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We study the asymptotical behavior of the p-adic singular Fourier integrals

Jπα,m;ϕ(t) = 〈
fπα ;m(x)χp(xt),ϕ(x)

〉 = F [ fπα ;mϕ](t), |t|p → ∞, t ∈ Qp,

where fπα ;m ∈ D′(Qp) is a quasi associated homogeneous distribution (generalized function)
of degree πα(x) = |x|α−1

p π1(x) and order m, πα(x), π1(x), and χp(x) are a multiplicative,
a normed multiplicative, and an additive characters of the field Qp of p-adic numbers,
respectively, ϕ ∈ D(Qp) is a test function, m = 0,1,2, . . . , α ∈ C. If Reα > 0 the
constructed asymptotics constitute a p-adic version of the well-known Erdélyi lemma.
Theorems which give asymptotic expansions of singular Fourier integrals are the Abelian
type theorems. In contrast to the real case, all constructed asymptotics have the stabilization
property.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

1.1. p-Adic mathematical physics

According to the well-known Ostrovsky theorem, any nontrivial valuation on the field of the rational numbers Q is equivalent
either to the real valuation | · | or to one of the p-adic valuations | · |p , where p is any prime number. This p-adic norm | · |p is
defined as follows: if an arbitrary rational number x �= 0 is represented as x = pγ m

n , where γ = γ (x) ∈ Z and the integers
m, n are not divisible by p, then

|x|p = p−γ , x �= 0, |0|p = 0.

The norm | · |p satisfies the strong triangle inequality

|x + y|p � max
(|x|p, |y|p

)
(1.1)

and is non-Archimedean. Consequently, it is possible to construct a completion of Q only with respect to the real valuation
| · | or to one of the p-adic valuations | · |p . The field Qp of p-adic numbers is defined as the completion of the field of
rational numbers Q with respect to the norm | · |p .

Thus there are two equal in rights universes: the “real universe” and the “p-adic one.” The latter universe is non-
Archimedean, and in consequence of this has some specific and surprising properties. This leads to interesting deviations
from the classical “real universe.”
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As is well known, during a few hundred years theoretical physics has been developed on the basis of real (and later also
complex) numbers. However, in the last 20 years the field of p-adic numbers Qp (as well as its algebraic extensions) has
been intensively used in theoretical and mathematical physics, stochastics, psychology, cognitive and social sciences, biology,
image analysis (see [5,20–22,24,31–34] and references therein). Thus, notwithstanding the fact that the p-adic numbers were
discovered by K. Hensel around the end of the nineteenth century, the theory of p-adic numbers has already penetrated
into several areas of mathematics and applied researches.

Since p-adic analysis and p-adic mathematical physics are young areas there are many unsolved problems, which have
been solved in standard real setting. Since “p-adic universe” is in a sense dual to the “real universe,” solving such type of
problems is important.

Recall that in the usual (R) case there is a theory of so-called oscillating integrals, which have the form
∫

Rn eit f (x)ϕ(x)dnx.
These integrals frequently occur in applied and mathematical physics. The classical problem related to oscillating integrals
is to investigate their asymptotical behavior when the parameter t tends to infinity ([6,14], [18, 7.8]). In the p-adic setting
oscillating integrals were studied in [17,36].

In particular, there are many problems where solutions are obtained as Fourier integrals which cannot be evaluated
exactly. Nevertheless, these solutions are not less important because it is often possible to study the asymptotic behavior of
these integrals [19, 9]. The problem of the asymptotical behavior of the Fourier integrals is related to the well-known Erdélyi
lemma [11,12]. In the one-dimensional case this lemma describes the asymptotics of the Fourier transforms of functions
f (x) defined on R and having singularities of the type xα−1± logm x±ϕ(x), where α > 0 and ϕ(x) is sufficiently smooth [14,
Ch. III, §1]. There are multidimensional generalizations of this lemma ([14, Ch. III], [6, Ch. II, §7], [35]). The above-mentioned
problems are close to the problem of constructing asymptotics of the Fourier transform of distributions

(x ± i0)α−1 logm(x ± i0)ϕ(x), m = 0,1,2 . . . , α ∈ C,

where ϕ(x) ∈ D(R) and (x ± i0)α−1 logm(x ± i0) are quasi associated homogeneous distributions of degree α − 1 and order m
(see [16, Ch. I, §4], and Remark 4.1). These asymptotics were constructed in [7,9,10] (see also [14, Ch. III, §1.6, §8]). In these
papers the following asymptotical formulas were derived:

(x ± i0)α−1 logm(x ± i0)eitx ≈ δ(x)2π

m∑
k=0

dm−k

dαm−k

(
e±i π(α−1)

2

�(−α + 1)

)
logk |t|
|t|α , t → ∓∞, (1.2)

(x ± i0)α−1 logm(x ± i0)eitx = o
(|t|−N)

, t → ±∞, (1.3)

for any N ∈ N, where α /∈ N. Some particular cases of these formulas were studied in [19, 9]. In [26], the asymptotic behavior
of singular Fourier integrals of pseudo-functions having power and logarithmic singularities are studied.

