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The neutron–proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and 
normal density is found to be m∗

n−p ≡ (m∗
n − m∗

p)/m = (0.41 ± 0.15)δ from analyzing globally 1088 sets 
of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam 
energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets 
with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical 
potential model. It sets a useful reference for testing model predictions on the momentum dependence 
of the nucleon isovector potential necessary for understanding novel structures and reactions of rare 
isotopes.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Because of the finite range of the nuclear isovector interaction 
and the isospin dependence of Pauli blocking, the nucleon isovec-
tor (symmetry) potential in isospin-asymmetric nucleonic matter 
is momentum dependent, see, e.g., Refs. [1–7]. Thus, neutrons and 
protons are expected to have different effective masses used to 
characterize the momentum dependence of their respective mean-
field potentials in isospin-asymmetric nucleonic matter. Is the ef-
fective mass of neutrons larger, equal or smaller than that of pro-
tons in neutron-rich nucleonic matter? While it has significant 
ramifications on addressing many interesting issues in both nu-
clear physics and astrophysics, the theoretical answer to this ques-
tion depends strongly on the model and interaction used [8–10]. 
For instance, among the 94 Skyrme interactions examined within 
the Skyrme–Hartree–Fock approach in Ref. [11], 48/29/17 of them 
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predict a positive/negative/zero value for the neutron–proton ef-
fective mass splitting. One of the main reasons for this unfortunate 
situation is our poor knowledge about the in-medium properties of 
nuclear isovector interaction and the lack of reliable experimental 
probes of the neutron–proton effective mass splitting. Moreover, it 
is worth emphasizing that the neutron–proton effective mass split-
ting is simply part of the nuclear symmetry energy [12–14] accord-
ing to the Hugenholtz–Van Hove (HVH) theorem [15]. The sym-
metry energy encodes the energy related to the neutron–proton 
asymmetry in the equation of state of isospin asymmetric nuclear 
matter and is a key quantity for understanding many issues in 
nuclear physics and astrophysics [16]. In fact, one of the major 
causes for the still poorly known density dependence of the nu-
clear symmetry energy is the uncertain momentum dependence 
of the isovector potential and the corresponding neutron–proton 
effective mass splitting [12,17]. Therefore, it is imperative to reli-
ably constrain the latter even at normal density. It is encouraging 
to note that some serious efforts have been made recently to find 
experimental observables sensitive to the neutron–proton effective 
mass splitting. For example, the single and/or double neutron/pro-
ton or triton/3He ratio at high momenta were found to be sensitive 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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to the neutron–proton effective mass splitting consistently in sev-
eral transport model studies of intermediate energy heavy-ion col-
lisions [18–21]. However, because of the simultaneous sensitivities 
of these observables to several not so well determined ingredients 
in transport models, no conclusion has been drawn from heavy-
ion collisions regarding the neutron–proton effective mass splitting 
yet. In principle, a more direct and clean approach of obtaining 
the neutron–proton effective mass splitting albeit only at normal 
density is using the energy/momentum and isospin dependence 
of the nucleon optical potential from nucleon–nucleus scattering. 
Indeed, since the earlier 1960s, several parameterizations of the 
energy/momentum dependence of the nucleon isovector potential 
have been extracted using the data available at the time. How-
ever, these analyses are not completely independent and the pa-
rameterizations are valid in segmented energy ranges up to about 
200 MeV. In Ref. [12], assuming that all of these nucleon isovec-
tor potentials are equally accurate and have the same predicting 
power beyond the original energy ranges in which they were an-
alyzed, and by taking an average of the available 6 parameteriza-
tions a neutron–proton effective mass splitting of (m∗

n − m∗
p)/m =

(0.32 ± 0.15)δ was obtained. Besides the rather rough assumption, 
we notice that the error bar was estimated by simply considering 
the range of the existing parameterizations of the optical potential 
which themselves do not have properly quantified uncertainties. 
In another recent attempt, using values of the symmetry energy 
and its density slope at normal density extracted from 28 differ-
ent analyses of terrestrial nuclear laboratory data and astrophysical 
observations, m∗

