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Abstract

Background: There are numerous options available to achieve various tasks in bioinformatics, but until recently,
there were no tools that could systematically identify mentions of databases and tools within the literature. In this
paper we explore the variability and ambiguity of database and software name mentions and compare dictionary
and machine learning approaches to their identification.

Results: Through the development and analysis of a corpus of 60 full-text documents manually annotated at the
mention level, we report high variability and ambiguity in database and software mentions. On a test set of 25
full-text documents, a baseline dictionary look-up achieved an F-score of 46 %, highlighting not only variability and
ambiguity but also the extensive number of new resources introduced. A machine learning approach achieved an
F-score of 63 % (with precision of 74 %) and 70 % (with precision of 83 %) for strict and lenient matching respectively.
We characterise the issues with various mention types and propose potential ways of capturing additional database
and software mentions in the literature.

Conclusions: Our analyses show that identification of mentions of databases and tools is a challenging task that
cannot be achieved by relying on current manually-curated resource repositories. Although machine learning shows
improvement and promise (primarily in precision), more contextual information needs to be taken into account to
achieve a good degree of accuracy.
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Background
Bioinformatics and computational biology rely on do-
main databases and software to support data collection,
aggregation and analysis and, as such, have been re-
ported in research papers, typically as part of the
methods section. However, limited progress has been
made to systematically capture mentions of databases
and tools in order to explore the bioinformatics practice
of computational method on a large-scale. An evaluation
of the resources available could help bioinformaticians
to identify common usage patterns [1] and potentially
infer scientific “best practice” [2] based on a measure of
how often or where a particular resource is currently be-
ing used within an in silico workflow [3]. Although there
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are several inventories that list available database and
software resources (e.g., the NAR databases and web-
services special issues [4, 5], ExPASy [6], the Online
Bioinformatics Resources Collection [7], etc.), until re-
cently, to the best of our knowledge, there were no at-
tempts to systematically identify resource mentions in
the literature [8].
Biomedical text mining has seen wide usage in identi-

fying mentions of entities of different types in the litera-
ture in recent years. Named entity recognition (NER)
enables automated literature insights [9] and provides
input to other text-mining applications. For example,
within the fields of biology and bioinformatics, NER
systems have been developed to capture species [10],
proteins/genes [11–13], chemicals [14], etc. Issues of
naming inconsistencies, numerous synonyms and acro-
nyms, and an inability to distinguish entity names from
common words in a natural language combined with
ambiguous definitions of concepts, make NER a difficult
task [15, 16]. Still, for some applications, NER tools
cle distributed under the terms of the Creative Commons Attribution License
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achieve relatively high precision and recall scores. For
example, LINNAEUS achieved F-scores around the 95 %
mark for species name recognition and disambiguation
on the mention and document levels [10]. On the other
hand, gene names are known for their ambiguity and
variability, resulting in lower reported F-scores. For
example, ABNER [12] recorded an F-score of just under
73 % for strict-match gene name recognition (85 % with
some boundary error toleration), and GNAT [13] re-
ported an F-score of 81 % for the same task (up to a
maximum of 90 % for single species gene name recogni-
tion, e.g., for yeast).
Some previous work exists on automated identification

and harvesting of bioinformatics database and software
names from the literature. For example, OReFiL [17] uti-
lises the mentions of Unified Resource Locators (URLs)
in text to recognise new resources to update its own in-
ternal index. Similarly, BIRI (BioInformatics Resource
Inventory) uses a series of hand crafted regular expres-
sions to automatically capture resource names, their
functionality and classification from paper titles and ab-
stracts [18]. The reported quality of the identification
process was in line with other NER tasks. For example,
BIRI successfully extracted resource names in 94 % of
cases in a test corpus, which consisted of 392 abstracts
that matched a search for “bioinformatics resource” and
eight documents that were manually included to test do-
main robustness. However, both of these tools focused
on updates and have biased their evaluation to resource
rich text, which prevents full understanding of false
negative errors in the general bioinformatics literature.
This paper aims to analyse database and software

name mentions in the bioinformatics/computational
biology literature to assess challenges for automated ex-
traction. We analyse database and software names in the
computational biology literature using a set of 60 full-
text documents manually annotated at the mention level,
building on our previous work [19]. We analyse the
variability and ambiguity of bioinformatics resource
names and compare dictionary and machine learning
approaches for their identification based on the results
on an additional dataset of 25 full-text documents. Al-
though we focus here on bioinformatics resources, the
challenges and solutions encountered in database and
software recognition are generic, and thus not unique to
this domain [20].

