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Fig. 1. Three possible graphs of fε(u) satisfying (1.1)–(1.3).

1. Introduction

In this paper we study the global bifurcation and exact multiplicity of positive solutions of{
u′′(x) + λ fε(u) = 0, −1 < x < 1, u(−1) = u(1) = 0,

fε(u) = −εu3 + σu2 − κu + ρ, λ, ε > 0,
(1.1)

where λ,ε are two bifurcation parameters. Moreover, we mainly consider that

σ ,ρ > 0, (1.2)

and

0 < κ � √
σρ. (1.3)

If fε(u) satisfies (1.1)–(1.3), for any ε > 0, it is easy to see that cubic polynomial fε(u) has a
unique inflection point at γε ≡ σ/(3ε) > 0 and has a unique positive zero at some βε > γε such that
fε satisfies

(i) fε(0) = ρ > 0 (positone), f ′
ε(0) = −κ < 0, fε(u) > 0 on (0, βε) and fε(βε) = 0,

(ii) fε(u) is strictly convex on (0, γε) and is strictly concave on (γε,∞). (So fε is convex–concave
on (0, βε).)

The proof the uniqueness of inflection point of cubic polynomial fε(u) at γε = σ/(3ε) is trivial
and the proof of the uniqueness of positive zero of fε(u) at some βε > γε is given in Appendix A.
Note that it is easy to see that βε is a continuous, strictly decreasing function of ε > 0. In addition,
limε→0+ βε = ∞ and limε→∞ βε = 0. Three possible graphs of fε(u) satisfying (1.1)–(1.3) are depicted
in Fig. 1.

For any ε > 0, on the (λ,‖u‖∞)-plane, we study the shape and structure of bifurcation curves Sε

of positive solutions of (1.1), defined by

Sε ≡ {(
λ,‖uλ‖∞

)
: λ > 0 and uλ is a positive solution of (1.1)

}
.

We say that, on the (λ,‖u‖∞)-plane, the bifurcation curve Sε is S-shaped if Sε is a continuous curve
and there exist two positive numbers λ∗ < λ∗ such that Sε has exactly two turning points at some
points (λ∗,‖uλ∗‖∞) and (λ∗,‖uλ∗‖∞), and

(i) λ∗ < λ∗ and ‖uλ∗‖∞ < ‖uλ∗‖∞ ,
(ii) at (λ∗,‖uλ∗‖∞) the bifurcation curve Sε turns to the left,

(iii) at (λ∗,‖uλ∗‖∞) the bifurcation curve Sε turns to the right.
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Fig. 2. Global bifurcation of bifurcation curves Sε of (1.1), (1.2), and (either (1.3) or (1.4)) with varying ε > 0.

See Fig. 2(i) depicted above for example.
Problem (1.1) was first systematically studied by a celebrated paper by Smoller and Wasserman [8].

In particular, they considered (1.1) with ε = 1 and that cubic nonlinearity fε=1(u) has three real zeros
a < b < c. In this paper we discuss the general case with ε > 0 and σ ,ρ,κ ∈ R, so that fε(u) may
have exactly one positive zero, two distinct positive zeros or three distinct positive zeros. If (σ � 0,
ρ,κ ∈ R) or (ρ � 0, σ ,κ ∈ R), by applying the methods used in [8], we can prove that the structure
of bifurcation curve Sε of (1.1) is one of the following cases:

(i) The bifurcation curve Sε of (1.1) is an empty set (that is, (1.1) has no positive solution for all
λ > 0).

(ii) The bifurcation curve Sε of (1.1) is a monotone curve on the (λ,‖u‖∞)-plane.
(iii) The bifurcation curve Sε of (1.1) has exactly one turning point where the curve turns to the right

on the (λ,‖u‖∞)-plane.

More precisely, we can give a classification of totally three qualitatively different bifurcation
curves Sε if (σ � 0, ρ,κ ∈ R) or (ρ � 0, σ ,κ ∈ R). In these cases, (1.1) has at most two positive
solutions for each λ > 0. So we mainly consider the remaining case (1.1), (1.2). In this case, it is more
difficult to determine precisely the shape of the bifurcation curve Sε and the exact multiplicity of
positive solutions of (1.1), (1.2) since Sε may have two turning points and (1.1), (1.2) may have three
positive solutions for a certain range of positive λ.

Hung and Wang [1] very recently developed some time-map techniques to study the shape of the
bifurcation curve Sε and the exact multiplicity of (1.1), (1.2) with

κ � 0. (1.4)

For (1.1), (1.2), (1.4), they [1, Theorem 2.1] proved that there exists a positive number ε̃ = ε̃(σ ,κ,ρ)

satisfying (
25

32

(
σ 3

27ρ

))1/2

< ε̃ <

(
σ 3

27ρ

)1/2

such that, on the (λ,‖u‖∞)-plane:

(i) For 0 < ε < ε̃, the bifurcation curve Sε of (1.1), (1.2), (1.4) is S-shaped (see Fig. 2(i)).
(ii) For ε = ε̃, the bifurcation curve S ε̃ of (1.1), (1.2), (1.4) is monotone increasing. Moreover, (1.1),

(1.2), (1.4) has exactly one (cusp type) degenerate positive solution uλ̃ (see Fig. 2(ii)).
(iii) For ε > ε̃, the bifurcation curve Sε of (1.1), (1.2), (1.4) is monotone increasing. Moreover, all

positive solutions uλ of (1.1), (1.2), (1.4) are nondegenerate (see Fig. 2(iii)).

Our results in this paper are extensions of those of Hung and Wang [1] from κ � 0 to κ � √
σρ .

In Theorem 2.1 stated below for (1.1)–(1.3) with varying ε > 0, we prove the same global bifurcation
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Fig. 3. Global bifurcation of bifurcation curves Σλ of (1.1), (1.2), and (either (1.3) or (1.4)) with varying λ > 0.

results of bifurcation curves Sε . Hence we are able to determine the exact number of positive solu-
tions by the values of ε and λ. In addition, we give lower and upper bounds of the critical bifurcation
value ε̃. See Fig. 2.

While for any λ > 0, on the (ε,‖u‖∞)-plane, it is interesting to study the shape and structure of
bifurcation curves Σλ of positive solutions of (1.1), defined by

Σλ ≡ {(
ε,‖uε‖∞

)
: ε > 0 and uε is a positive solution of (1.1)

}
.

(Note that we allow that bifurcation curve Σλ consists of two (or more) connected components.) We
say that, on the (ε,‖u‖∞)-plane, the bifurcation curve Σλ is reversed S-shaped if Σλ is a continuous
curve and there exist two numbers ε∗ < ε∗ such that Sε has exactly two turning points at some points
(ε∗,‖uε∗‖∞) and (ε∗,‖uε∗‖∞), and

(i) ε∗ < ε∗ and ‖uε∗‖∞ < ‖uε∗‖∞ ,
(ii) at (ε∗,‖uε∗‖∞) the bifurcation curve Σλ turns to the right,

(iii) at (ε∗,‖uε∗‖∞) the bifurcation curve Σλ turns to the left.

See Fig. 3(iii) for example.
For (1.1), (1.2), (1.4), Hung and Wang [1, Theorem 2.3] proved that there exist two positive numbers

λ0 (= λ0(σ ,κ,ρ)) < λ̃ (= λ̃(σ ,κ,ρ)) such that, on the (ε,‖u‖∞)-plane:

(i) For 0 < λ < λ0, the bifurcation curve Σλ of (1.1), (1.2), (1.4) has two disjoint connected compo-
nents, the upper branch is ⊃-shaped with exactly one turning point, and the lower branch is a
monotone decreasing curve (see Fig. 3(i)).

(ii) For λ = λ0, the bifurcation curve Σλ0 of (1.1), (1.2), (1.4) has two disjoint connected components,
the upper branch is ⊃-shaped with exactly one turning point, and the lower branch is a mono-
tone decreasing curve (see Fig. 3(ii)).

(iii) For λ0 < λ < λ̃, the bifurcation curve Σλ of (1.1), (1.2), (1.4) is reversed S-shaped (see Fig. 3(iii)).
(iv) For λ = λ̃, the bifurcation curve Σλ̃ of (1.1), (1.2), (1.4) is monotone decreasing. Moreover, (1.1),

(1.2), (1.4) has exactly one (cusp type) degenerate positive solution uε̃ (see Fig. 3(iv)).
(v) For λ > λ̃, the bifurcation curve Σλ of (1.1), (1.2), (1.4) is monotone decreasing. Moreover, all

positive solutions uε of (1.1), (1.2), (1.4) are nondegenerate (see Fig. 3(v)).
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Fig. 4. The bifurcation surface Γ with the fold curve CΓ = C1 ∪ C2, and the projection of Γ onto Fq . BΓ = B1 ∪ B2 is the
bifurcation set and (ε̃, λ̃) is the cusp point on Fq .

In Theorem 2.2 stated below for (1.1)–(1.3) with varying λ > 0, we prove the same global bifur-
cation results of bifurcation curve Σλ . Hence we are able to determine the exact number of positive
solutions by the values of λ and ε. See Fig. 3.

We study, in the (ε,λ,‖u‖∞)-space, the shape and structure of the bifurcation surface Γ of positive
solutions of (1.1), defined by

Γ ≡ {(
ε,λ,‖uε,λ‖∞

)
: ε,λ > 0 and uε,λ is a positive solution of (1.1)

}
which has the appearance of a folded surface with the fold curve

CΓ ≡ {(
ε,λ,‖uε,λ‖∞

)
: ε,λ > 0 and uε,λ is a degenerate positive solution of (1.1)

}
.