n−p = (0.27 ± 0.25)δ was extracted [17]. Here the 
error bar is a rough estimate as often the uncertainties of the in-
dividual entries for the analysis are not quantified. Thus, it is fair 
to state that currently there are clear experimental indications that 
the neutron effective mass is higher than that of protons at normal 
density. However, the exact value of the neutron–proton effective 
mass splitting has large uncertainties often not quantified. The sit-
uation at supra-saturation densities reached in heavy-ion collisions 
and/or the core of neutron stars is even worse.

The purpose of the present work is to provide a reliable value 
of the neutron–proton effective mass splitting at normal density 
with quantified uncertainty to be used as a reference to calibrate 
model predictions on the momentum dependence of nuclear sym-
metry potential in neutron-rich nucleonic matter. We achieve this 
goal by performing a global optical model analyses of all 2249 
data sets of reaction and angular differential cross sections of 
neutron and proton scattering on 234 targets at beam energies 
from 0.05 to 200 MeV available in the EXFOR database at the 
Brookhaven National Laboratory [22]. Moreover, the variances of 
all model parameters are evaluated consistently by carrying out 
a covariance analysis of the error matrix around the optimized 
optical model parameters using the standard statistical technique 
detailed in Ref. [23,24]. We found that the neutron–proton effective 
mass splitting is m∗

n−p = (0.41 ± 0.15)δ. To our best knowledge, 
this is currently the most stringent and reliable constraint on the 
neutron–proton effective mass splitting at normal density using a 
well established model from analyzing the complete data sets of 
the relatively simple nucleon–nucleus reactions.

The theoretical formalism and procedures we shall use are all 
well established in the relevant literature. For completeness and 
ease of discussions, in Section 2 we shall first summarize the 
major ingredients of the non-relativistic isospin dependent opti-
cal potential model for nucleon–nucleus scattering. After defining 
the neutron–proton effective mass splitting in terms of the mo-
mentum dependence of the isovector and isoscalar potentials in 
isospin-asymmetric nucleonic matter, we recall the general rela-
tionship between the nucleon optical potential in nucleon–nucleus 
scattering and the single-nucleon potential in nuclear medium. The 
results of our analyses are presented in Section 3. Finally, a sum-
mary is given in Section 4.

2. Formalism

In the following we outline the most important ingredients and 
the necessary steps for our extraction of the neutron–proton effec-
tive mass splitting at normal density from analyzing experimental 
data of nucleon–nucleus scattering up to the beam energy of ap-
proximately 200 MeV.

2.1. Isospin dependent optical model for nucleon–nucleus scattering

The optical model is a reliable tool for studying nucleon–
nucleus scattering. For a historical review, we refer the reader to 
the textbook by Hodgson [25]. To access the available optical po-
tentials for various applications, we recommend the reader to visit 
the section on optical models at IAEA’s RIPL (Reference Input Pa-
rameter Library for theoretical calculations of nuclear reactions) 
library [26]. Recent examples of developing local and/or global 
nucleon optical potentials from analyzing various sets of nucleon–
nucleus scattering data can be found in Refs. [27–31]. In this work, 
we restrict ourselves to nucleon–nucleus scattering below about 
200 MeV where a non-relativistic description is appropriate [32].

The phenomenological nucleon Optical Model Potential (OMP) 
for nucleon–nucleus scattering V (r, E) can be generally written as

V (r,E) = −V v fr(r) − iWv fv(r) + i4asW s
d fs(r)

dr

+ 2λ–2
π

V so + iW so

r

d fso(r)

dr
S · L + V C (r) , (1)

where the V v and V so are the depth of the real parts of the cen-
tral and spin–orbit potential, respectively; while the Wv, W s and 
W so are the depth of the imaginary parts of the volume absorp-
tion, surface absorption and spin–orbit potential, respectively; the 
V C (r) is the Coulomb potential for protons when they are used 
as projectiles and is taken as the potential of a uniformly charged 
sphere with radius RC = rC A−1/3, where rC is a parameter and A is 
the mass number of targets. The f i (i = r,v, s, so) are the standard 
Wood–Saxon shape form factors; the E is the incident nucleon en-
ergy in the laboratory frame; the λ–π is the reduced Compton wave 
length of pion and is taken as λ–π = √