Methods
Corpus annotation and analysis
For the purpose of this study, we define databases as
any electronic resource that stores records in a struc-
tured form, and provides unique identifiers to each rec-
ord. These include any database, ontology, repository or
classification resource, etc. Examples include SCOP (a
database of protein structural classification) [21], Uni-
Prot (a database of protein sequences and functional in-
formation) [22], Gene Ontology (ontology that describes
gene product attributes) [23], PubMed (a repository of
abstracts) [24], etc. We adopt Wikipedia’s definition of
software [25]: “a collection of computer programs … that
provides the instructions for telling a computer what to
do and how to do it”. We use program and tool as syno-
nyms for software. Examples include BLAST (automated
sequence comparison) [26], eUtils (access to literature
data) [27], etc. We also include mentions of web-services
as well as package names (e.g., R packages from Biocon-
ductor [28, 29]). We explicitly exclude database record
numbers/identifiers (e.g., GO:0002474, Q8HWB0), file
formats (e.g., PDF), programming languages and their
libraries (e.g., Python, BioPython), operating systems
(e.g., Linux), algorithms (e.g., Merge-Sort), methods
(e.g., ANOVA, Random Forests) and approaches (e.g.,
Machine Learning, Dynamic Programming).
To explore the use of database and tool names, we

have developed an annotated set of 60 full-text articles
from the PubMed Central [30] open-access subset. The
articles were randomly selected from Genome Biology (5
articles), BMC Bioinformatics (36) and PLoS Computa-
tional Biology (19). These journals were selected as they
could provide a broad overview of the bioinformatics
and computational biology domain(s).
The articles were primarily annotated by a bioinforma-

tician (GD) with experience in text mining. The annota-
tion process included marking each database/software
name mention. We note that associated designators of
resources (e.g., words such as database, software) were
included only if part of the official name (e.g., Gene
Ontology). The inter-annotator agreement (IAA) [31] for
the annotation of database and software names was
calculated from five full-text articles randomly selected
from the annotated corpus, which were annotated by a
PhD student with bioinformatics and a text-mining
background.
To assess the complexity, composition, variability and

ambiguity of resource names, we performed an analysis of
the annotated mentions. The corpus was pre-processed
using a typical text-mining pipeline consisting of a tokeni-
ser, sentence splitter and part-of-speech (POS) tagger from
GATE’s ANNIE [32]. We analysed the length of names,
their lexical (stemmed token-level) and structural com-
position (using POS tag patterns) and the level of variabil-
ity and ambiguity as compared to common English words,
acronyms and abbreviations.
In addition to the dataset of 60 articles that was used

for analysis and development of NER tools, an additional
dataset of 25 full-text annotated papers was created to
assess the quality of the proposed NER approaches (see
below).
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Dictionary-based approach (baseline)
We compiled an extensive dictionary of database and
software names from several existing sources (see
Table 1). Some well-known acronyms and spelling/
orthographic variants have also been added, resulting
in 7322 entries with 8169 variants (6929 after removing
repeats) for 6126 resources. The names collected in the
dictionary were also analysed using a similar approach
as used for the names appearing in the corpus (see
above). We then used LINNAEUS [10] to match these
names in text.

Machine learning approach
Given the availability of the manually annotated corpus,
a machine learning (ML) approach was explored for
identification of resource names. We approached the
task as a sequence-tagging problem as often adopted in
NER systems. We opted for Conditional Random Fields
(CRF) [33] and used features at the token-level that com-
prised the token’s own characteristics and the features of
the neighbouring tokens. We used the Beginning-Inside-
Outside (B-I-O) annotation.
The following features were engineered for each token:

1. Orthographic features captured the orthographic
patterns associated with biomedical resources
mentions. For example, a large percentage of
mentions are acronyms (e.g., GO, SCOP), capitalised
terms (e.g., Gene Ontology, Bioconductor) or words
that contain a combination of capital and lower cap
letters (e.g., MySQL, UniProt) etc. We engineered
two groups of orthographic features [34]. The first
group comprised shape (pattern) features that
mapped a given token to an abstract representation.
Each capital letter is replaced with “X”, lower case
Table 1 Sources from which the database and software name dictio

Type Entries Variants

DB 195 298

SW 263 278

PK 799 799

SW 2033 2087

SW 389 391

DB 379 379

DB 1452 1670

SW 135 135

SW 36 41

SW 1149 1183

SW, DB 171 231

Our dictionary (DB, SW, PK) 7322 6929

Note that entries and variants are not necessarily unique to a single resource list
DB databases, SW software, PK packages; data correct and accessible as of February
letter with “x”, a digit with “d” and any other
character with “S”. Two features were created in this
group: the first feature contained a mapping for each
character in a token (e.g., MySQL was mapped to
“XxXXX”); the second feature mapped a token to a
four character string that contained indicators of a
presence of a capital letter, a lower letter, a digit or
any other character (absence was mapped to a “_”),
e.g., MySQL was mapped to “Xx_ _”. The features in
the second group captured specific orthographic
characteristics (e.g., is the token capitalised, does it
consist of only capital letters, does it contain digits,
etc. – see Table 2 for the full list), which were
extracted by a set of regular expressions.

2. Dictionary features were represented by a single
binary feature that indicated if the given token was
contained within our biomedical resources
dictionary.