Let Fq denote the first quadrant of the (ε,λ)-parameter plane. We also study, on Fq , the bifurcation
set

BΓ ≡ {
(ε,λ): ε,λ > 0 and uε,λ is a degenerate positive solution of (1.1)

}
which is the projection of the fold curve CΓ onto Fq . Let M denote the bounded, open connected
subset of Fq , which is ‘inside’ BΓ .

For (1.1), (1.2), (1.4), Hung and Wang [1, Theorem 2.4] proved that the following assertions (i)–(iv)
(see Figs. 4 and 5):

(i) The fold curve CΓ of (1.1), (1.2), (1.4) is a continuous curve in the (ε,λ,‖u‖∞)-space. Moreover,
CΓ = C1 ∪ C2 where

C1 ≡ {(
ε,λ∗(ε),‖uε,λ∗(ε)‖∞

)
: 0 < ε � ε̃

}
and C2 ≡ {(

ε,λ∗(ε),‖uε,λ∗(ε)‖∞
)
: 0 < ε � ε̃

}
.

(ii) The bifurcation set BΓ of (1.1), (1.2), (1.4) satisfies BΓ = B1 ∪ B2 where

B1 ≡ {(
ε,λ∗(ε)

)
: 0 < ε � ε̃

}
and B2 ≡ {(

ε,λ∗(ε)
)
: 0 < ε � ε̃

}
.
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Fig. 5. The projection of the bifurcation surface Γ onto Fq . BΓ = B1 ∪ B2 is the bifurcation set and (ε̃, λ̃) is the cusp point
on Fq .

(iii) λ∗(ε) and λ∗(ε) are both continuous, strictly increasing on (0, ε̃].
(iv) Problem (1.1), (1.2), (1.4) has exactly three positive solutions for (ε,λ) ∈ M , exactly two positive

solutions for (ε,λ) ∈ BΓ \ {(ε̃, λ̃)}, and exactly one positive solution for (ε,λ) ∈ (Fq \ (BΓ ∪ M)) ∪
{(ε̃, λ̃)}.

In Theorem 2.3 stated below for (1.1)–(1.3), we prove the same structure of the bifurcation set BΓ

and the fold curve CΓ . Hence we are able to determine the exact number of positive solutions of
(1.1)–(1.3) by the values of ε and λ. See Figs. 4 and 5.

The paper is organized as follows. Section 2 contains statements of the main results: Theo-
rems 2.1–2.3. Section 3 contains several lemmas needed to prove Theorems 2.1–2.3. Section 4 contains
the proofs of Theorems 2.1–2.3. Finally, in Section 5, we give three conjectures on the shape of bifur-
cation curves Sε of positive solutions of (1.1), (1.2) with evolution parameter κ >

√
σρ .

In this section, finally, we note that our main results (Theorems 2.1–2.3) in this paper extend those
of Hung and Wang [1, Theorems 2.1, 2.3 and 2.4] from κ � 0 to κ � √

σρ , and the proofs are more
complicated. One of the main difficulties is that fε(u) can initially decrease, but then increases to a
peak before falling to zero on (0, βε], see Fig. 1(i).

2. Main results

Theorem 2.1. Consider (1.1)–(1.3) with varying ε > 0. There exists a positive number ε̃ = ε̃(σ ,κ,ρ) satisfying

(
25

32

(
σ 3

27ρ

))1/2

< ε̃ <

(
σ 3

27ρ

)1/2

such that the following assertions (i)–(iii) hold:

(i) (See Fig. 2(i).) For 0 < ε < ε̃, the bifurcation curve Sε is S-shaped on the (λ,‖u‖∞)-plane. Moreover, there
exist two positive numbers λ∗ < λ∗ such that (1.1)–(1.3) has exactly one degenerate positive solution uλ∗
and uλ∗ for λ = λ∗ and λ = λ∗ , respectively. More precisely, (1.1)–(1.3) has:
(a) exactly three positive solutions uλ , vλ , wλ with wλ < uλ < vλ for λ∗ < λ < λ∗ ,
(b) exactly two positive solutions wλ , uλ with wλ < uλ for λ = λ∗ , and exactly two positive solutions uλ ,

vλ with uλ < vλ for λ = λ∗ ,
(c) exactly one positive solution wλ for 0 < λ < λ∗ , and exactly one positive solution vλ for λ > λ∗ .

Furthermore,
(d) limλ→0+ ‖wλ‖∞ = 0 and limλ→∞ ‖vλ‖∞ = βε .

(ii) (See Fig. 2(ii).) For ε = ε̃, the bifurcation curve S ε̃ is monotone increasing on the (λ,‖u‖∞)-plane. More-
over, (1.1)–(1.3) has exactly one (cusp type) degenerate positive solution uλ̃ . More precisely, for all λ > 0,
(1.1)–(1.3) has exactly one positive solution uλ satisfying limλ→0+ ‖uλ‖∞ = 0 and limλ→∞ ‖uλ‖∞ = βε .
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(iii) (See Fig. 2(iii).) For ε > ε̃, the bifurcation curve Sε is monotone increasing on the (λ,‖u‖∞)-plane. More-
over, all positive solutions uλ of (1.1)–(1.3) are nondegenerate. More precisely, for all λ > 0, (1.1)–(1.3)
has exactly one positive solution uλ satisfying limλ→0+ ‖uλ‖∞ = 0 and limλ→∞ ‖uλ‖∞ = βε .

Theorem 2.2. Consider (1.1)–(1.3) with varying λ > 0. There exist two positive numbers λ0 (= λ0(σ ,κ,ρ))

< λ̃ (= λ̃(σ ,κ,ρ)) such that the following assertions (i)–(v) hold:

(i) (See Fig. 3(i).) For 0 < λ < λ0 , on the (ε,‖u‖∞)-plane, the bifurcation curve Σλ has two disjoint con-
nected components, the upper branch is ⊃-shaped with exactly one turning point, and the lower branch is
a monotone decreasing curve. Moreover, there exists a positive number ε∗ such that (1.1)–(1.3) has exactly
one degenerate positive solution uε∗ for ε = ε∗ . More precisely, (1.1)–(1.3) has:
(a) exactly three positive solutions uε , vε , wε with wε < uε < vε for 0 < ε < ε∗ ,
(b) exactly two positive solutions wε , uε with wε < uε for ε = ε∗ ,
(c) exactly one positive solution wε for ε > ε∗ .

Furthermore,
(d) 0 = limε→∞ ‖wε‖∞ < limε→0+ ‖wε‖∞ < limε→0+ ‖uε‖∞ < limε→0+ ‖vε‖∞ = ∞.

(ii) (See Fig. 3(ii).) For λ = λ0 , on the (ε,‖u‖∞)-plane, the bifurcation curve Σλ0 has two disjoint connected
components, the upper branch is ⊃-shaped with exactly one turning point, and the lower branch is a
monotone decreasing curve. Moreover, there exists a positive number ε∗ such that (1.1)–(1.3) has exactly
one degenerate positive solution uε∗ for ε = ε∗ . More precisely, (1.1)–(1.3) has:
(a) exactly three positive solutions uε , vε , wε with wε < uε < vε for 0 < ε < ε∗ ,
(b) exactly two positive solutions wε , uε with wε < uε for ε = ε∗ ,
(c) exactly one positive solution wε for ε > ε∗ .

Furthermore,
(d) 0 = limε→∞ ‖wε‖∞ < limε→0+ ‖wε‖∞ = limε→0+ ‖uε‖∞ < limε→0+ ‖vε‖∞ = ∞.

(iii) (See Fig. 3(iii).) For λ0 < λ < λ̃, the bifurcation curve Σλ is reversed S-shaped on the (ε,‖u‖∞)-plane.
Moreover, there exist two positive numbers ε∗ < ε∗ such that (1.1)–(1.3) has exactly one degenerate pos-
itive solution uε∗ and uε∗ for ε = ε∗ and ε = ε∗ , respectively. More precisely, (1.1)–(1.3) has:
(a) exactly three positive solutions uε , vε , wε with wε < uε < vε for ε∗ < ε < ε∗ ,
(b) exactly two positive solutions uε , vε with uε < vε for ε = ε∗ , and exactly two positive solutions wε ,

uε with wε < uε for ε = ε∗ ,
(c) exactly one positive solution vε for 0 < ε < ε∗ , and exactly one positive solution wε for ε > ε∗ .

Furthermore,
(d) limε→0+ ‖vε‖∞ = ∞ and limε→∞ ‖wε‖∞ = 0.

(iv) (See Fig. 3(iv).) For λ = λ̃, the bifurcation curve Σλ̃ is monotone decreasing on the (ε,‖u‖∞)-plane. More-
over, (1.1)–(1.3) has exactly one (cusp type) degenerate positive solution uε̃ . More precisely, for all ε > 0,
(1.1)–(1.3) has exactly one positive solution uε satisfying limε→0+ ‖uε‖∞ = ∞ and limε→∞ ‖uε‖∞ = 0.

(v) (See Fig. 3(v).) For λ > λ̃, the bifurcation curve Σλ is monotone decreasing on the (ε,‖u‖∞)-plane. More-
over, all positive solutions uε of (1.1)–(1.3) are nondegenerate. More precisely, for all ε > 0, (1.1)–(1.3)
has exactly one positive solution uε satisfying limε→0+ ‖uε‖∞ = ∞ and limε→∞ ‖uε‖∞ = 0.