2.0 fm.
To more accurately extract useful information about the isospin 

dependence of the nucleon OMP, it is expanded to the second or-
der in isospin asymmetry, i.e., [(N − Z)/A]2 terms in the V v, W s
and Wv. This term was found appreciable in two recent model 
studies and data analyses [14,37]. Moreover, the isoscalar part of 
V v is expanded up to the quadratic term in energy, i.e., E2. It is 
well known that this term is important to fit the nucleon–nucleus 
scattering data in both relativistic and non-relativistic descrip-
tions [25]. For the isospin-dependent parts, however, we found 
that the coefficient ratios of the second- to first-order terms in 
energy is about 10−5 to 10−3. To keep the number of parameters 
as small as possible, we neglect the quadratic terms in energy in 
the coefficients of the isospin dependent terms. Thus, the following 
parameterizations for the V v, W s and Wv are used in our current 
analyses

V v = V 0 + V 1E + V 2E2 + τ3(V 3 + V 3LE)
N − Z

A

+ (V 4 + V 4LE)
(N − Z)2

2
, (2)
A
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W s = W s0 + W s1E + τ3(W s2 + W s2LE)
N − Z

A

+ (W s3 + W s3LE)
(N − Z)2

A2
, (3)

Wv = Wv0 + Wv1E + Wv2E2 + τ3(Wv3 + Wv3LE)
N − Z

A

+ (Wv4 + Wv4LE)
(N − Z)2

A2
, (4)

where τ3 = +/ − 1 for neutrons/protons. Denoting the energy-
dependent isoscalar potential U0(E) ≡ −(V 0 + V 1E + V 2E2), the 
isovector (first-order symmetry) potential Usym,1(E) ≡ −(V 3 +
V 3LE) and the second-order symmetry potential Usym,2(E) ≡
−(V 4 + V 4LE), the real part of the central potential Uτ (E) ≡ V v can 
be rewritten in the form of the well-known Lane potential [33],

Uτ (E, δ) = U0(E) + τ3Usym,1(E) · δ + Usym,2(E) · δ2 (5)

where the isospin asymmetry δ is (N − Z)/A for finite nuclei or 
(ρn − ρp)/ρ for nuclear matter. It is worth noting that the form 
factor peaks at the centers of target nuclei. Moreover, for medium 
and heavy nuclei, the central density is around the saturation den-
sity of nuclear matter. Thus, from nucleon scattering on medium to 
heavy targets, one can extract information about both the isoscalar 
and isovector potential and their energy dependences at the satu-
ration density.

2.2. Neutron–proton effective mass splitting and the momentum 
dependence of single-nucleon potential in isospin-asymmetric 
nucleonic matter