3. Lexical features included the token itself, its lemma
and part-of-speech (POS) tag.

4. Syntactic features were extracted from syntactic
relations in which the phrase was a governor or a
dependant, as returned by the Stanford parser [35,
36]; in cases where there were several relations, the
relation types were alphabetically sorted and
concatenated (e.g., “pobj” and “advmod” were
combined as “advmod_pobj”).

The experiments on the training data revealed that
two tokens before and one token after the current token
provided the best performance. The CRF model was
trained using CRF++ [37]. All pre-processing needed for
feature extraction was provided by the same text-mining
pipeline as used for the corpus analysis and dictionary-
based approach.
nary is comprised

Source

databases.biomedcentral.com

www.bioinformatik.de

www.bioconductor.org

bioinformatics.ca/links_directory/

evolution.genetics.washington.edu/phylip/software.html

www.ebi.ac.uk/miriam/main/

www.oxfordjournals.org/nar/database/a/

www.netsci.org/Resources/Software/Bioinform/index.html

www.bioinf.manchester.ac.uk/recombination/programs.shtml

en.wikipedia.org/wiki/Wiki/<various>

Manually added entries

http://sourceforge.net/projects/bionerds/

28th, 2012

http://www.bioinformatik.de
http://www.bioconductor.org
http://bioinformatics.ca/links_directory/
http://www.ebi.ac.uk/miriam/main/
http://www.oxfordjournals.org/nar/database/a/
http://www.netsci.org/Resources/Software/Bioinform/index.html
http://www.bioinf.manchester.ac.uk/recombination/programs.shtml
http://sourceforge.net/projects/bionerds/


Table 2 Token-specific orthographic features extracted by
regular expressions

Name Description

isAcronym token is an acronym

containsAllCaps all the letters in the token are capitalised

isCapitalised token is capitalised

containsCapLetter token contains at least one capital letter

containsDigits token contains at least one digit

isAllDigits token is made up of digits only

Table 3 Statistics describing the manually annotated corpora

Development Test

Total number of documents 60 25

Total database and software mentions 2416 1479

Total unique resource mentions 401 301

Percentage of database mentions 36 % 28 %

Percentage of unique database mentions 27 % 30 %

Average mentions per document 40.3 70.0

Average unique mentions per document 8.1 13.4

Maximum mentions in a single document 227 217

Maximum unique mentions in a single
document

57 55

Resources with only a single lexicographic
mention

201 147
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Machine learning – post-processing
An analysis of the initial CRF results on the develop-
ment dataset revealed that a large portion of false nega-
tives were from resource mentions that were recognised
by the model at least once in a document, but missed
elsewhere within the same document. We have therefore
designed a two-pass post-processing approach. The first
pass collected and stored all the CRF tagging results.
These were then used to re-label the tokens in the sec-
ond pass. In order to avoid over-generation of labels
(i.e., possible false positives), we created a set of condi-
tions that each token had to meet if it was to be re-
labelled as a resource mention. First, it had to be labelled
as a (part of a) resource name in the first pass more
often than it was not, looking at the entire corpus that
was being tagged. If that was the case, the candidate
token also had to fulfil one of the following two condi-
tions: either it was contained within the biomedical re-
sources dictionary; or it was an acronym that had no
digits and was at least two characters long. Finally, the
following four tokens: “analysis”, “genomes”, “cycle” and
“cell” were never labelled as part of resource name in
the second round, as they were found to be the source
of a large percentage of false positives.

Evaluation
Standard text-mining performance statistics (precision,
recall, F-score) were used for evaluation. In particular,
we make use of 5-fold cross-validation across all 60 full-
text articles for both the dictionary and machine learn-
ing approaches. For a fair comparison, the dictionary-
based approach is only evaluated on the test set in each
fold, as it requires no prior “training”. We also test both
approaches directly on the test set of 25 articles without
additional training/adjustments.

Results and discussion
Corpus annotations
Table 3 gives an overview of the two corpora annotated
with resource mentions. We note that the IAA was rea-
sonably high: with lenient agreement (annotation offsets
overlap), an F-score of 86 % was calculated (93 % preci-
sion, 80 % recall). As expected, a decrease in IAA is
observed if strict agreement (offsets must exactly match)
is used instead (every score drops by 6 %).
In the development corpus, there were 401 lexically

unique resources mentioned 2416 times (6 mentions on
average per unique resource name), with an average of
40 resource mentions per document. The document
with the most mentions had 227 resource mentions
within it. Finally, 50 % of resource names were only
mentioned once in the corpus. A similar profile was
noted for the test corpus, although it contained notably
more resource mentions per document.