We give next remark to Theorem 2.2.

Remark 1. Considering (1.1)–(1.3) with ε > 0 generalized to ε ∈ R, we define the bifurcation curve

Σ̃λ ≡ {(
ε,‖uε‖∞

)
: ε ∈R and uε is a positive solution of (1.1)

}
.

Actually, it can be easily proved that:

(i) For 0 < λ < λ0, the bifurcation curve Σ̃λ is reversed S-shaped on the (ε,‖u‖∞)-plane. Moreover,
there exists ε∗ < 0 such that (1.1)–(1.3) has exactly two positive solutions wε , uε with wε < uε

for ε∗ < ε � 0, and exactly one positive solution uε for ε = ε∗ , and no positive solution for ε < ε∗ .
See Fig. 6(i).
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Fig. 6. Global bifurcation of bifurcation curves Σ̃λ of (1.1)–(1.3) with ε > 0 generalized to ε ∈R and with varying λ ∈ (0, λ̃).

(ii) For λ = λ0, the bifurcation curve Σ̃λ0 is reversed S-shaped on the (ε,‖u‖∞)-plane. Moreover,
(1.1)–(1.3) has exactly one positive solution uε for ε = 0, and no positive solution for ε < 0. See
Fig. 6(ii).

Notice that, in Theorem 2.1, on the (λ,‖u‖∞)-plane, the bifurcation curve Sε is S-shaped for 0 <

ε < ε̃, see Fig. 2. While in Theorem 2.2 and Remark 1, on the (ε,‖u‖∞) -plane, the bifurcation curve
Σ̃λ is reversed S-shaped for 0 < λ < λ̃, see Fig. 6.

Let ε̃ = ε̃(σ ,κ,ρ), λ0 = λ0(σ ,κ,ρ), λ̃ = λ̃(σ ,κ,ρ), λ∗ = λ∗(ε), λ∗ = λ∗(ε), ε∗ = ε∗(λ) and ε∗ =
ε∗(λ) be the values in Theorems 2.1 and 2.2 for (1.1)–(1.3). We study the structure of the bifurcation
set BΓ in the next theorem.

Theorem 2.3. (See Fig. 5.) Consider (1.1)–(1.3) with (ε,λ) ∈ Fq. Then the bifurcation set BΓ = B1 ∪ B2 where

B1 ≡ {(
ε,λ∗(ε)

)
: 0 < ε � ε̃

}
and B2 ≡ {(

ε,λ∗(ε)
)
: 0 < ε � ε̃

}
.

Moreover, (1.1)–(1.3) has exactly three positive solutions for (ε,λ) ∈ M, exactly two positive solutions for
(ε,λ) ∈ BΓ \ {(ε̃, λ̃)}, and exactly one positive solution for (ε,λ) ∈ (Fq \ (BΓ ∪ M))∪{(ε̃, λ̃)}. More precisely,
the following assertions (i) and (ii) hold:

(i) Functions λ∗(ε) and λ∗(ε) are both continuous, strictly increasing on (0, ε̃] and satisfy 0 =
limε→0+ λ∗(ε) < limε→0+ λ∗(ε) = λ0 < λ̃ = λ∗(ε̃) = λ∗(ε̃).

(ii) Function ε∗(λ) is continuous, strictly increasing on (0, λ̃] and satisfies limλ→0+ ε∗(λ) = 0 and ε∗(λ̃) = ε̃.
Function ε∗(λ) is continuous, strictly increasing on (λ0, λ̃] and satisfies limλ→λ+

0
ε∗(λ) = 0 and

ε∗(λ̃) = ε̃.

In next remark, we give a precise characterization of the fold curve CΓ in the (ε,λ,‖u‖∞)-space.

Remark 2. (See Fig. 4.) Consider (1.1)–(1.3). Then, by Theorem 2.3(i), the fold curve CΓ = C1 ∪ C2
where

C1 ≡ {(
ε,λ∗(ε),‖uε,λ∗(ε)‖∞

)
: 0 < ε � ε̃

}
and C2 ≡ {(

ε,λ∗(ε),‖uε,λ∗(ε)‖∞
)
: 0 < ε � ε̃

}
.

Moreover, by applying (4.4)–(4.7) stated below, we are able to prove that:

(i) ‖uε,λ∗(ε)‖∞ > ‖uε,λ∗(ε)‖∞ for 0 < ε < ε̃ and ‖uε̃,λ∗(ε̃)‖∞ = ‖uε̃,λ∗(ε̃)‖∞ = ‖uε̃,λ̃‖∞ .
(ii) ‖uε,λ∗(ε)‖∞ is a continuous, strictly decreasing function of ε ∈ (0, ε̃] and ‖uε,λ∗(ε)‖∞ is a contin-

uous, strictly increasing function of ε ∈ (0, ε̃].
(iii) CΓ is a continuous curve in the (ε,λ,‖u‖∞)-space.

Observe that both λ∗(ε) and λ∗(ε) have continuous inverse functions on (0, ε̃]. Indeed, ε∗(λ) is
the inverse function of λ∗(ε) on (λ0, λ̃] and ε∗(λ) is the inverse function of λ∗(ε) on (0, λ̃].
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3. Lemmas

To prove our results (Theorems 2.1–2.3), we need the following Lemmas 3.1–3.8 in which we
develop new time-map techniques different from those developed in [1]. In particular, Lemma 3.3 is
a key lemma in the proofs of Theorems 2.1–2.3. In Lemma 3.3, for any fixed ε > 0, we prove that the
bifurcation curve Sε is either monotone increasing or S-shaped on the (λ,‖u‖∞)-plane. To apply the
time-map techniques for (1.1)–(1.3), in the following, we consider ε � 0. The time map formula which
we apply to study (1.1)–(1.3) takes the form as follows

√
λ = 1√

2

α∫
0

[
Fε(α) − Fε(u)

]−1/2
du ≡ Tε(α) for 0 < α < βε and ε � 0, (3.1)

where Fε(u) ≡ ∫ u
0 fε(t)dt and βε the unique positive zero of cubic polynomial fε(u) for ε > 0, and

we let βε=0 ≡ ∞. Observe that positive solutions uε,λ for (1.1)–(1.3) correspond to

‖uε,λ‖∞ = α and Tε(α) = √
λ. (3.2)

Thus, studying of the exact number of positive solutions of (1.1)–(1.3) for fixed ε � 0 is equivalent
to studying the shape of the time map Tε(α) on (0, βε); and studying the exact number of positive
solutions of (1.1)–(1.3) for fixed λ > 0 is equivalent to studying the number of roots of the equation
Tε(α) = √

λ on (0, βε) for varying ε > 0. Note that it can be proved that Tε(α) is a thrice differen-
tiable function of α ∈ (0, βε) for ε � 0. The proof is easy but tedious; we omit it.

We call a positive solution uε,λ of (1.1)–(1.3) is degenerate if T ′
ε(‖uε,λ‖∞) = 0 and is nondegenerate

if T ′
ε(‖uε,λ‖∞) �= 0. So to find the degenerate positive solutions of (1.1)–(1.3), we only need to find the

critical points of Tε(α) on (0, βε). It is known that a degenerate positive solution uε,λ of (1.1)–(1.3) is
of cusp type if T ′′

ε (‖uε,λ‖∞) = 0 and T ′′′
ε (‖uε,λ‖∞) �= 0, see Shi [6, p. 497] and [7, p. 214].

The main difficulty in proving our main results is to determine the exact number of critical points
of the time map Tε(α) on (0, βε) for all ε > 0. This question is partially answered in the following
Lemmas 3.1 and 3.2. Lemma 3.1 follows from [5, Theorems 2.6, 2.9 and 3.2] and Lemma 3.2 mainly
follows by applying [2, Theorem 2.1]; we omit the proofs.

Lemma 3.1. Consider (1.1)–(1.3). For any fixed ε > 0, the following assertions (i) and (ii) hold:

(i) limα→0+ Tε(α) = 0 and limα→β−
ε

Tε(α) = ∞.
(ii) If Tε(α) is not strictly increasing on (0, γε), then Tε(α) is strictly increasing on (0, γ̃ε) and strictly de-

creasing on (γ̃ε, γε) for some γ̃ε ∈ (0, γε).

Lemma 3.2. Consider (1.1)–(1.3). Then the following assertions (i) and (ii) hold:

(i) For any fixed ε � ( σ 3

27ρ )1/2 , Tε(α) is a strictly increasing function on (0, βε).

(ii) For any fixed positive ε � ( 7
10 ( σ 3

27ρ ))1/2 , Tε(α) has exactly one local maximum and one local minimum
on (0, βε).

However, there is a gap, what about the case where ε is between ( 7
10 ( σ 3

27ρ ))1/2 and ( σ 3

27ρ )1/2? First,
in the next Lemma 3.3, we prove

Lemma 3.3. Consider (1.1)–(1.3). For any fixed ε > 0, Tε(α) is either a strictly increasing function or has
exactly two critical points, a local maximum and a local minimum, on (0, βε).
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To prove Lemma 3.3, we develop some new time-map techniques. First, we define the auxiliary
function

Gε(α) = 8
√

2α
5
2 T ′′

ε (α). (3.3)

Note that the auxiliary function Gε(α) = 8
√

2α
5
2 T ′′

ε (α) used in this paper is different from the auxil-
iary function 12

√
2T ′

ε(α) + 8
√

2αT ′′
ε (α) used in Hung and Wang [1]. Moreover, the techniques used

in [1, Lemmas 3.4–3.5] for κ � 0 fails here under condition (1.3) 0 < κ � √
σρ , though it is expected

that similar results hold. So we need to develop new techniques to obtain the following Lemma 3.4.
The proof of Lemma 3.4 is rather long and technical, therefore we postpone it to Appendix B.