Microscopic nuclear many-body theories indicate that the real 
part of the single-nucleon potential Uτ (k, E, ρ, δ) for τ = n or 
p in nuclear matter of density ρ and isospin-asymmetry δ de-
pends on not only the nucleon momentum k but also its energy E , 
reflecting the nonlocality in both space and time of nuclear in-
teractions, see, e.g. [34,35]. These two kinds of nonlocality can 
be characterized by using the so-called nucleon effective k-mass 
and E-mass, respectively defined in terms of the partial deriva-
tive of U with respect to k and E [34]. However, once a disper-
sion relation k(E) or E(k) is known from the on-shell condition 
E = k2/2m + U (k, E, ρ, δ), an equivalent potential either local in 
space or time, i.e., U (k(E), E, ρ, δ) or U (k, E(k), ρ, δ), can be ob-
tained. The selection of a specific representation is often a matter 
of convenience in treating a given problem as the two expres-
sions of U are equivalent and easily transformable from one to the 
other. For example, while the phenomenological optical potential 
discussed in the previous section has been expressed as a func-
tion of energy only, it has long been well known that some parts 
of the energy dependence actually come from the explicit momen-
tum dependence of U due to the finite range of nuclear interaction. 
However, in the analyses of nucleon–nucleus scattering experi-
ments within optical models, it is more convenient to use energy 
as a variable. The equivalent space-local potential U (k(E), E, ρ, δ)
is thus normally used in optical models. In this approach, while the 
momentum is not an independent variable explicitly, it not neces-
sarily means that the potential is actually space-local completely. 
On the other hand, in some other applications, it is sometimes 
more convenient to use the equivalent time-local (static) poten-
tial U (k, E(k), ρ, δ). For example, in transport model simulations of 
nuclear reactions one follows the evolution of nucleon phase space 
distribution function by solving Boltzmann-like equations using the 
U (k, E(k), ρ, δ) as an input function. In this case, it is obviously 
more useful to express the potential as a function of momentum 
only. Thus, the nucleon effective mass can be calculated using ei-
ther the first or second part of its defining equation depending on 
whether the E or k is selected as the explicit variable [34]

m∗
τ

mτ
= 1 − dUτ (k(E),E,ρ, δ)

dE

=
⎡
⎣1 + mτ

h̄2kτ
F

dUτ (k,E(k),ρ, δ)

dk

∣∣∣∣∣
kτ

F

⎤
⎦

−1

(6)

where mτ represents the mass of neutrons or protons in free-space 
and the neutron/proton Fermi momentum kτ

F = (1 + τ3δ)
1/3 · kF

with kF = (3π2ρ/2)1/3 being the nucleon Fermi momentum in 
symmetric matter at density ρ .

Similar to the nucleon optical potential, the nucleon potential 
Uτ (k, ρ, δ) in isospin-asymmetric matter can be written as

Uτ (k,ρ, δ) = U0(k,ρ) + τ3Usym,1(k,ρ) · δ + Usym,2(k,ρ) · δ2

+ τ3O(δ3), (7)

where U0(k, ρ), Usym,1(k, ρ) and Usym,2(k, ρ) are the isoscalar, 
isovector (first-order symmetry) and second-order symmetry po-
tentials, respectively. The neutron–proton effective mass splitting 
m∗

n−p(ρ, δ) ≡ (m∗
n − m∗

p)/m is then

m∗
n−p =

m
h̄2

(
1

kp
F

dU p
dk |kp

F
− 1

kn
F

dUn
dk |kn

F

)
[

1 + mp

h̄2kp
F

dU p
dk |kp

F

][
1 + mn

h̄2kn
F

dUn
dk |kn

F

] . (8)

Since the Usym(ρ, k) · δ term is always much smaller than the 
isoscalar potential U0(ρ, k) in Eq. (7), the denominator in Eq. (8)
can be well approximated by (1 + m

h̄2kF
dU p/dk)(1 + m

h̄2kF
dUn/dk) ≈

(1 + m
h̄2kF

dU0/dk)2 = (m/m∗
0)

2 [17]. Expanding Eq. (8) to the first-

order in isospin asymmetry parameter δ, we have

m∗
n−p ≈ 2δ

m

h̄2kF

[
−dUsym,1

dk
− kF

3

d2U0

dk2
+ 1

3

dU0

dk

]
kF

(
m∗

0

m

)2

.

(9)

While the above expressions are valid at arbitrary densities, in 
comparing with the nucleon optical potentials from nucleon–
nucleus scattering experiments, we shall apply them only at the 
saturation density ρ0. It is interesting to note that the above 
equation indicates that the m∗

n−p depends apparently on the mo-
mentum dependence of both the isovector and isoscalar poten-
tials. However, as we shall show numerically, the last two terms, 
i.e., −kF /3 · d2U0/dk2 and 1/3 · dU0/dk, largely cancel out each 
other, leaving the momentum dependence of the isovector poten-
tial dUsym,1/dk as the dominating factor.