Database and software name composition
We first analysed the composition of resource names
both in the development corpus and dictionary. The lon-
gest database/software name in the annotated corpus
contained ten tokens (i.e., Search Tool for the Retrieval
of Interacting Genes/Proteins). However, there are longer
examples in the dictionary (e.g., Prediction of Protein
Sorting Signals and Localisation Sites in Amino Acid
Sequences).
To assess the composition of resource names within

our dictionary, we stemmed each token within each
name (using the Porter Stemming Algorithm [38]) and
counted the occurrences of each stemmed token.
Figure 1 displays the most frequent words: the two most
ones are database and ontology. A comparable lexical
distribution can be noted in the development set, with
database, gene, analysis, tool, genome, ontology featuring
as the most frequent ones (data not shown). This sug-
gests that some common head terms and some other
common bioinformatics relevant terms could aid recog-
nition. We also note that there is a long tailed curve in-
volved in the lexical decomposition of resource words.
As an initial structural analysis, we automatically col-

lected all the POS tags assigned to each unique database
and software name in the development corpus. These



Fig. 1 Top token frequencies within the manually compiled dictionary. The figure shows the most common stemmed tokens contained within
all the resource names found within our manually compiled dictionary. The top token is database with a count of 474, followed by ontology with
187 instances. Note that the scale is logarithmic (log base 2), and the y-axis crosses at eight rather than zero (for aesthetic reasons). The top terms
are labelled
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were then grouped to profile the structure of resource
names (see Table 4). We have identified a total of 405
patterns. The majority (79 %) of database and software
names comprise one, two or three proper nouns. An
additional 5 % were tagged a single common noun (e.g.,
affy). A roughly equivalent number of names contain
digits (e.g., S4, t2prhd). Nine patterns contain adjectives
(e.g., internal transcribed spacer 2) or prepositions/sub-
ordinating conjunctions (e.g., Structural Classification
Of Proteins). Finally, in two cases (SHAKE and dot), a
mention of software was tagged as a verb form. We note
that there are more patterns (405) than unique mentions
(401) because sometimes an equal resource name gets
tagged with differing patterns (e.g., R received both
NNP and NN POS tags). The analysis shows that there
is some variety in resource naming, and – as expected –
that recognition of simple noun phrases alone is not
Table 4 Internal POS structure of database and software names
(the development corpus)

Pattern Count Frequency

NNP 258 63.7 %

NNP NNP 34 8.4 %

NNP NNP NNP 26 6.4 %

NN 20 4.9 %

NNP CD 16 4.0 %

NNP NNP NNP NNP 8 2.0 %

Other Patterns 43 10.6 %

NNP proper noun, NN singular noun, CD cardinal number
sufficient for identification of potential resource men-
tions. In particular, around 5 % of noun-phrases (as
extracted with the Stanford Parser) within the corpus
contain at least one resource mention.

Variability of resource names
To evaluate the variability of resource names within our
dictionary, we calculated the average number of name
variants for a given resource. As such, the variability of
resource names at the dictionary level is 1.13 (6929
unique variants over 6126 resources, after adjustment
for repeats). For the corpus analysis, we manually
grouped the names from the set of manually annotated
mentions that were referring to the same resource in
order to analyse name variability. Specifically, we grouped
variants based on spelling errors and orthographic dif-
ferences, and then grouped long and short form acro-
nym pairs based on our own background knowledge,
and the text from which they were initially extracted.
Of the 401 lexically unique names, 97 were variants of
other names, leaving 304 unique resources. In total,
231 resources had only a single name variant within
the corpus (76 %); 18 % of resources had two variants,
and the final 6 % had between three and five variants.
Of the 97 name variants, 36 were acronyms and most
of those were defined in text (and so could perhaps be
automatically expanded with available tools, e.g., [39]).
However, there were other cases where a resource’s
acronym was used without the expanded form for def-
inition (e.g., BLAST).



Table 6 Dictionary matching results on the development
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Ambiguity of resource names
As expected, a number of ambiguous resource names
exist within the bioinformatics domain. Interesting ex-
amples include Network [40] (a tool enabling network
inference from various biological datasets) and analysis
[41] (a package for DNA sequence analysis). We there-
fore analysed our dictionary of database and software
names to evaluate dictionary-level ambiguity when com-
pared to the entries in a full English words dictionary
derived from a publicly available list [42] (hereafter re-
ferred to as the “English dictionary”) and to a known
biomedical acronyms dictionary compiled from ADAM
[43] (hereafter referred to as the “acronym dictionary”),
consisting of 86,308 and 1933 terms, respectively. A total
of 52 names matched English words (e.g., analysis, cycle,
graph) and 77 names fully matched known acronyms
(e.g., DIP, distal interphalangeal and Database of Inter-
acting Proteins) when using case-sensitive matching. The
number of matches increases to 534 to the English dic-
tionary and to 96 for the acronym dictionary when case-
insensitive matching is used instead.
To evaluate the recognition-level ambiguity within the

annotated corpus, we also compared the annotated data-
base and software names to the English dictionary and
acronym dictionary. This resulted in four matches to the
English dictionary (ACT, blast, dot, R), and six to the
acronym dictionary (BBB, CMAP, DIP, IPA, MAS, VOCs)
using case-sensitive matching. This equates to roughly
3 % of the unique annotated names. The total increases
to 53 matches (17 %) if case-insensitive matching is used
instead.