Lemma 3.4. Consider (1.1)–(1.3). For any fixed ε ∈ [( 7
10 ( σ 3

27ρ ))1/2, ( σ 3

27ρ )1/2], G ′
ε(α) > 0 for α ∈ [γε,βε).

For any fixed α > 0, let

Iα = {
ε > 0: α ∈ (0, βε)

}
.

Since βε is a continuous, strictly decreasing function of ε>0, and limε→0+ βε=∞ and limε→∞ βε=0,
we obtain that Iα = (0, ε(α)) where α = βε(α) , and ε(α) is strictly decreasing in α.

Lemma 3.5. Consider (1.1)–(1.3). For any fixed α > 0, T ′
ε(α) is a continuously differentiable, strictly increasing

function of ε ∈ Iα ∪ {0}.

Proof. First, for any fixed α > 0, it can be proved that T ′
ε(α) is a continuously differentiable function

of ε ∈ Iα ∪ {0}. The proof is easy but tedious; we omit it.
Secondly, since fε(u) = −εu3 + σu2 − κu + ρ , Fε(u) = ∫ u

0 fε(t)dt and by (3.1), we compute that

T ′
ε(α) = 1√

2

1∫
0

1

[Fε(α) − Fε(αv)]1/2
dv − α

2
√

2

1∫
0

fε(α) − fε(αv)v

[Fε(α) − Fε(αv)]3/2
dv

= 1

2
√

2α

α∫
0

ε (α4−u4)
2 − σ (α3−u3)

3 + ρ(α − u)

[−ε (α4−u4)
4 + σ (α3−u3)

3 − κ (α2−u2)
2 + ρ(α − u)]3/2

du

and

∂

∂ε
T ′
ε(α) = 1

96
√

2α

α∫
0

(α4 − u4)[3ε(α4 − u4) + 2σ(α3 − u3) − 12κ(α2 − u2) + 42ρ(α − u)]
[−ε (α4−u4)

4 + σ (α3−u3)
3 − κ (α2−u2)

2 + ρ(α − u)]5/2
du

>
1

48
√

2α

α∫
0

(α4 − u4)(α − u)[σ(α2 + αu + u2) − 6κ(α + u) + 21ρ]
[−ε (α4−u4)

4 + σ (α3−u3)
3 − κ (α2−u2)

2 + ρ(α − u)]5/2
du. (3.4)

Let

H(u) ≡ σ
(
α2 + αu + u2) − 6κ(α + u) + 21ρ

= σu2 + (σα − 6κ)u + (
σα2 − 6κα + 21ρ

)
.
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Therefore, the proof is complete if we can prove that

H(u) > 0 for any given numbers σ ,ρ,α > 0, 0 < κ �√
σρ. (3.5)

Note that the discriminant of quadratic polynomial H(u) is −3σ 2α2 + 12σκα + (36κ2 − 84σρ) ≡
H̃(α). By the assumption that κ � √

σρ , the discriminant of quadratic polynomial H̃(α) is
144σ 2(4κ2 − 7σρ) < 0. So H̃(α) < 0 for any given numbers σ ,ρ > 0, 0 < κ � √

σρ . This implies
that (3.5) holds. By (3.4) and (3.5), for any fixed α > 0, T ′

ε(α) is a strictly increasing function of
ε ∈ Iα ∪ {0}.

The proof of Lemma 3.5 is complete. �
We are now in a position to prove Lemma 3.3.

Proof of Lemma 3.3. First, we prove that, for any fixed ε > 0, Tε(α) is either a strictly increasing
function or has a local maximum and a local minimum, on (0, βε). By Lemma 3.2, we only need to

consider the case ( 7
10 ( σ 3

27ρ ))1/2 < ε < ( σ 3

27ρ )1/2.

For any fixed ( 7
10 ( σ 3

27ρ ))1/2 < ε < ( σ 3

27ρ )1/2, by Lemma 3.1(ii) (resp. Lemma 3.4), we know that
all (possible) critical points of Tε(α) on (0, γε] (resp. on [γε,βε)) are discrete. Moreover, since
limα→0+ Tε(α) = 0 and limα→β−

ε
Tε(α) = ∞ and by Lemma 3.1(i), we obtain that T ′

ε(α) changes
sign an even number of times or infinitely times. Assume that Tε(α) is neither a strictly increasing
function nor does it have exactly one local maximum and one local minimum on (0, βε). Then there
exist three numbers α1,α2,α3 ∈ (0, βε) such that α1 < α2 < α3 are critical points of Tε(α), α1,α3
are local maxima, and α2 is a local minimum. Thus T ′′

ε (α1), T ′′
ε (α3)� 0 and T ′′

ε (α2)� 0.

By Lemma 3.4, for any fixed ( 7
10 ( σ 3

27ρ ))1/2 < ε < ( σ 3

27ρ )1/2, Gε(α) = 8
√

2α
5
2 T ′′

ε (α) is a strictly in-
creasing function on [γε,βε). Since α2 � γε by Lemma 3.1(ii), we obtain that

8
√

2α
5
2
3 T ′′

ε (α3) = Gε(α3) > Gε(α2) = 8
√

2α
5
2

2 T ′′
ε (α2) � 0.

Therefore T ′′
ε (α3) > 0. This contradicts to that T ′′

ε (α3) � 0. So Tε(α) is either a strictly increasing
function or has exactly one local maximum and one local minimum on (0, βε).

Next, suppose that Tε(α) has exactly a local maximum αM and a local minimum αm for some
fixed ε > 0. Then 0 < αM < αm < βε by Lemma 3.1(i). We can prove that Tε(α) has exactly two
critical points αM ,αm on (0, βε) by applying Lemma 3.5 and similar arguments used in the proof of
[1, Lemma 3.3]; we omit it.

The proof of Lemma 3.3 is complete. �
Let

E =
{
ε > 0: Tε(α) has exactly two critical points,

a local maximum and a local minimum, on (0, βε)

}
.

By Lemma 3.3, for any ε > 0, Tε(α) is either a strictly increasing function or has exactly two critical
points, a local maximum and a local minimum, on (0, βε). Thus

E = {
ε > 0: T ′

ε(α) < 0 for some α ∈ (0, βε)
}
. (3.6)

We obtain the following two lemmas by modifying the same arguments used in the proof of
[1, Lemmas 3.7–3.8]; we omit the proofs.

Lemma 3.6. The set E is open and connected.
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Lemma 3.7. (0, ( 25
32 ( σ 3

27ρ ))1/2] ⊂ E.

The following Lemma 3.8(i) determine the shape of Tε=0(α) on (0,∞), and Lemma 3.8(ii) is a
basic comparison theorem for the time map formula. Lemma 3.8(i) follows from [5, Theorem 3.2] and
Lemma 3.8(ii) by modifying [5, Theorems 2.3 and 2.4]; we omit the proofs.

Lemma 3.8. Consider (1.1)–(1.3). The following assertions (i) and (ii) hold:

(i) Tε=0(α) has exactly one critical point at some α0 , a maximum, on (0,∞). Moreover, limα→0+ Tε=0(α) =
limα→∞ Tε=0(α) = 0.

(ii) For any fixed α > 0, Tε(α) is a continuous, strictly increasing function of ε ∈ Iα ∪ {0}.

4. Proofs of the main results

We first recall that a positive solution uε,λ of (1.1) is degenerate if T ′
ε(‖uε,λ‖∞) = 0 and is non-

degenerate if T ′
ε(‖uε,λ‖∞) �= 0. Also, a degenerate positive solution uε,λ of (1.1) is of cusp type if

T ′′
ε (‖uε,λ‖∞) = 0 and T ′′′

ε (‖uε,λ‖∞) �= 0.

Proof of Theorem 2.1. To prove Theorem 2.1, by (3.1) and Lemma 3.1(i), it suffices to prove that there
exists a positive number ε̃ = ε̃(σ ,κ,ρ) such that the following parts (I)–(III) hold:

(I) For 0 < ε < ε̃, on (0, βε), Tε(α) has exactly two critical points, a local maximum at some α−
ε and

a local minimum at some α+
ε (> α−

ε ), satisfying λ∗ = (Tε(α
−
ε ))2 and λ∗ = (Tε(α

+
ε ))2.

(II) For ε = ε̃, T ε̃(α) is a strictly increasing function and has exactly one critical point, at some α̃,
on (0, βε̃). Moreover, T ′

ε̃
(α̃) = 0, T ′

ε̃
(α) > 0 for α ∈ (0, βε̃) \ {α̃}, T ′′

ε̃
(α̃) = 0 and T ′′′

ε̃
(α̃) �= 0. (So

(1.1)–(1.3) has exactly one (cusp type) degenerate positive solution uλ̃ with λ̃ ≡ (T ε̃(α̃))2 and
α̃ = ‖uλ̃‖∞ .)

(III) For ε > ε̃, Tε(α) is a strictly increasing function and has no critical point on (0, βε). Moreover,
T ′
ε(α) > 0 for α ∈ (0, βε).

