N )‖∞,Ω ≤ ‖ f − fN‖∞,Ω + ‖ fN − s( fN ,�
∗

N )‖∞,Ω

+‖s( fN ,�
∗

N )− s( f,�∗N )‖∞,Ω ≤ 2‖ f − fN‖∞,Ω + ‖ fN − s( fN ,�
∗

N )‖∞,Ω .

Let us estimate each term. First of all, by Lemma 1 and the definition of m N we have

‖ f − fN‖∞,Ω ≤
d2

2

(
1

2m N

)2

ω∗
(

f,
1

2m N

)
‖Ω‖∞ ≤

ε

N
2
d

‖Ω‖∞.

Let us estimate the second term now. Let RN
l ∈ �∗N (D

N
l ) be an arbitrary element. By Lemma 7,

for every x ∈ RN
l we have

| fN (x)− s( fN ,�
∗

N ; x)|Ω(x
N
l ) ≤ ‖ fN − s( fN ,�

∗

N ; ·)‖L∞(RN
l )

Ω(xN
l )

= γk,d

(
1

md
N nN

l

√
|H(xN

l )|

) 2
d

Ω(xN
l ).

By the definition of nN
l , for all large enough N , for all l, and for all x ∈ RN

l , we have

| fN (x)− s( fN ,�
∗

N ; x)|Ω(x
N
l )

≤ γk,d


md

N∑
j=1
|H(xN

j )|
1
2 Ω(xN

j )
d
2

md
N N (1− ε)|H(xN

l )|
1
2 Ω(xN

l )
d
2

√
|H(xN

l )|


2
d

Ω(xN
l ).

Since this estimate does not depend on x, we obtain

‖ fN − s( fN ,�
∗

N )‖∞,Ω ≤
γk,d

(N (1− ε))2/d

 1

m2
N

md
N∑

j=1

|H(xN
j )|

1
2 Ω(xN

j )
d
2


2
d

.
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Note that

1

m2
N

md
N∑

j=1

|H(xN
j )|

1
2 Ω(xN

j )
d
2 →

∫
D
|H( f ; x)|

1
2 Ω(x)

d
2 dx, as N →∞.

Hence, for all N large enough we have

‖ fN − s( fN ,�
∗

N )‖∞,Ω ≤
γk,d

(N (1− ε))2/d

(∫
D
|H( f ; x)|

1
2 Ω(x)

d
2 dx

) 2
d

.

Therefore,

‖ f − s( f,�∗N )‖∞,Ω ≤
2ε

N
2
d

‖Ω‖∞ +
γk,d

(N (1− ε))
2
d

(∫
D
|H( f ; x)|

1
2 Ω(x)

d
2 dx

) 2
d

.

Because ε > 0 is arbitrary, we obtain the desired estimate from above (39) for RN ( f ). �

5.2. Construction of asymptotically optimal sequence of continuous quasi-interpolating splines

In this section, we shall refine the sequence of partitions {�∗N }
∞

N=1 constructed following the
algorithm in the previous section, to obtain a sequence of partitions and a sequence of continuous
splines {s̃ ( f,�∗N )}

∞

N=1 on the partitions which will interpolate f at all but o(N ) as N → ∞
points.

Let parameters of the grid hN
l and h̃N

l be as defined in (44) and (45) for k 6= 0, d, and in (46)
for k = 0, d, respectively. Recall that the intersection of the lattice

[LhN
l , (L + 1)hN

l ]
k
× [Lh̃N

l , (L + 1)h̃N
l ]

d−k, L ∈ Z, l = 1, . . . ,md
N , (48)

with DN
l provides the partition of DN

l , l = 1, . . . ,md
N .

Let us consider two neighboring d-dimensional regions D1 and D2 with corresponding
interpolants S1 and S2. The partition of D1 consists of parallelepipeds {D1

i } and the partition
of D2 consists of parallelepipeds {D2

j }. If the parameters of the grid on D1 and D2 are different,
we have to subdivide parallelepipeds that have nonempty intersection with the common face to
ensure the global continuity of the approximant. Let us assume that the common face lies in the
(d − 1)-dimensional coordinate plane.