Dictionary-based matching
Table 5 provides the standard text-mining performance
statistics for the dictionary matching approach. The
average lenient F-scores between 43 and 46 % highlight
the challenges for this approach, both in terms of match-
ing known ambiguous names (low precision), and from
the dictionary not being sufficiently comprehensive (low
Table 5 Evaluation results on the development and test
corpora

Development corpus Recall (%) Precision (%) F-score (%)

Dictionary 49 (47) 38 (37) 43 (41)

CRF with post-processing 58 (52) 76 (67) 65 (58)

CRF without post-processing 54 (49) 78 (70) 62 (57)

Test Corpus

Dictionary 46 (44) 46 (44) 46 (44)

CRF with post-processing 60 (54) 83 (74) 70 (63)

CRF without post-processing 53 (45) 71 (65) 62 (53)

Strict scores provided in brackets
P Precision, R Recall, F F-score evaluation on the development (5-cross validated)
and test corpora
recall). Some common false positives were cycle, genomes
(potential mentions of Bioconductor packages) and GO
(which was frequently matched within GO database
identifiers (e.g., GO:0007089) because of inappropriate
tokenisation). Some common false negatives (i.e., missed
resource mentions) included Tabasco (PMC2242808),
MethMarker (PMC2784320), xPedPhase and i Linker
(both from PMC2691739). In each of these examples, the
name missed (numerous times) was the resource being in-
troduced in that paper. This shows that any NER for data-
base and software names must be able to capture newly
introduced resources to achieve high recall.
We note here the high variation in the different fold

scores (e.g., see the results for Fold 3 in Table 6), indi-
cate how challenging detection of resource names could
be, depending on the particular document. We also note
a difference between the results reported here (lenient
F-score of 43–46 %) and those we obtained previously
[19] on a subset of 30 documents from the development
set (lenient F-score of 54 %). The drop in performance
can be partially contributed to the changes to both the
dataset (60 vs. 30 articles) and the underlying dictionar-
ies (updated), as well as the change in the evaluation ap-
proach (“cross-fold” vs. evaluating the entire dataset at
once; thus, a fold with an overrepresentation of false
negatives cannot be balanced out by another fold with
an overrepresentation of true positives (and the same for
false negatives)).

Machine-learning approach
The results of the application of the CRF model are
presented in Table 5. With post-processing, the average
F-scores of 65–70 % for lenient and 58–63 % for strict
matching present a considerable improvement over the
dictionary-based approach, but still leaves the task only
moderately solved. Table 7 shows the results of different
folds for the development corpus. It is interesting that
corpus

Fold Recall (%) Precision (%) F-score (%)

1 46 (43) 41 (39) 43 (41)

2 34 (31) 37 (34) 36 (32)

3 36 (34) 24 (23) 29 (27)

4 55 (53) 46 (45) 50 (49)

5 76 (75) 44 (43) 56 (55)

Min 34 (31) 24 (23) 29 (27)

Max 76 (75) 46 (45) 56 (55)

Mean 49 (47) 38 (37) 43 (41)

Note that for Fold 3, a decrease in score (of about 8 % F-score) is observed if
the LINNAEUS abbreviation detected is disabled. Strict scores provided
in brackets
P Precision, R Recall, F F-score on the development set using dictionary
look-up



Table 7 Machine learning results with post-processing on the
development corpus

Fold Recall (%) Precision (%) F-score (%)

1 51 (44) 71 (60) 59 (51)

2 44 (35) 88 (71) 59 (47)

3 51 (44) 76 (66) 61 (53)

4 65 (60) 73 (67) 69 (63)

5 80 (76) 74 (70) 77 (73)

Min 44 (35) 71 (60) 59 (47)

Max 80 (76) 88 (71) 77 (73)

Mean 58 (52) 76 (67) 65 (58)

Micro Avg 56 (50) 76 (67) 65 (57)

Strict scores provided in brackets
P Precision, R Recall, F F-score on the development set using machine learning
with post-processing (5-cross fold)
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precision was relatively high (76–83 %), while recall was
notably lower (58–60 %). These results lead us to believe
that the current feature set is insufficient to capture lex-
ical variability in sentences with biomedical resource
mentions. The lenient matching scores were generally
higher than the strict scores (7 % on F-score, 6 % on re-
call and 9 % on precision), which indicates that bound-
ary adjustment of the recognised tokens is a challenging
task, similar to other biomedical NER tasks.
The application of the ML-model with post-processing

showed positive effects, as the results without post-
processing had consistently lower recall (drop of 4–7 %
for lenient and 3–9 % for strict matching). While the ef-
fect on precision was not stable, the overall F-score has
still increased (3–8 % for lenient and 1–10 % for strict
matching). Table 8 presents the details on the folds for
the development corpus. To further evaluate the loss in
recall when the post-processing step is omitted, we ana-
lysed the full list of false negative mentions to extract
what percentage of these were dictionary matches, but
had nevertheless been rejected by the ML approach. It
Table 8 Machine learning results without post-processing on
the development set