2.3. Connecting the nucleon optical model potential with its potential in 
isospin-asymmetric nucleonic matter

How can one obtain the U0(ρ0, k), Usym,1(ρ0, k) and
Usym,2(ρ0, k) from the U0(E), Usym,1(E) and Usym,2(E) extracted 
from optical model analyses of nucleon–nucleus scattering exper-
iments at the beam energy E? The answer can be found partially 
in Refs. [36,37]. Here we summarize their relationship and supple-
ment a few key equations necessary for conveniently transforming 
one to the other. Since we are only considering the transforma-
tion at normal density while the momentum k and kinetic energy 
T are trivially related, we shall now use the Tτ and δ as two in-
dependent variables necessary in expressing the three parts of the 
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nucleon potential given in Eq. (7). According to Ref. [36], we sim-
ply have

Uτ (E, δ) = Uτ (Tτ (E), δ) (10)

but one has to be very careful about the different dispersion rela-
tionship Tτ (E) for neutrons and protons because of the momen-
tum dependence of their isovector potential. In symmetric nuclear 
matter, the dispersion relationship T (E) can be readily obtained 
from manipulating the single-nucleon energy

E = T + U0(T ) (11)

once the momentum dependence of the isoscalar potential U0(T )

is known. For the same nucleon energy E , by expanding the 
Uτ (Tτ ) to the first-order in δ, one obtains the kinetic energy Tτ (E)

for protons and neutrons in asymmetric matter in terms of the 
T (E) as

Tτ (E) = T (E) − τ3Usym,1(T )μ(T ) · δ (12)

where μ = (1 + dU0/dT )−1. Inserting the above relationship into 
Eq. (7) and expanding all terms up to δ2, Eq. (10) then leads to the 
following transformation relations [36,37]

U0(T (E)) = U0(E), Usym,1(T (E)) = Usym,1

μ
,

Usym,2(T (E)) = Usym,2

μ
+ ζUsym,1

μ2
+ ϑU2

sym,1

μ3
, (13)

where

μ = 1 − ∂U0

∂E
, ζ = ∂Usym,1

∂E
, ϑ = ∂2U0

∂E2
(14)

Thus, the isoscalar effective mass m∗
0/m can be extracted di-

rectly using the nucleon isoscalar optical potential. To extract the 
neutron–proton effective mass splitting, however, the factor μ has 
to be included. We also notice that the Coulomb potential is ex-
plicitly considered in the optical model analyses of proton–nucleus 
scattering data. Moreover, we consider the theoretically uncharged 
isospin-asymmetric nucleonic matter without the requirement of 
being in β equilibrium. Thus, the above transformations are valid 
for both neutrons and protons. For transformations to the inte-
rior of nuclei in β equilibrium an extra relationship between the 
Coulomb potential and the symmetry potential is required [36,38].

3. Results and discussions

Our work is carried out using the modified APMN code [39]
which has been applied extensively during the last decade in opti-
cal model analyses of various aspects of nucleon–nucleus reactions. 
Technical details of the code and examples from earlier analyses 
of some portions of the available data for other purposes can be 
found in Refs. [31,39–41]. We use totally 37 parameters in the opti-
cal model potential. To find the optimal parameter set we perform 
a global χ2 minimization using all available nucleon–nucleus reac-
tion (i.e., non-elastic) and elastic angular differential cross sections 
below about 200 MeV from the EXFOR database [22]. To check the 
reliability of our conclusions, we performed the following three 
analyses: Case I for neutron–nucleus, Case II for proton–nucleus 
and Case III for all nucleon–nucleus scattering. Here we use the 
average χ2 per nucleus defined as

χ2 = 1

N

N∑
χ2

n (15)

n=1
Table 1
The values and the corresponding standard deviation (error bar) for the parameter 
V i (i = 0,1,2,3,3L,4,4L) obtained from 1161 sets of neutron–nucleus scattering 
experimental data involving 104 targets.