Note that, by (3.2) and the above parts (I)–(III), we obtain immediately the exact multiplicity result
of positive solutions of (1.1)–(1.3) for 0 < ε < ε̃ and the uniqueness result of positive solution of
(1.1)–(1.3) for ε � ε̃. Moreover, ordering properties and asymptotic behaviors of positive solutions of
(1.1)–(1.3) in parts (I)–(III) can be obtained easily. We then prove parts (I)–(III) as follows.

By Lemmas 3.2, 3.6 and 3.7, we obtain that E = (0, ε̃) where ε̃ = sup E satisfies ( 25
32 ( σ 3

27ρ ))1/2 <

ε̃ < ( σ 3

27ρ )1/2. So, for 0 < ε < ε̃, on (0, βε), Tε(α) has exactly two critical points, a local maximum at

some α−
ε and a local minimum at some α+

ε (> α−
ε ), satisfying λ∗ = (Tε(α

−
ε ))2 and λ∗ = (Tε(α

+
ε ))2.

So part (I) holds.
For ε > ε̃, by Lemma 3.5 and (3.6), we obtain that

T ′
ε(α) > T ′

ε̃(α) � 0 for α ∈ (0, βε) ⊂ (0, βε̃),

and hence Tε(α) has no critical point on (0, βε). So part (III) holds.
We prove the remaining part (II). For ε = ε̃, we know that

T ′
ε̃(α) � 0 on (0, βε̃). (4.1)

We first prove the existence of a critical point of T ε̃(α) on (0, βε̃). Choose a sequence {εn} ⊂ E = (0, ε̃)

such that εn ↗ ε̃ as n → ∞. Let α−
εn

< α+
εn

be two critical points of Tεn (α) on (0, βεn ) for each n ∈ N

(see Fig. 7). Then by Lemma 3.5 again, we obtain that

T ′
ε

(
α−

ε

)
< T ′

ε

(
α−

ε

) = 0 and T ′
ε

(
α+

ε

)
< T ′

ε

(
α+

ε

) = 0.

n n+1 n+1 n+1 n n+1 n+1 n+1
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Fig. 7. Graphs of Tε(α) for α ∈ (0, βε) with varying ε � 0.

Hence α−
εn

< α−
εn+1

< α+
εn+1

< α+
εn

and

α−
εn

< α̃− ≡ lim
n→∞α−

εn
� α̃+ ≡ lim

n→∞α+
εn

< α+
εn

for all n ∈N.

These imply that

T ′
εn

(
α̃−)

, T ′
εn

(
α̃+)

< 0 for all n ∈N.

By Lemma 3.5, we obtain that T ′
ε(α) is a continuous function of ε ∈ Iα . Thus

T ′
ε̃

(
α̃−) = lim

n→∞ T ′
εn

(
α̃−)

� 0 and T ′
ε̃

(
α̃+) = lim

n→∞ T ′
εn

(
α̃+)

� 0. (4.2)

So T ′
ε̃
(α̃−) = T ′

ε̃
(α̃+) = 0 by (4.1) and (4.2), and hence T ε̃(α) has critical points at α̃−, α̃+

on (0, βε̃).
We then prove the uniqueness of critical point of T ε̃(α) on (0, βε̃). That is, we prove that α̃ ≡

α̃− = α̃+ is the unique critical point of T ε̃(α) on (0, βε̃). Suppose that α̂ < ᾱ are two critical points
of T ε̃(α) on (0, βε̃). We know that all (possible) critical points of Tε(α) on (0, βε) are discrete as in
the proof of Lemma 3.3. Hence there exist positive numbers α1 < α̂ < α2 < ᾱ such that

T ′
ε̃(α1), T ′

ε̃(α2) > 0.

By Lemma 3.5, we obtain that T ′
ε(α) is a continuous, strictly increasing function of ε ∈ Iα . Hence

there exists a positive ε̂ < ε̃ such that

T ′
ε̂(α1) > 0, T ′

ε̂(α̂) < 0, T ′
ε̂(α2) > 0, T ′

ε̂(ᾱ) < 0.

Thus T ε̂(α) has at least two local maxima on (0, βε̂), which contradicts to the facts that ε̂ ∈ E and
T ε̂(α) has exactly one local maximum on (0, βε̂). So T ε̃(α) has at most one critical point on (0, βε̃).
By the above analysis,

T ′
ε̃(α̃) = 0 and T ′

ε̃(α) > 0 for α ∈ (0, βε̃) \ {α̃}. (4.3)

Next, if T ′′
ε̃
(α̃) > 0 (resp. T ′′

ε̃
(α̃) < 0), then T ε̃(α) has a local minimum (resp. a local maximum)

at α̃, which contradicts to (4.3). So T ′′
˜ (α̃) = 0. By Lemma 3.1(ii), we have

ε
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α+
εn
� γεn > γε̃ for all n ∈N,

and hence α̃ = limn→∞ α+
εn

� γε̃ . By Lemma 3.4, G ′
ε̃
(α) > 0 for all α ∈ [γε̃, βε̃). So

G ′
ε̃(α̃) = α̃

3
2
[
20

√
2T ′′

ε̃ (α̃) + 8
√

2α̃T ′′′
ε̃ (α̃)

]
> 0.

Therefore T ′′′
ε̃

(α̃) > 0 since T ′′
ε̃
(α̃) = 0. This completes the proof of part (II).

The proof of Theorem 2.1 is complete. �
Proof of Theorem 2.2. Recall (3.1) with ε � 0,

√
λ = 1√

2

α∫
0

[
Fε(α) − Fε(u)

]−1/2
du ≡ Tε(α) for 0 < α < βε,

where βε the unique positive zero of cubic polynomial fε(u) for ε > 0 and βε=0 = ∞. Thus, studying
the exact number of positive solutions of (1.1)–(1.3) for fixed λ > 0 is equivalent to studying the
number of roots of the equation Tε(α) = √

λ on (0, βε) for varying ε > 0. Since we have studied
the behaviors of Tε(α) for all varying ε � 0 (see the proofs of Theorem 2.1 and Lemma 3.8(i) and
Fig. 7), there exist two positive numbers λ0 (= λ0(σ ,κ,ρ)) < λ̃ (= λ̃(σ ,κ,ρ)) such that the following
parts (I)–(III) hold:

(I) For 0 < λ� λ0, there exists a positive number ε∗ = ε∗(λ) such that the equation Tε(α) = √
λ has

exactly three roots on (0, βε) for 0 < ε < ε∗ , exactly two roots on (0, βε) for ε = ε∗ , and exactly
one root on (0, βε) for ε > ε∗ .

(II) For λ0 < λ < λ̃, there exist two positive numbers ε∗ (= ε∗(λ)) < ε∗ (= ε∗(λ)) such that the
equation Tε(α) = √

λ has exactly three roots on (0, βε) for ε∗ < ε < ε∗ , exactly two roots on
(0, βε) for ε = ε∗ and ε = ε∗ , and exactly one root on (0, βε) for 0 < ε < ε∗ and ε > ε∗ .

(III) For λ� λ̃, the equation Tε(α) = √
λ has exactly one root on (0, βε) for all ε > 0.

Notice that λ0 = (Tε=0(α0))
2 and λ̃ = (T ε̃(α̃))2, where α0 is the unique critical point of Tε=0(α)

and α̃ be the unique critical point of T ε̃(α). Hence (3.2) and the above parts (I)–(III) imply immedi-
ately the exact multiplicity result of positive solutions of (1.1)–(1.3) for λ ∈ (0, λ̃) and the uniqueness
result of positive solution of (1.1)–(1.3) for λ � λ̃. Moreover, ordering properties and asymptotic be-
haviors of positive solutions of (1.1)–(1.3) in parts (I)–(III) can be obtained easily.

The proof of Theorem 2.2 is complete. �
Proof of Theorem 2.3. By Theorem 2.1, for any ε � ε̃, we obtain that (1.1)–(1.3) has exactly one
positive solution for all λ > 0. In addition, for any ε ∈ (0, ε̃), there exist two positive numbers
λ∗(ε) < λ∗(ε) such that (1.1)–(1.3) has exactly three positive solutions for λ∗(ε) < λ < λ∗(ε), exactly
two positive solutions for λ = λ∗(ε) and λ∗(ε), and exactly one positive solution for 0 < λ < λ∗(ε)

and λ > λ∗(ε), where λ∗(ε) = (Tε(α
+
ε ))2 and λ∗(ε) = (Tε(α

−
ε ))2 in which α−

ε < α+
ε are two critical

points of Tε(α) on (0, βε).
First, letting α−

ε̃
= α+

ε̃
≡ α̃, we prove that α−

ε (resp. α+
ε ) is a continuous, strictly increasing (resp.

strictly decreasing) function on (0, ε̃] and limε→0+ α−
ε = α0 (resp. limε→0+ α+

ε = ∞) as follows (cf.
Fig. 7.) By similar arguments in the proof of Theorem 2.1, we obtain that α−

ε (resp. α+
ε ) is a strictly

increasing (resp. strictly decreasing) function on (0, ε̃]. For any fixed α ∈ (α0, α̃), by Theorem 2.1(ii)
and Lemma 3.8(i), we obtain that

T ′
ε=0(α) < 0 and T ′

ε̃(α) > 0.
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Then by Lemma 3.5, T ′
ε(α) is a continuously differentiable, strictly increasing function of ε ∈ [0, ε̃].