Fold Recall (%) Precision (%) F-score (%)

1 46 (41) 78 (69) 58 (51)

2 42 (35) 89 (75) 57 (48)

3 45 (41) 75 (70) 56 (52)

4 60 (55) 71 (66) 65 (60)

5 76 (74) 74 (72) 75 (73)

Min 42 (35) 71 (66) 56 (52)

Max 76 (74) 89 (75) 75 (73)

Mean 54 (49) 78 (70) 62 (57)

Micro Avg 52 (47) 77 (70) 62 (56)

P Precision, R Recall, F F-score on the development set using machine learning
without post-processing (5-cross fold). Strict scores provided in brackets
turns out that this occurred in 158 (15 %) of the false
negative mentions. While providing more training data
could help, this issue could perhaps be also addressed by
using additional features (for example, utilising some of
the rules we suggest in the next section), or by combin-
ing dictionary and ML-methods. We note, however, that
the direct merge of the dictionary and ML results is in-
sufficient due to the large number of false-positives that
dictionary matching introduces (see Table 9). Specific-
ally, combining both results gives an average increase in
recall of 5 % (across all folds), but a large reduction in
precision, resulting in an average reduction in F-score of
15 %.

Feature impact analysis for the ML model
We explored the impact that particular groups of fea-
tures have on the recognition of biomedical resource
names. During the 5-fold cross validation, each of the
feature groups was removed and the CRF models were
then trained and applied to the test fold enabling us to
evaluate the contribution of each group. The CRF
models were built without post-processing as we wanted
to avoid the contributions being biased by that step (es-
pecially because it uses the dictionary predictions). The
results are presented in Table 10.
Overall, the lexical features were beneficial: when this

group of features was removed, there was a drop of 8 %
in precision, 6 % in recall, resulting in a 7 % lower F-
score. The syntactic features had only a slight impact on
the performance: removing this group resulted in a 1 %
drop in both precision and recall and a 2 % in F-score.
The orthographic features had a similar effect as the lex-
ical features: when these were removed, there was an
8 % loss in precision, a 6 % loss in recall, resulting in a
7 % loss in F-score. Surprisingly, removing the dictionary
features did not result in a high decrease in performance
(there was a drop of 8 % in precision, a 5 % drop in re-
call and thus a 6 % drop in F-score), suggesting that the
Table 9 Combined dictionary and machine learning results on
the development set

Fold Recall (%) Precision (%) F-score (%)

1 56 (49) 43 (38) 49 (42)

2 50 (41) 45 (37) 48 (39)

3 57 (52) 32 (29) 41 (37)

4 68 (64) 45 (42) 54 (51)

5 87 (84) 45 (43) 59 (57)

Min 50 (41) 32 (29) 41 (37)

Max 87 (84) 45 (43) 59 (57)

Mean 64 (58) 42 (38) 50 (45)

P Precision, R Recall, F F-score on the development set combining the
dictionary and machine learning annotations (5-cross fold). Strict scores
provided in brackets



Table 10 Feature impact analysis of the machine learning
model without post-processing on the development set

Feature group Recall (%) Precision (%) F-score (%)

All features 54 (49) 78 (70) 62 (57)

No lexical features 46 (43) 68 (62) 54 (50)

No syntactic features 53 (48) 77 (69) 61 (55)

No orthographic features 48 (43) 70 (62) 55 (50)

No dictionary features 49 (44) 70 (62) 57 (51)

P Precision, R Recall, F F-score feature contribution results comparison. Strict
scores provided in brackets

Table 12 Example clues and phrases appearing with specific
heads or in Hearst patterns

… the stochastic simulator Dizzy allows …

The MethMarker software was …

… tools: CLUSTALW, …, and MUSCLE.

… programs such as Simlink, …, and SimPed.

Database and software names are in italics, the associated clue is in bold
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ML-model (without the aid of a dictionary), even with
the relatively limited amount of training data, managed
to capture a significant number of resource mentions.