In p-adic analysis the last problem have not been studied so far. However, taking into account that p-adic mathematical
physics is intensively developed, studying these type of problems in the p-adic setting is very important.

1.2. Contents of the paper

In this paper the asymptotical behavior of the p-adic singular Fourier integrals

Jπα,m;ϕ(t) = 〈
fπα ;m(x)χp(xt),ϕ(x)

〉 = F [ fπα;mϕ](t), |t|p → ∞, (1.4)

is studied, where fπα ;m ∈ D′(Qp) is a quasi associated homogeneous distribution of degree πα(x) = |x|α−1
p π1(x) and order m,

m = 0,1,2 . . . , α ∈ C (see Definitions 2.1, 2.2 and Theorem 2.2), ϕ ∈ D(Qp), F is the Fourier transform; πα(x), π1(x), and
χp(x) are a multiplicative (2.4), a normed multiplicative (2.5), and an additive characters of the field Qp , respectively.

Remark 1.1. (i) Let us note that the linear span of set of distributions mentioned above

AH0(R) = span
{
(x ± i0)α logm(x ± i0): α ∈ C, m ∈ N0

}
= span

{
xα± logk x±, P

(
x−n± logm−1 x±

)
: α ∈ C, α �= −1,−2, . . . ,−n, . . . ; n,m ∈ N, k ∈ N0

} ⊂ D′(R)

constitutes a class important for application in mathematical physics, N0 = {0} ∪ N. Recall that this class was first intro-
duced and studied in the book [16, Ch. I, §4] as a class of the so-called associated homogeneous distributions. Later associated
homogeneous distributions were studied in the book [13]. Unfortunately, results on associated homogeneous distribution from
the books [13,16] are not quite consistent and have self-contradictory (for details, see [27]). The problems of introducing
of the concept of associated homogeneous distribution for D′(Rn) and relating mathematics were studied in [27]. According
to [27], direct transfer of the notion of an associated eigenvector to the case of distributions is impossible for the order m � 2.
Thus there exist only associated homogeneous distributions of order m = 0, i.e., homogeneous distributions (see Definition [16,
Ch. I, §3.11, (1)], [18, 3.2]) and of order m = 1 (see Definition [16, Ch. I, §4.1, (1), (2)]). Moreover, in [27], a definition of
quasi associated homogeneous distribution which is a natural generalization of the notion of associated homogeneous distribu-
tion was introduced and a mathematical description of all quasi associated homogeneous distributions was given. It was
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proved in [27] that the class of quasi associated homogeneous distributions coincides with the class of distributions AH0(R)

introduced in [16, Ch. I, §4] as the class of associated homogeneous distributions.
By adaptation of definitions from [27] to the case of the field Qp (instead of the real field), a notion of the p-adic

quasi associated homogeneous distribution was introduced in [1,2] by Definition 2.2. (In [1,2] these new distributions were
named as associated homogeneous distributions.) In [1,2] a mathematical description of all p-adic quasi associated homogeneous
distributions fπα ;m was given (see Theorem 2.2 and formulas (2.9), (2.12)).

(ii) Note that associated homogeneous distributions from D′(R) are parametrized by α ∈ C and m ∈ N0, while associ-
ated homogeneous distributions from D′(Qp) are parametrized by α ∈ C, π1(x), and m ∈ N0 (cf. [27, Definition 3.3] and
Definition 2.2).

In Section 2, some facts from p-adic theory of distributions are presented. In particular, the results on quasi associ-
ated homogeneous distributions [1,2] are given in Section 2.2. In Section 3, a definition of the stable p-adic asymptotical
expansion is introduced. This concept is relevant for p-adic asymptotic analysis (see below). In Sections 4, 5, we prove
Theorems 4.1, 4.2, 5.1 which describe the asymptotical behavior of the p-adic singular Fourier integrals (1.4). Here the
sequence{|t|−α

p π−1
1 (t) logm−k

p |t|p: k = 0,1,2, . . . ,m
}
, |t|p → ∞

is an asymptotic sequence, and any coefficient of the asymptotic expansion is proportional to the Dirac delta function. Here
we note that, although statement of Theorem 4.1 can be obtained as a corollary of Theorem 5.1, we prove these theorems
separately to demonstrate different methods for calculating p-adic asymptotics. In Section 6, by Corollary 6.1 a p-adic
version of the well-known Erdélyi lemma is given. This lemma is a direct consequence of Theorems 4.1, 5.1 for the case
Reα > 0. In Section 7, auxiliary lemmas are proved.