This implies that there exists a unique ε ∈ (0, ε̃) such that T ′
ε(α) = 0. So

α−
ε : (0, ε̃] → (α0, α̃] is a strictly increasing, surjective function, (4.4)

and hence α−
ε is a continuous function on (0, ε̃] and limε→0+ α−

ε = α0. Similarly, we can prove that

α+
ε : (0, ε̃] → [α̃,∞) is a strictly decreasing, surjective function, (4.5)

and hence α+
ε is also a continuous function on (0, ε̃] and limε→0+ α+

ε = ∞.
Secondly, let

λ∗(0) ≡ 0, λ∗(0) ≡ λ0 = (
Tε=0(α0)

)2
, and λ∗(ε̃) = λ∗(ε̃) ≡ λ̃ = (

T ε̃(α̃)
)2

.

By (4.4), (4.5), Lemma 3.5 and Lemma 3.8(ii), it can be proved that λ∗ = (Tε(α
−
ε ))2 and λ∗ =

(Tε(α
+
ε ))2 satisfy

λ∗(ε) : [0, ε̃] → [λ0, λ̃] is a continuous, strictly increasing function (4.6)

and

λ∗(ε) : [0, ε̃] → [0, λ̃] is a continuous, strictly increasing function. (4.7)

Moreover,

lim
ε→0+ λ∗(ε) = λ0, lim

ε→0+ λ∗(ε) = 0, and λ∗(ε̃) = λ∗(ε̃) = λ̃. (4.8)

The proofs are easy but tedious and hence we omit them.
Finally, by (4.6)–(4.8), λ∗(ε) and λ∗(ε) both have continuous inverse functions on (0, ε̃]. Indeed,

by Theorem 2.2 and (3.1), ε∗(λ) = (λ∗)−1(ε) on (λ0, λ̃] and ε∗(λ) = (λ∗)−1(ε) on (0, λ̃] where ε∗(λ̃) =
ε∗(λ̃) ≡ ε̃. So we obtain that

ε∗(λ) : (0, λ̃] → (0, ε̃] is a continuous, strictly increasing function

and

ε∗(λ) : (λ0, λ̃] → (0, ε̃] is a continuous, strictly increasing function.

Moreover,

lim
λ→0+ ε∗(λ) = lim

λ→λ+
0

ε∗(λ) = 0.

The proof of Theorem 2.3 is complete. �
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Fig. 8. (i) The graph of f ε̌ (u) in (5.2). (ii) The conjectured bifurcation curve of (5.2).

5. Conjectures

In this section, we analyze (1.1), (1.2) more precisely. First, if

κ �√
σρ,

the exact multiplicity results of positive solutions for (1.1), (1.2) was determine precisely by Theo-
rem 2.1 and [1, Theorem 2.1]. By some numerical simulations, we give next three conjectures on the
shape of bifurcation curves Sε of positive solutions of (1.1), (1.2) with κ >

√
σρ .

Conjecture 5.1. Consider (1.1), (1.2) where

√
σρ < κ �

√
3σρ.

Then there exists a positive number ε̃ = ε̃(σ ,κ,ρ) satisfying

(
25

32

(
σ 3

27ρ

))1/2

< ε̃ <

(
σ 3

27ρ

)1/2

such that all results in Theorem 2.1(i)–(iii) hold.

While

κ >
√

3σρ, (5.1)

we remark that there exists some ε̌ > 0 such that cubic nonlinearity f ε̌(u) has three positive zeros
a < b < c and

∫ c
a f ε̌(t)dt > 0 (see Fig. 8(i).) For which f ε̌(u), it is easy to check that a + c > 2b and

there exists μ ∈ (b, c) such that
∫ μ

a f ε̌(t)dt = 0. So problem (1.1), (1.2), (5.1) can be written as

{
u′′(x) + λε̌(u − a)(u − b)(c − u) = 0, −1 < x < 1, u(−1) = u(1) = 0,

λ, ε̌ > 0, 0 < a < b < c, a + c > 2b.
(5.2)

It was conjectured that the bifurcation curve of positive solution of (5.2) is broken S-shaped (see
Fig. 8(ii)) on the (λ,‖u‖∞)-plane. A proof was claimed by Smoller and Wasserman [8, Theorem 2.1],
but their proof has a gap. Assuming additional different conditions on constants a, b and c, Wang [9]
and Korman, Li and Ouyang [3] gave partial proofs of the above conjecture independently. For this
conjecture, Korman, Li and Ouyang [4] gave a computer-assisted proof. Further investigation on this
long-standing conjecture is needed. We give next two conjectures for (1.1), (1.2), (5.1).
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Conjecture 5.2. Consider (1.1), (1.2) where√
3σρ < κ < 2

√
σρ. (5.3)

Then there exist two positive numbers ε̃0 = ε̃0(σ ,κ,ρ) < ε0 = ε0(σ ,κ,ρ) such that the following asser-
tions (i)–(iii) hold:

(i) (See Fig. 2(i).) If 0 < ε < ε̃0 , then the bifurcation curve Sε is S-shaped on the (λ,‖u‖∞)-plane. Moreover,
the exact multiplicity results of positive solutions in Theorem 2.1(i) hold.

(ii) (See Fig. 8(ii).) If ε̃0 � ε < ε0 , then the bifurcation curve Sε is broken S-shaped on the (λ,‖u‖∞)-plane.
Moreover, there exist λ∗ > 0 such that (1.1), (1.2), (5.3) has exactly three positive solutions for λ > λ∗ ,
exactly two positive solutions for λ = λ∗ , and exactly one positive solution for 0 < λ < λ∗ .

(iii) (See Fig. 2(iii).) If ε � ε0 , then the bifurcation curve Sε is a monotone curve on the (λ,‖u‖∞)-plane.
Moreover, (1.1), (1.2), (5.3) has exactly one positive solution for all λ > 0.

Conjecture 5.3. Consider (1.1), (1.2) where

κ � 2
√

σρ. (5.4)

Then there exists a positive number ε0 = ε0(σ ,κ,ρ) such that the following assertions (i) and (ii) hold:

(i) (See Fig. 8(ii).) If 0 < ε < ε0 , then the bifurcation curve Sε is broken S-shaped on the (λ,‖u‖∞)-plane.
Moreover, there exist λ∗ > 0 such that (1.1), (1.2), (5.4) has exactly three positive solutions for λ > λ∗ ,
exactly two positive solutions for λ = λ∗ , and exactly one positive solution for 0 < λ < λ∗ .

(ii) (See Fig. 2(iii).) If ε � ε0 , then the bifurcation curve Sε is a monotone curve on the (λ,‖u‖∞)-plane.
Moreover, (1.1), (1.2), (5.4) has exactly one positive solution for all λ > 0.
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Appendix A

If fε(u) satisfies (1.1)–(1.3), for any ε > 0, we prove that fε(u) has a unique positive zero at some
βε > γε = σ/(3ε). We first compute that

f ′
ε(u) = −3εu2 + 2σu − κ. (A.1)

(i) (See Fig. 1(i).) If σ 2 > 3εκ , then fε(u) has exactly two critical points, a local minimum at p1 =
σ−

√
σ 2−3εκ
3ε ∈ (0, γε) and a local maximum at p2 = σ+

√
σ 2−3εκ
3ε ∈ (γε,∞). We compute that

fε(p1) = (−εu3 + σu2 − κu + ρ
)∣∣

u=p1

=
(

1

3
σu2 − 2

3
κu + ρ

)∣∣∣∣
u=p1

since f ′
ε(p1) = −3εp2

1 + 2σ p1 − κ = 0. Let Q 1(u) ≡ 1
3 σu2 − 2

3 κu + ρ , then the discriminant of

quadratic polynomial Q 1(u) is 4
9 (κ2 − 3σρ) < 0 by (1.3). So fε(p1) = Q 1(p1) > 0, and hence

fε(γε) > 0 and f ′
ε(γε) > 0. So fε(u) has a unique positive zero at some βε > γε.
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(ii) (See Fig. 1(ii).) If σ 2 = 3εκ , then f ′
ε(γε) = 0 and f ′

ε(u) < 0 on (0, γε) ∪ (γε,∞) by (A.1). We
compute that

fε(γε) = (−εu3 + σu2 − κu + ρ
)∣∣

u=γε

=
(

2

3
σu2 − κu + ρ

)∣∣∣∣
u=γε

since γε = σ/(3ε). Let Q 2(u) ≡ 2
3 σu2 − κu + ρ , then the discriminant of quadratic polynomial

Q 2(u) is κ2 − 8
3 σρ < 0 by (1.3). So fε(γε) = Q 2(γε) > 0. So fε(u) has a unique positive zero at

some βε > γε.

(iii) (See Fig. 1(iii).) If σ 2 < 3εκ , then f ′
ε(γε) < 0 and f ′

ε(u) < 0 on (0,∞) by (A.1). We obtain
fε(γε) > 0 by the same argument in part (ii). So fε(u) has a unique positive zero at some
βε > γε.

So by above (i)–(iii), for any ε > 0, fε(u) has a unique positive zero at some βε > γε .

Appendix B

Proof of Lemma 3.4. The proof of Lemma 3.4 is rather technical, so we divide the proof into next
Steps 1–5.

Step 1. We compute G ′
ε(α).