Missed database and software mentions
We further analysed the database and software names
not picked up by our ML approach for any common
textual clues and patterns. Table 11 summarises different
clue categories and their potential relative contribution
to the overall recall. Overall, using all clues that we have
recognised (see below), final recall could be as high as
94 % (Table 11), though utilising all of these pointers will
likely have a detrimental effect on precision.
The first type of clue that seemed most discriminatory

was to associate potential names with head terms, i.e.,
terms that are explicit designators of the type of re-
source. In the most basic case, a resource name could
include a head term or be immediately followed by one
(see Table 12). Key head terms included database,
software, tool, program, simulator, system, library and
service. Still, we note that not all potential clues are fully
discriminatory. For example, we note that including sys-
tem as a head clue might be problematic as the word
can have other uses and meaning within biology (e.g.,
biological systems). Similarly, although module could be
a useful head for identification of software names,
the mention of module(s) in “P and D modules”
Table 11 Types of textual patterns and clues for identification
of database and software names

Type Contribution to total TPs

Machine learning matches 55.3 %

Heads and Hearst Patterns 9.8 %

Title appearances 0.5 %

References and URLs 1.8 %

Version information 0.9 %

Noun/verb associations 21.4 %

Comparisons 4.0 %

Remaining 6.3 %

Tables 12, 13, 14, 15, 16 and 17 each provide examples of the above classes
(PMC1664705) refers to protein modules rather than
programming ones. Following from this, applying stand-
ard Hearst patterns [44] could be used to extract new and
unknown names from enumerations that contain some
known database and software names (see Table 12). These
patterns could help increase total recall by up to 10 %
(Table 11).
We further explored a pattern within paper titles

where the papers were introducing a new resource [45].
The title would typically name the new database or soft-
ware, and then follow it by a brief description (see
Table 13 for examples). In the development corpus, 15
of the 60 papers (25 %) contained such a pattern that
included a resource name. However, three additional
papers matched the pattern, but appeared to be introdu-
cing an algorithm/method, rather than a resource. Al-
though this would provide a limited improvement to
recall on a mention level (<1 %), it could significantly
aid document level recall. In addition, it provides a way
to discover new tool names for inclusion in a dictionary
with a high discriminatory rate.
Another clue is that database and software mentions

are frequently followed by either a reference or a web URL
(e.g., “Galaxy [18] and EpiGRAPH [19]”; PMC2784320).
This was the main indicator used by OReFiL [17]. We rec-
ognise, however, that web URLs and citations are not only
used for resources, and so this is far less reliable than the
previous options (for example, this approach could incor-
rectly capture “The learning metrics principle [14, 15]”;
PMC272927). Restricting this clue to a paper’s Methods
section may reduce the potential impact on precision.
Numerous database and software mentions also con-

tain or are accompanied by version information (see
Table 14). While version numbers can be unambiguous
(e.g., having ‘v’ or ‘version’), they can also be a series of
numbers, which are not discriminatory enough alone
Table 13 Example phrases from title appearances

CoXpress: differential co-expression in gene expression data

TABASCO: A single molecule, base-pair resolved gene expression
simulator

SimHap GUI: An intuitive graphical user interface for genetic association
analysis

Database and software names are in italics. Notice that in each case, the name
is given as the initial part of the paper’s full title (preceding the colon)



Table 14 Example versioning clues

… using dot v1.10 and Graphviz 1.13(v16).

CLUSTAL W version 1.83

Dynalign 4.5, and LocARNA 0.99

Database and software names are in italics, the associated clue is in bold

Table 16 Examples of comparisons between database
and software names

… the numbers of breakpoint sites by xPedPhase were equal to the
numbers of breakpoints by i Linker…

xPedPhase did better than i Linker…

Cofogla2 with this cutoff PSVM gives a better false positive rate
compared to RNAz…

Foldalign was much slower than Cofolga2 except for…

Like Moleculizer, Tabasco dynamically generates…

Database and software names are in italics, the associated clue is in bold
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(e.g., “AMD Athlon 1.8 GHz processor” (a CPU;
PMC2242808), or “sites of Myc (0.22) and NF-kappaB
(0.103)” (genes; PMC2246299)).
The category with the highest potential contribution

(over 21 %) includes cases where some expression (could
be a noun or a verb) in the sentence (not necessarily
next to the mention) gives an indication that a database
or software is being referred to. Such clues can range
from the more discriminatory like website, screenshot
and download, to medium ones like RAM, implement,
simulate and running time, to weak ones such as run,
generate, evaluate and obtain (see Table 15 for exam-
ples). However, this type of contribution is also the one
with the highest degree of variability, as many other
“things” (non-database/software names) can, for ex-
ample, be run, implemented or generated. Thus, these
clues can be the most challenging to automatically and
correctly associate with the actual potential resource
mention. Despite some of these clues being relatively
weak, we think that they have limited ambiguity at least
within the field of bioinformatics, even if this is not true
in a different field. To roughly estimate the effect on
precision that inclusion of these clues may have, we
compared the number of sentences in the development
corpus with a specific clue from this category to the
number of sentences with both the clue and a database
or software name within the corpus. For example, 76 %
of sentences which matched the word website also con-
tained a resource mention, while only 50 % of sentences
that matched RAM contained a mention of database or
software. However, despite our assumption that “to run”
(in any verb form) was a (relatively) good indicator, it ac-
tually appears to have low correlation with resource
names, as only 11 % of sentences which matched the
Table 15 Example expressions that functionally indicate
database and software mentions

… the SimHap GUI installation.