Parameter Average value Error bar

V 0 (MeV) 54.96 1.13
V 1 −0.3391 0.0211
V 2 (MeV−1) 2.312×10−4 1.243×10−4

V 3 (MeV) −25.43 6.13
V 3L 0.2062 0.0487
V 4 (MeV) −8.832 4.541
V 4L 3.931×10−4 9.252×10−4

with χ2
n for each single nucleus n calculated from

χ2
n =

⎛
⎝ Wn,non

Nn,non

Nn,non∑
i=1

(
σ th

non,i − σ
exp
non,i

σ
exp
non,i

)2

+ Wn,el

Nn,el

Nn,el∑
i=1

1

Nn,i

Nn,i∑
j=1

(
σ th

el (i, j) − σ
exp
el (i, j)

σ
exp
el (i, j)

)2
⎞
⎠/

(
Wn,non

+ Wn,el
)

(16)

where N is the total number of nuclei included in the param-
eter optimization. The σ th

el (i, j) and σ exp
el (i, j) are the theoretical 

and experimental elastic differential cross sections at the jth angle 
with the ith incident energy, respectively. The σ

exp
el (i, j) is the 

corresponding experimental uncertainty. Nn,i denotes the number 
of angles where the data are taken for the nth nucleus at the ith 
incident energy. Nn,el is the number of incident energy for elastic 
scattering on the nth nucleus. The σ th

non,i and σ exp
non,i are the theo-

retical and experimental non-elastic (reaction) cross sections at the 
ith incident energy, respectively. The σ

exp
non,i is the correspond-

ing experimental uncertainty. While the Nn,non is the number of 
nonelastic cross sections available for the nth nucleus. The Wn,el
and Wn,non are the weighting factors of the elastic angular dif-
ferential and nonelastic cross sections, respectively. They are cho-
sen according to the numbers of the respective experimental data 
available. For Case I, only the elastic differential cross sections are 
used, for Case II both the nonelastic and elastic differential cross 
sections are used while Case III is a simultaneous analysis of all 
data considered in Cases I and II.

We note here that in the past the uncertainties of the optical 
model parameters are normally estimated by dividing randomly 
the considered data sets into two equal parts and then evalu-
ating the resulting differences in the model parameters. In the 
present work, we carry out a covariance analysis [23,24] of the 
model parameters around their optimal values by analyzing the 
error matrix using the complete data set. The standard deviations 
of all model parameters are then evaluated consistently and uni-
formly. The minimum (total instead of per degree of freedom) χ2

are 50.62, 54.75 and 65.69, respectively, for the three cases studied. 
The most relevant parameters and their variances for the purpose 
of this work are summarized in Tables 1, 2 and 3, respectively. It 
is worth noting that the errors considered in this work are all sta-
tistical in nature. Systematic errors are also important but hard to 
estimate. We admit here that no systematic error due to the model 
assumptions, such as the shape of the optical potential, has been 
studied yet in this work.

As an illustration of the quality of the global fit to the exper-
imental data, shown in Fig. 1 is a typical example of the angular 
differential cross sections for n + 208Pb (left) and p + 208Pb (right) 
reactions. For a comparison, shown also in Fig. 1 is the plot using 
optical model parameters given by Koning et al. [28] from ana-
lyzing nucleon–nucleus scattering data. It is seen that both ours 



412 X.-H. Li et al. / Physics Letters B 743 (2015) 408–414
Table 2
The values and the corresponding standard deviation (error bar) for the parame-
ter V i (i = 0,1,2,3,3L,4,4L) obtained from 1088 sets of proton–nucleus scattering 
experimental data involving 130 targets.

Parameter Average value Error bar

V 0 (MeV) 54.93 1.03
V 1 −0.3242 0.0311
V 2 (MeV−1) 2.433×10−4 1.152×10−4

V 3 (MeV) −24.94 5.98
V 3L 0.2151 0.0552
V 4 (MeV) −8.647 4.315
V 4L 3.642×10−4 8.623×10−4

Table 3
The values and the corresponding standard deviation (error bar) for the parameter 
V i (i = 0,1,2,3,3L,4,4L) obtained using all nucleon–nucleus scattering experimen-
tal data involving 234 targets.