By (3.1) and (3.3), we compute that

Gε(α) = 8
√

2α
5
2 T ′′

ε (α)

= −8α
5
2

1∫
0

fε(α) − fε(αv)v

[Fε(α) − Fε(αv)]3/2
dv − 4α

7
2

1∫
0

f ′
ε(α) − f ′

ε(αv)v2

[Fε(α) − Fε(αv)]3/2
dv

+ 6α
7
2

1∫
0

[ fε(α) − fε(αv)v]2

[Fε(α) − Fε(αv)]5/2
dv

and

G ′
ε(α) = 1√

α

α∫
0

Kε(α, u)

[�Fε]7/2
du, (B.1)

where

Kε(α, u) = −20(�Fε)
2(� fε) − 22(�Fε)

2(� f̃ε) − 4(�Fε)
2(� f̂ε)

+ 33(�Fε)(� fε)
2 + 18(�Fε)(� fε)(� f̃ε) − 15(� fε)

3, (B.2)

�Fε = Fε(α) − Fε(u), (B.3)
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� fε = α fε(α) − u fε(u), (B.4)

� f̃ε = α2 f ′
ε(α) − u2 f ′

ε(u), (B.5)

� f̂ε = α3 f ′′
ε (α) − u3 f ′′

ε (u). (B.6)

For 0 < u < α, we let A ≡ ε(α4 − u4), B ≡ σ(α3 − u3), C ≡ κ(α2 − u2), D ≡ ρ(α − u). Then
A, B, C, D > 0. Since fε(u) = −εu3 + σu2 − κu + ρ and by (B.3)–(B.6), we obtain that

�Fε = −A/4 + B/3 − C/2 + D, (B.7)

� fε = −A + B − C + D, (B.8)

� f̃ε = −3A + 2B − C, (B.9)

� f̂ε = −6A + 2B. (B.10)

Substituting (B.7)–(B.10) into (B.2), we have that

Kε(α, u) = 1

72

(
168ABC − 1356AB D − 504AC D − 168BC D + 9A3 − 144D3 − 2AB2

+ 12A2 B + 90AC2 − 207A2C − 60B2C + 2646AD2 + 1134A2 D − 1248B D2

+ 560B2 D + 468C D2 + 72C2 D
)
. (B.11)

So Lemma 3.4 holds if we can prove that Kε(α, u) > 0 for any fixed ε ∈ [( 7
10 ( σ 3

27ρ ))1/2, ( σ 3

27ρ )1/2],
0 � κ � √

σρ , α ∈ [γε,βε) and 0 < u < α.

Step 2. We make a transformation for Kε(α, u).

Although both Tε(α) and Gε(α) are only defined for α ∈ (0, βε), Kε(α, u) is well defined for all

α ∈ R. So Lemma 3.4 holds if we can prove that Kε(α, u) > 0 for any fixed ε ∈ [( 7
10 ( σ 3

27ρ ))1/2, ( σ 3

27ρ )1/2],
0 � κ � √

σρ , α � γε and 0 < u < α. Since γε = σ
3ε , we consider Kε(α, u) when α � γε , 0 � κ �√

3εγ 2
ε , 7

10εγ 3
ε � ρ � εγ 3

ε , and 0 < u < α. Let

α = (r + 1)γε, r ∈ [0,∞),

κ = sεγ 2
ε , s ∈ [0,

√
3 ],

ρ = tεγ 3
ε , t ∈

[
7

10
,1

]
,

u = yγε, y ∈ (0, r + 1).

Thus

A = ε
(
α4 − u4) = εγ 4

ε

[
(r + 1)4 − y4], (B.12)

B = σ
(
α3 − u3) = 3εγ 4

ε

[
(r + 1)3 − y3], (B.13)

C = κ
(
α2 − u2) = sεγ 4

ε

[
(r + 1)2 − y2], (B.14)

D = ρ(α − u) = tεγ 4
ε (r + 1 − y). (B.15)
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Substituting (B.12)–(B.15) into (B.11), we obtain that

Kε(α, u) = 1

8
ε3γ 12

ε (r + 1 − y)3 K̃ε(r, s, t, y), (B.16)

where

K̃ε(r, s, t, y) =
9∑

j=0

k j(r, s, t)y j (B.17)

with

k0(r, s, t) = (
3 − 122t2 + 10s2 − 16t3 + 8s2t + 234t − 27s + 52st2 − 112st

)
+ (−392st + 16s2t + 50t2 + 736t + 50s2 + 27 − 125s + 52st2)r

+ (
100s2 + 466t2 + 8s2t − 243s + 730t − 504st + 106

)
r2

+ (−280st + 238 + 294t2 + 240t + 100s2 − 285s
)
r3

+ (−265s − 56st + 50s2 + 336 + 190t
)
r4 + (−207s + 304t + 308 + 10s2)r5

+ (126t − 105s + 182)r6 + (66 − 23s)r7 + 13r8 + r9,

k1(r, s, t) = (
9 + 52st2 + 468t + 30s2 − 81s − 224st − 122t2 + 16s2t

)
+ (

16s2t + 172t2 − 560st + 72 − 294s + 1004t + 120s2)r

+ (
294t2 + 180s2 − 435s − 448st + 456t + 246

)
r2

+ (−112st + 24t + 468 + 120s2 − 420s
)
r3 + (

30s2 + 356t + 540 − 375s
)
r4

+ (252t + 384 − 246s)r5 + (162 − 69s)r6 + 36r7 + 3r8,

k2(r, s, t) = (
18 + 40s2 − 135s + 702t − 224st + 8s2t − 122t2)
+ (

126 + 294t2 + 804t + 120s2 − 355s − 336st
)
r

+ (−370s − 120t + 366 − 112st + 120s2)r2 + (
40s2 + 156t − 330s + 570

)
r3

+ (−295s + 378t + 510)r4 + (258 − 115s)r5 + 66r6 + 6r7,

k3(r, s, t) = (−125s + 40s2 + 268t − 168st + 30 + 294t2)
+ (−236s − 80t + 80s2 + 176 − 112st

)
r

+ (−258s + 156t + 40s2 + 414
)
r2 + (496 − 308s + 504t)r3

+ (314 − 161s)r4 + 96r5 + 10r6,

k4(r, s, t) = (
36 − 61s − 56st + 34t + 30s2) + (

172 − 148t − 103s + 30s2)r

+ (−203s + 378t + 312)r2 + (264 − 161s)r3 + 100r4 + 12r5,

k5(r, s, t) = (−7s + 10s2 + 36 − 200t
) + (252t + 132 − 62s)r + (168 − 115s)r2 + 84r3 + 12r4,

k6(r, s, t) = (−13s + 28 + 126t) + (72 − 69s)r + 54r2 + 10r3,
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k7(r, s, t) = 16 − 23s + 24r + 6r2,

k8(r, s, t) = 7 + 3r,

k9(r, s, t) = 1.

So Lemma 3.4 holds if we can prove K̃ε(r, s, t, y) > 0 for any fixed y ∈ (0, r + 1), (r, t) ∈ Ω ≡ [0,∞)×
[ 7

10 ,1] and s ∈ [0,
√

3 ].

Step 3. For any fixed y ∈ (0, r + 1) and (r, t) ∈ Ω ≡ [0,∞) × [ 7
10 ,1], we show that K̃ε(r, s, t, y) is

strictly decreasing with respect to s on [0,
√

3 ].

By (B.11), we compute that

72
∂ Kε

∂C
= −207A2 − 60B2 − 504AD − 168B D + 180AC

+ 468D2 + 144C D + 168AB (B.18)

and

72
∂2 Kε

∂C2
= 180A + 144D > 0.

By (B.12)–(B.16), we compute that

∂2 K̃ε

∂s2
= 8

ε3γ 12
ε (r + 1 − y)3

∂2 Kε

∂s2

= 8

ε3γ 12
ε (r + 1 − y)3

[
∂2 Kε

∂C2

(
∂C

∂s

)2

+ ∂ Kε

∂C

∂2C

∂s2

]
= 1

9ε3γ 12
ε (r + 1 − y)3

(180A + 144D)
[
εγ 4

ε

(
(r + 1)2 − y2)]2

= {
20

[
(r + 1)3 + (r + 1)2 y + (r + 1)y2 + y3] + 18t

}
(r + 1 + y)2 > 0.

This implies that, for any fixed y ∈ (0, r + 1) and (r, t) ∈ Ω , K̃ε(r, s, t, y) is concave up as a function
of s ∈ [0,

√
3 ]. Hence K̃ε(r, s, t, y) is strictly decreasing with respect to s on [0,

√
3 ] if we can prove

that

∂ K̃ε

∂s
(r,

√
3, t, y) < 0 for any y ∈ (0, r + 1), (r, t) ∈ Ω. (B.19)

By (B.12)–(B.15) and (B.18), we compute that

∂ K̃ε

∂s
= 8

ε3γ 12
ε (r + 1 − y)3

∂ Kε

∂C

∂C

∂s

= [−207A2 − 60B2 − 504AD − 168B D + 180AC + 468D2 + 144C D + 168AB](r + 1 + y)

9ε2γ 8
ε (r + 1 − y)2

,

and
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−∂ K̃ε

∂s
(r,

√
3, t, y) = (r + 1 + y)

6∑
j=0

g j(r, t)y j, (B.20)

where

g0(r, t) = 23r6 + 82r5 + (125 − 20
√

3 )r4 + (140 − 80
√

3 + 56t)r3 + (145 − 120
√

3 + 224t)r2

+ (98 − 80
√

3 + 280t − 16
√

3t)r + (
27 − 20

√
3 + 112t − 16

√
3t − 52t2),

g1(r, t) = 46r5 + 118r4 + (132 − 40
√

3 )r3 + (148 − 120
√

3 + 56t)r2

+ (142 − 120
√

3 + 168t)r + (54 − 40
√

3 + 112t − 16
√

3t),

g2(r, t) = 69r4 + 108r3 + (90 − 40
√

3 )r2 + (132 − 80
√

3 + 56t)r + (81 − 40
√

3 + 112t),

g3(r, t) = 92r3 + 108r2 + (60 − 40
√

3 )r + (44 − 40
√

3 + 56t),

g4(r, t) = 69r2 + 26r + (17 − 20
√

3 ),

g5(r, t) = 46r − 10,

g6(r, t) = 23.