By {D1
i,1} and {D2

j,1} let us denote parallelepipeds which have nonempty intersection with

the common face of D1 and D2. In addition, by {D1
i,1} and {D2

j,1} we shall denote their (d − 1)-

dimensional faces contained in D1
∩D2. The set of all possible intersections D1

i,1∩D2
j,1 constitute

the partition of D1
∩ D2, which is a refinement of each of partitions {D1

i,1} and {D2
j,1}.

For each D1
i,1∩D2

j,1 we consider D1
i,1∩{(D

1
i,1∩D2

j,1)×R} and D2
j,1∩{(D

1
i,1∩D2

j,1)×R}, the

set of which constitute a refinement of {D1
i,1} and {D2

j,1}, respectively. The new vertices of the
refined partition we shall call “irregular” to the contrast with vertices of the non-refined partitions
which we shall refer to as “regular”.

The continuous spline S on two neighboring elements D1 and D2 is constructed now as
follows: S interpolates S1 at all (regular and irregular) vertices of the partition of D1, and S
interpolates S2 at all (regular and irregular) vertices of the partition of D2. Note that automatically
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Fig. 1. Stitching of partitions on neighboring regions in the case d = 2.

the multilinear spline S interpolates f , in particular, at all the vertices of the refined partition

{D1
i,1 ∩ D2

j,1} of the common face D1
∩ D2.

The illustration of “stitching” of partitions on neighboring regions in 2-dimensional case is
shown in Fig. 1.

Denote the final partition of D by �̃∗N (D). It can be easily seen that due to (44) and (45), or
(46), the constructed partition satisfies (1).

Let us compute the number of irregular boxes (denote it by K N
l ). Recalling (44) and (45)

together with the fact that the volume of a box from �∗N (D
N
l ) is 1

md
N nN

l
we have that

K N
l ≤ c1(n

N
l )

1
d .

Hence, the total number of irregular boxes is not greater than

c2

md
N∑

l=1

(nN
l )

1
d ≤ c2

md
N∑

l=1

N (1− ε)|H(xN
l )|

1
2 Ω(xN

l )
d
2

md
N∑

j=1
|H(xN

j )|
1
2 Ω(xN

j )
d
2


1
d

≤ c3 N
1
d md−1

N = o (N ) ,

as N → ∞ (since m N = o
(

N
1
d

)
as N → ∞ because of (41)). In particular, this implies that

the number of boxes in the constructed partition will not exceed N for all N large enough.
This verifies the Remark after Theorem 1, because the interpolating spline s ( fN ,�∗N ) con-

structed in the previous section can be discontinuous only along the faces of the irregular boxes.
It is clear that for two embedded elements of partition the error of multilinear interpolation of

a quadratic function is greater on the larger element. Therefore, we shall estimate this error on
elements that do not have intersection with the boundary. Hence, the estimate from above for the
error of quasi-interpolation by splines s̃ ( f, �̃∗N ) can be obtained as in Section 5.1.
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6. Error of interpolation of C2 functions defined on [0, 1]d . Estimate from below

Let quantities m N , nN
i , DN

i etc. be as defined in the previous section.

Lemma 10. Let f ∈ C2
k (D). Then

lim inf
N→∞

N
2
d RN ( f )

γk,d

(∫
D |H( f ; x)|

1
2 Ω(x)

d
2 dx

) 2
d

≥ 1. (49)

Proof. To obtain the estimate from below we shall consider an arbitrary sequence of admissible
partitions, i.e. box partitions {�N }

∞

N=1 which satisfies (1).
Note that from (1) it follows that for an arbitrary element R ∈ �N , diam(R) < C

N 1/d with

some constant C > 0. Let us consider the C
N 1/d -neighborhood of the boundary of an arbitrary

box DN
l , l = 1, . . . ,md

N . For an arbitrary ε > 0, the volume of the complement of the C
N 1/d -

neighborhood of the boundary of DN
l , i.e. the “interior” of DN

l , is(
1

m N
−

2C

N 1/d

)d

=
1

md
N

(
1−

2Cm N

N 1/d

)d

�
1

md
N

(
1− d

2Cm N

N 1/d

)
>

1− ε

md
N

(50)

for N large enough since m N = o(N 1/d) as N → ∞. Therefore, for any l = 1, . . . ,md
N , the

sum of volumes of the boxes which have nonempty intersection with the “interior” of DN
l (and,

due to (1), lie completely inside of DN
l ) is greater than 1−ε

md
N

.