Parameter Average value Error bar

V 0 (MeV) 55.06 1.24
V 1 −0.3432 0.0304
V 2 (MeV−1) 2.524×10−4 1.224×10−4

V 3 (MeV) −25.40 6.27
V 3L 0.2051 0.0562
V 4 (MeV) −8.896 4.864
V 4L 3.844×10−4 10.721×10−4

Fig. 1. (Color online.) Angular differential cross sections for n + 208Pb (left) and 
p + 208Pb scattering (right). The dots are the experimental data, the red curves are 
our calculations while the back curves are the results of Ref. [28].

and the Koning parameterization describe the data reasonably well. 
More quantitatively, the Koning parameters lead to χ2 values of 
48.35 and 50.85, respectively, for the neutron–nucleus and proton–
nucleus scattering. They are both compatible with ours.
Fig. 2. (Color online.) Energy dependent isoscalar U0 (left) and isovector Usym,1

(right) potentials from the present work (hatched bands) in comparison with the 
Schrödinger equivalent isoscalar potential obtained by Hama et al. [42] and several 
parameterizations for the Usym,1 from earlier studies [28,43–45].

Fig. 3. (Color online.) Momentum dependence of the symmetry potential in the nu-
cleon optical potential Usym,1 (black) and nuclear matter Usym,1 (red), respectively.

With the optimized optical model parameters we can then eval-
uate the energy/momentum dependence of both the isoscalar and 
isovector potentials. For this purpose, we shall use the parame-
ters in Table 3 from the simultaneous analyses of all nucleon–
nucleus scattering data. Shown in Fig. 2 are the U0 (left) and 
Usym,1 (right) from the present work (hatched bands) together with 
the Schrödinger equivalent isoscalar potential obtained by Hama 
et al. [42] and several parameterizations for the Usym,1 from earlier 
studies [28,43–45]. It is seen clearly that our isoscalar potential is 
in good agreement with that from the Dirac phenomenology in the 
energy range considered. Earlier parameterizations for the Usym,1
are valid in different energy ranges. The one by Koning et al. [28]
is valid up to 200 MeV as in our analyses. While others are mostly 
for low energies, for example, the one by Rapaport et al. [44] is 
for energies from 7 to 26 MeV. It is interesting to see that our 
Usym,1 is consistent with earlier results, except the one by Jeukenne 
et al. [43], within our error bands.

Shown in Fig. 3 is a comparison of the symmetry potential 
Usym,1 in the nucleon optical potential and the Usym,1 in isospin-
asymmetric nucleonic matter as a function of nucleon momentum. 
It is seen that their slopes are significantly different especially 
around the nucleon Fermi momentum of 270 MeV/c. We empha-
size that the momentum dependence of the Usym,1 at normal den-
sity obtained here provides a significant boundary condition for 
the isovector potentials used in transport model simulations of 
heavy-ion reactions especially those induced by rare isotopes [4]. 
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Table 4
Nucleon isoscalar effective mass m∗

0/m and the neutron–proton effective mass split-
ting m∗

n−p from the three cases studied in this work.

Case m∗
0/m m∗

n−p(δ)

I 0.65 ± 0.05 0.41 ± 0.14
II 0.67 ± 0.06 0.44 ± 0.16
III 0.65 ± 0.06 0.41 ± 0.15

The Usym,1 instead of the Usym,1 should be used to evaluate the 
neutron–proton effective mass splitting.