To prove (B.19), we claim that, for any fixed y ∈ (0, r + 1) and (r, t) ∈ Ω ,

n∑
j=0

g j(r, t)y j �
(

y

r + 1

)n

g̃n(r, t) > 0, n = 0,1,2,3,4,5,6, (B.21)

where

g̃n(r, t) =
n∑

j=0

(r + 1) j g j(r, t), n = 0,1,2,3,4,5,6.

First, we compute that, g̃0(r, t) = g0(r, t),

g̃1(r, t) = 69r6 + 246r5 + (375 − 60
√

3 )r4 + (420 − 240
√

3 + 112t)r3

+ (435 − 360
√

3 + 448t)r2 + (294 − 240
√

3 + 560t − 32
√

3t)r

+ (
81 − 60

√
3 + 224t − 32

√
3t − 52t2),

g̃2(r, t) = 138r6 + 492r5 + (750 − 100
√

3 )r4 + (840 − 400
√

3 + 168t)r3

+ (870 − 600
√

3 + 672t)r2 + (588 − 400
√

3 + 840t − 32
√

3t)r

+ (
162 − 100

√
3 + 336t − 32

√
3t − 52t2),

g̃3(r, t) = 230r6 + 876r5 + (1410 − 140
√

3 )r4 + (1480 − 560
√

3 + 224t)r3

+ (1290 − 840
√

3 + 840t)r2 + (780 − 560
√

3 + 1008t − 32
√

3t)r

+ (
206 − 140

√
3 + 392t − 32

√
3t − 52t2),
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g̃4(r, t) = 299r6 + 1178r5 + (1945 − 160
√

3 )r4 + (1980 − 640
√

3 + 224t)r3

+ (1565 − 960
√

3 + 840t)r2 + (874 − 640
√

3 + 1008t − 32
√

3t)r

+ (
223 − 160

√
3 + 392t − 32

√
3t − 52t2),

g̃5(r, t) = 345r6 + 1398r5 + (2355 − 160
√

3 )r4 + (2340 − 640
√

3 + 224t)r3

+ (1695 − 960
√

3 + 840t)r2 + (870 − 640
√

3 + 1008t − 32
√

3t)r

+ (
213 − 160

√
3 + 392t − 32

√
3t − 52t2),

g̃6(r, t) = 368r6 + 1536r5 + (2700 − 160
√

3 )r4 + (2800 − 640
√

3 + 224t)r3

+ (2040 − 960
√

3 + 840t)r2 + (1008 − 640
√

3 + 1008t − 32
√

3t)r

+ (
236 − 160

√
3 + 392t − 32

√
3t − 52t2).

As regarded as a polynomial of r, the coefficients of g̃n(r, t) are all positive for n ∈ {0,1,2,3,4,5,6},
where t ∈ [ 7

10 ,1]. So for any fixed y ∈ (0, r + 1) and (r, t) ∈ Ω ,

g̃n(r, t) > 0, n = 0,1,2,3,4,5,6. (B.22)

Suppose (B.21) holds for n = l where l ∈ {0,1,2,3,4,5}. By (B.22) and since 0 < y < r + 1, we have

l+1∑
j=0

g j(r, t)y j =
l∑

j=0

g j(r, t)y j + gl+1(r, t)yl+1

�
[(

y

r + 1

)l

g̃l(r, t)

](
y

r + 1

)
+ gl+1(r, t)yl+1

=
(

y

r + 1

)l+1
[

l∑
j=0

(r + 1) j g j(r, t)

]
+

(
y

r + 1

)l+1

(r + 1)l+1 gl+1(r, t)

=
(

y

r + 1

)l+1 l+1∑
j=0

(r + 1) j g j(r, t)

=
(

y

r + 1

)l+1

g̃l+1(r, t). (B.23)

So (B.21) holds for n = l + 1 where l ∈ {0,1,2,3,4,5}. By (B.20)–(B.23), we obtain that

∂ K̃ε

∂s
(r,

√
3, t, y) = −(r + 1 + y)

6∑
j=0

g j(r, t)y j < 0 for any y ∈ (0, r + 1), (r, t) ∈ Ω,

and hence (B.19) holds.
So for any fixed y ∈ (0, r + 1) and (r, t) ∈ Ω ≡ [0,∞) × [ 7

10 ,1], K̃ε(r, s, t, y) is strictly decreasing

with respect to s on [0,
√

3 ].

Step 4. We show that K̃ε(r, s, t, y) > 0 for any fixed y ∈ (0, r + 1), (r, t) ∈ Ω ≡ [0,∞) × [ 7
10 ,1] and

s ∈ [0,
√

3 ].
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By Step 3, Step 4 holds if we can prove that

K̃ε(r,
√

3, t, y) > 0 for any y ∈ (0, r + 1), (r, t) ∈ Ω. (B.24)

By (B.17),

K̃ε(r,
√

3, t, y) =
9∑

j=0

h j(r, t)y j, (B.25)

where

h0(r, t) = r9 + 13r8 + (66 − 23
√

3 )r7 + (182 − 105
√

3 + 126t)r6 + (338 − 207
√

3 + 304t)r5

+ (486 − 265
√

3 + 190t − 56
√

3t)r4 + (
538 − 285

√
3 + 240t − 280

√
3t + 294t2)r3

+ (
406 − 243

√
3 + 754t − 504

√
3t + 466t2)r2 + (

177 − 125
√

3 + 784t − 392
√

3t

+ 50t2 + 52
√

3t2)r + (
33 − 27

√
3 + 258t − 112

√
3t + 52

√
3t2 − 122t2 − 16t3),

h1(r, t) = 3r8 + 36r7 + (162 − 69
√

3 )r6 + (384 − 246
√

3 + 252t)r5

+ (630 − 375
√

3 + 356t)r4 + (828 − 420
√

3 + 24t − 112
√

3t)r3

+ (
786 − 435

√
3 + 456t − 448

√
3t + 294t2)r2 + (

432 − 294
√

3 + 1052t

− 560
√

3t + 172t2)r + (
99 − 81

√
3 + 516t − 224

√
3t + 52

√
3t2 − 122t2),

h2(r, t) = 6r7 + 66r6 + (258 − 115
√

3 )r5 + (510 − 295
√

3 + 378t)r4 + (690 − 330
√

3 + 156t)r3

+ (726 − 370
√

3 − 120t − 112
√

3t)r2 + (
486 − 355

√
3 + 804t − 336

√
3t + 294t2)r

+ (
138 − 135

√
3 + 726t − 224

√
3t − 122t2),

h3(r, t) = 10r6 + 96r5 + (314 − 161
√

3 )r4 + (496 − 308
√

3 + 504t)r3

+ (534 − 258
√

3 + 156t)r2 + (416 − 236
√

3 − 112
√

3t − 80t)r

+ (
150 − 125

√
3 + 268t − 168

√
3t + 294t2),

h4(r, t) = 12r5 + 100r4 + (264 − 161
√

3 )r3 + (312 − 203
√

3 + 378t)r2

+ (262 − 103
√

3 − 148t)r + (126 − 61
√

3 + 34t − 56
√

3t),

h5(r, t) = 12r4 + 84r3 + (168 − 115
√

3 )r2 + (132 − 62
√

3 + 252t)r + (66 − 7
√

3 − 200t),

h6(r, t) = 10r3 + 54r2 + (72 − 69
√

3 )r + (28 − 13
√

3 + 126t),

h7(r, t) = 6r2 + 24r + (16 − 23
√

3 ),

h8(r, t) = 3r + 7,

h9(r, t) = 1.

By applying the same arguments used in Step 3, we can prove that, for any fixed y ∈ (0, r + 1) and
(r, t) ∈ Ω ,

n∑
j=0

h j(r, t)y j �
(

y

r + 1

)n

h̃n(r, t) > 0, n = 0,1,2, . . . ,9, (B.26)
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where

h̃n(r, t) =
n∑

j=0

(r + 1) jh j(r, t), n = 0,1,2, . . . ,9.

By (B.25) and (B.26), we obtain that

K̃ε(r,
√

3, t, y) =
9∑

j=0

h j(r, t)y j > 0 for any y ∈ (0, r + 1), (r, t) ∈ Ω,

and hence (B.24) holds.
By Step 3 and (B.24), K̃ε(r, s, t, y) > 0 for any fixed y ∈ (0, r + 1), (r, t) ∈ Ω ≡ [0,∞) × [ 7

10 ,1] and

s ∈ [0,
√

3 ].

Step 5. Finally, we complete the proof of this lemma by the above analyzes.

By Step 4 and (B.16), we have Kε(α, u) > 0 for any fixed ε ∈ [( 7
10 ( σ 3

27ρ ))1/2, ( σ 3

27ρ )1/2], α ∈ [γε,βε)

and 0 < u < α. So by (B.1), we obtain that, for any fixed ε ∈ [( 7
10 ( σ 3

27ρ ))1/2, ( σ 3

27ρ )1/2],

G ′
ε(α) = 1√

α

α∫
0

Kε(α, u)

[�Fε]7/2
du > 0 on [γε,βε).

The proof of Lemma 3.4 is complete. �
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