… implemented within PedPhase …

MethMarker therefore provides …

A typical screenshot of MethMarker …

Cofolga2 has six free parameters …

MethMarker’s user interface reflects …

MethMarker can directly import …

xPedPhase thus needs cubic time …

Database and software names are in italics, the associated clue is in bold
regular expression “ran|run(ning|s)?” also contained a
resource mention (however, 8 % of sentences which con-
tained a resource mention also matched that regular ex-
pression). Nevertheless, there could still be merit in
these clues if used in combination with each other rather
than alone.
A number of clues can be inferred from sentences that

make some comparison between two or more database
and software names (see Table 16). Many of these exam-
ples can be considered as extended Hearst patterns (e.g.,
“like tool1, tool2 is …”) but we have analysed them sep-
arately for a couple of reasons. In particular, there are an
unusually high number of terms contained within this
class in the development corpus (although, a third of the
examples within this class all come from a single paper).
Following on from this, in most of the cases within this
class, neither resource being compared in each case was
present in our dictionary. Thus, even if the comparison
pattern has been implemented, the method would need
at least to know about some of the tools to infer others.
As such, although we envisage potential in addressing
this type of database and software mention, we cannot
extrapolate how much use it could have due to the
biased sample.
Finally, there are a series of mentions (around 6 %)

without any clear textual clue, or with particularly am-
biguous ones (see Table 17 for examples). Some poten-
tial clues such as analyse, contains, column, step and
matrix seem too generic within the bioinformatics field
to be useful. For example, the number of sentences
within our corpus that contained both the regular
Table 17 Example phrases with no clear or discriminative clues

Additionally, i Linker has an error correction step that detects unlikely
crossover events.

In addition, Tabasco should be a good base to further study interactions
on DNA…

PSPE is not only able to use one of many common models of
nucleotide substitution…

The results show that LibSELDI tends to have a considerable advantage
in the low FDR region…

The structure of Tabasco confers at least four advantages.

Database and software names are in italics
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expression “analyse(d|s)?|analysis” and a mention of a
database or piece of software was only about 21 %,
whereas it was even lower for the regular expressions
“step(s|ped)?” (14 %) and “contain(ed|s)?” (13 %).

False positive filtering
Some typical false positive mistakes returned by the
CRF models include mentions of programming lan-
guages and their libraries (e.g., Python, BioPython),
algorithms/methods (e.g., Euclidean – a distance
measure, BLOSUM – a similarity scoring matrix), file
formats (e.g., FASTA), companies and organisations
(e.g., EBI – the European Bioinformatics Institute).
While we have explicitly excluded these types from the
current task, they can still be useful indicators of
bioinformatics practice. Another large class of errors,
like with the dictionary approach alone, is with
matches of GO sub-string within database identifiers
(e.g., GO:0007089). Finally, ambiguous acronyms are
typically returned as errors, but could be checked by
searching for a definition within the document.
We note that there is not always a clear distinction be-

tween database and software names, methods, ap-
proaches, algorithms, programming languages, database
records/identifiers, and file formats. We have decided to
focus on “executables” and datasets as our ultimate aim
is to help reconstruct the bioinformatics workflow that
has been used within a given paper, so that we can sup-
port experiment replication and reproduction. The prob-
lem occurs because authors often introduce a novel
algorithm and associated implementation (e.g., as a ser-
vice or a stand-alone application), but frequently refer to
their contribution only as an algorithm (or method), ra-
ther than software (or vice-versa). As such, although
they are talking about their algorithm throughout the
paper, it could be argued that they are referring to their
software implementation, especially when talking about
benchmark improvements in results. The fuzzy boundary
between these definitions is a challenge for any focused
automated system to overcome. Still, this distinction may
not be relevant for some applications.

Conclusions
In this paper we presented an exploration of variability
and ambiguity of database and software mentions in the
bioinformatics and computational biology literature. Our
results suggest that database and software NER is a non-
trivial task that requires more than just a dictionary
matching approach, even when using comprehensive
resource inventories. Due to bioinformatics’ focus on re-
source creation, a dictionary would never be sufficiently
comprehensive, making resource recognition potentially
as hard as gene recognition (in contrast to species recog-
nition, which is a relatively stable domain). Example
names such as Network and analysis provide sources of
ambiguity, whereas acronyms and verbalised references
to software such as BLASTed provide issues of variability
that need to be overcome.
The results of our ML-model show that dictionary-

based predictions can be significantly improved. While
ML achieved a major increase in precision, boosting re-
call proved to be challenging, indicating that additional
attributes need to be included for accurate biomedical
resource recognition.
Our analyses also provided a series of clues that could

be picked up by text-mining techniques. As many of
these clues are ambiguous on their own, an approach
would be to combine various evidence (e.g., using voting
and threshold) in order to capture database and software
names more accurately (see, for example, [8]). Further
work could combine these rules with the machine learn-
ing system to further increase the overall system accur-
acy, perhaps helping to recover some of the lost recall.

Availability of supporting data
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