We now turn to the evaluation of both the nucleon isoscalar ef-
fective mass m∗

0/m and the neutron–proton effective mass splitting 
m∗

n−p . Using Eqs. (6), (9) and (13), they can readily be expressed 
in terms of the optical model potential parameters as

m∗
0

m
= [1 + V 1 + 2V 2E]kF

, (17)

and

m∗
n−p(ρ0, δ) = 2δ ·

[
V 3L − 2V 2(V 3 + V 3LE)

1 + V 1 + 2V 2E

− 2

3

h̄2k2
F

m

V 2(V 1 + 2V 2E)

1 + V 1 + 2V 2E
+ 2

3

h̄2k2
F

m
V 2

]
kF

. (18)

Choosing the single-nucleon energy at normal density ρ0 to be 
E0 = −16 MeV (where k = kF ), and using the values and corre-
sponding errors for the V i (i = 1, 2, 3, 3L) given in Tables 1, 2
and 3, we obtain the results shown in Table 4.

The results from the three cases are consistent within the er-
ror bars. We notice that the isoscalar effective mass extracted here 
is consistent with the empirical values from many other analy-
ses, see, e.g., the often quoted value of m∗

0/m = 0.70 ± 0.05 from 
Refs. [34,46]. As usual, the resulting isoscalar effective mass from 
the optical model potential is less than the theoretical prediction 
within the Brueckner–Hartree–Fock approach [46] that is typically 
closer to unity. This feature was understood as the local enhance-
ment of the nucleon effective mass at the Fermi surface due to 
the core polarized states with low excitation energy [46,47] and 
which are not included in the optical model analysis. The values of 
the neutron–proton effective mass splitting m∗

n−p extracted here 
are appreciably larger than the earlier value of (m∗

n − m∗
p)/m =

(0.32 ± 0.15)δ extracted directly from taking an average of the 
available nucleon isovector optical potentials [12] without per-
forming the transformation discussed earlier. However, they over-
lap largely within the statistical error bars. While the current un-
certainty of about 37% is not fundamentally better than the previ-
ous one, the present analysis is much more meaningful due to the 
method and the large number of independent data sets used di-
rectly. To our best knowledge, the value of m∗

n−p = (0.41 ± 0.15)δ

extracted in Case III is presently the most reliable and stringent 
constraint on the neutron–proton effective mass splitting in isospin 
asymmetric nucleonic matter at normal density. For neutron-rich 
matter, the effective mass of neutrons is definitely larger than that 
of protons. This finding is consistent with many model predictions, 
see, e.g., [35,48], but disagrees with many others.

As we noticed earlier in Eq. (9), the m∗
n−p comes from the 

momentum dependence of both the isovector and isoscalar po-
tentials. What are their respective contributions? To answer this 
question, summarized in Table 5 are the values of −dUsym,1/dk, 
−kF /3d2U0/dk2, and 1/3dU0/dk at kF extracted from the data. It 
is seen that the last two terms due to the momentum dependence 
of the isoscalar potential largely cancel out, leaving the momentum 
dependence of the isovector potential −dUsym,1/dk as the domi-
nating source of the neutron–proton effective mass splitting m∗

n−p
at normal density.
Table 5
Sources of the neutron–proton effective mass splitting m∗

n−p at normal density.

Case −dUsym,1/dk −kF /3d2U0/dk2 1/3dU0/dk

I 29.39 −12.07 9.74
II 29.76 −11.68 9.33
III 30.44 −12.83 10.17

4. Summary

In summary, within an isospin dependent optical potential 
model using all existing data of nucleon–nucleus reaction and elas-
tic angular differential cross sections up to about 200 MeV, we ex-
tracted the momentum dependence of both the nucleon isoscalar 
and isovector potentials at normal density. The isoscalar potential 
is consistent with the Hama potential from earlier analyses us-
ing a relativistic optical potential model. The extracted potentials 
can be used to calibrate the isospin-dependent nucleon potentials 
used in transport model simulations of nuclear reactions and pro-
vide a useful boundary condition to test predictions by various 
nuclear many-body theories. The extracted nucleon isoscalar effec-
tive mass is consistent with its empirical values extracted earlier 
in the literature. Most importantly, the neutron–proton effective 
mass splitting is found to be m∗

n−p = (0.41 ± 0.15)δ. We believe it 
is presently the most reliable value for this very poorly known but 
rather important quantity for resolving many interesting issues in 
both nuclear physics and astrophysics.
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