Let us show that for any ε > 0 and for any N large enough there exists index lN such that the
corresponding DN

lN
completely contains a “large enough” element RN

lN
∈ �N , i.e. element with

volume greater than 1−ε
md

N nN
lN

. Assume to the contrary that there exists ε0 such that for an arbitrary

N0 there exists N > N0 such that for all i = 1, . . . ,md
N the volume of each box R ∈ �N having

nonempty intersection with the “interior” of DN
i (and, therefore, is completely inside of DN

i ) is
less than or equal to 1−ε0

md
N nN

i
.

For each i = 1, . . . ,md
N , by νN

i denote the number of boxes from �N that are completely
inside of DN

i . Note that

md
N∑

i=1

νN
i ≤

md
N∑

i=1

nN
i = N .

This implies that there exists i∗ such that νN
i∗ ≤ nN

i∗ . Hence, taking into consideration the assump-
tion on the volume of each box that is completely inside of DN

i∗ (or have nonempty intersection
with the “interior” of DN

i∗ ) to be less than or equal to 1−ε0
md

N nN
i

, the total volume of all such boxes

from �N is less than or equal to

1− ε0

md
N nN

i

νN
i∗ ≤

1− ε0

md
N

which contradicts to (50).
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For each N and corresponding lN , set

fN ,lN (x) :=
d∑

i=1

AN ,l
i,i x2

i .

Observe that

‖ f − s( f,�N )‖L∞,Ω (RN
lN
) ≥ ‖ fN ,lN − s( fN ,lN ,�N )‖L∞,Ω (RN

lN
)

− 2‖ f − fN ,lN ‖L∞,Ω (RN
lN
).

By Lemma 7 we have for some ε > 0

‖ fN ,lN − s( fN ,iN ,�N )‖L∞,Ω (RN
lN
) ≥ (1− ε)γk,d

(
1

md
N nN

l

√
|H(xN

l )|

) 2
d

Ω(xN
l ).

By the definition of nN
lN

we have that for all N large enough

γk,d

(
1

md
N nN

l

√
|H(xN

l )|

) 2
d

Ω(xN
l )

= γk,d


md

N∑
j=1
|H(xN

j )|
1
2 Ω(xN

j )
d
2

md
N N (1− ε)|H(xN

l )|
1
2 Ω(xN

l )
d
2

√
|H(xN

l )|


2
d

Ω(x N
l )

>
γk,d

N
2
d

(∫
D
|H( f ; x)|

1
2 Ω(x)

d
2 dx

) 2
d

.

Hence, for all N large enough we obtain

‖ fN − s( fN ,�N )‖∞,Ω > (1− ε)
γk,d

N
2
d

(∫
D
|H( f ; x)|

1
2 Ω(x)

d
2 dx

) 2
d

.

On the other hand

‖ f − fN ,iN ‖L∞,Ω (RN
iN
) ≤ ‖Ω‖∞

ε

N
2
d

due to the choice of m N . Hence, we obtain that for all large enough N

‖ f − s( f,�N )‖∞,Ω ≥ (1− c4ε)
γk,d

N
2
d

(∫
D
|H( f ; x)|

1
2 Ω(x)

d
2 dx

) 2
d

with some positive constant c4. Therefore,

lim inf
N→∞

‖ f − s( f,�N )‖∞,Ω ≥
γk,d

N
2
d

(∫
D
|H( f ; x)|

1
2 Ω(x)

d
2 dx

) 2
d

. �

The estimate from below for quasi-interpolating splines can be obtained analogously.
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