The asymptotical formulas (4.1)–(4.4), (4.15)–(4.18), (5.1)–(5.4) obtained by Theorems 4.1, 4.2, 5.1 are p-adic analogs of
formulas (1.2), (1.3). However, in contrast to (1.2), (1.3), p-adic asymptotical formulas (4.1)–(4.4), (4.15)–(4.18), (5.1)–(5.4)
have a specific property of the stabilization. Namely, the left- and right-hand sides of these formulas are exact equalities for
sufficiently big |t|p > s(ϕ), where s(ϕ) is the stabilization parameter (see Definition 3.3 and Remark 4.1). The stabilization
parameter s(ϕ) depends on the parameter of constancy of the function ϕ (see (2.1)) and the rank of the character π1(x)
(see (2.6)). Asymptotics of this type we call stable asymptotical expansions (see Definitions 3.1–3.3). This p-adic phenomenon
is quite different from the “real asymptotic properties.” It was first discovered in our paper [3, Theorem 5.1], where some
weak asymptotics were calculated.

This asymptotic stabilization property is similar to another p-adic phenomenon: if limn→∞ xn = x, xn, x ∈ Qp , |x|p �= 0, then
limn→∞ |xn|p = |x|p and the sequence of norm {|xn|p: n ∈ N} must be stabilize for sufficiently large n. Indeed, since |xn − x|p < |x|p
for sufficiently large n, according to the strong triangle inequality (1.1), we have

|xn|p = ∣∣(xn − x) + x
∣∣

p = max
(|xn − x|p, |x|p

) = |x|p for sufficiently large n.

It may well be that stabilization is a typical property of p-adic asymptotics.
It remains to note that Theorems 4.1, 4.2, 5.1 are the Abelian type theorems. Theorems of this type are inverse to the

Tauberian theorems (see [30] and the references therein). For the p-adic case Tauberian theorems for distributions were first
proved in [4,23]. In this paper we study the asymptotical behavior of the singular Fourier integrals Jπα,m;ϕ(t) = F [g(x)](t),
where the functions g(x) = |x|α−1

p logm
p |x|pπ1(x)ϕ(x) admit the estimate g(x) = O (|x|α−1

p logm
p |x|p), |x|p → 0. If α �= 0, ac-

cording to Theorems 4.1, 5.1, we have

Jπα,m;ϕ(t) = O
(|t|−α

p logm
p |t|p

)
, |t|p → ∞.

This connection between asymptotical behavior of g(x) and Jπα,m;ϕ(t) is a typical Abelian type theorem.
The results of this paper allow a development of an area of p-adic harmonic analysis which has not been studied so far.

In addition, a new technique of constructing p-adic weak asymptotics is developed. Moreover, a new effect of the p-adic
asymptotic stabilization is observed.

Since the asymptotical formulas for the Fourier transform of quasi associated homogeneous distributions from D′(R)

have many applications (see, for example [10,28,35]), we hope that their p-adic versions may be also useful in the p-adic
mathematical physics.

2. Preliminary results in p-adic analysis

2.1. p-Adic functions and distributions

We shall use intensively the notations and results from [31]. Denote by N, Z, C the sets of positive integers, integers,
complex numbers, respectively, and set N0 = 0 ∪ N. Denote by Q∗

p = Qp \ {0} the multiplicative group of the field Qp .
Denote by Bγ (a) = {x ∈ Qp: |x − a|p � pγ } the ball of radius pγ with center at a point a ∈ Qp and by Sγ (a) = {x ∈ Qp:

|x − a|p = pγ } = Bγ (a) \ Bγ −1(a) its boundary (sphere), γ ∈ Z. For a = 0 we set Bγ (0) = Bγ and Sγ (0) = Sγ .
On Qp one can define the Haar measure, i.e., a positive measure dx which is invariant with respect to shifts, d(x+a) = dx,

and normalized by the equality
∫

dx = 1.
|ξ |p�1



A.Yu. Khrennikov, V.M. Shelkovich / J. Math. Anal. Appl. 350 (2009) 170–183 173
A complex-valued function f defined on Qp is called locally-constant if for any x ∈ Qp there exists an integer l(x) ∈ Z

such that

f (x + x′) = f (x), x′ ∈ Bl(x).

Let E (Qp) and D(Qp) be the linear spaces of locally-constant C-valued functions on Qp and locally-constant C-valued
functions with compact supports (so-called test functions), respectively. According to Lemma 1 from [31, VI.1], for any
ϕ ∈ D(Qp) there exists l ∈ Z, such that

ϕ(x + x′) = ϕ(x), x′ ∈ Bl, x ∈ Qp . (2.1)

The largest number l = l(ϕ) for which the last relation holds is called the parameter of constancy of the function ϕ . Let us
denote by Dl

N (Qp) the space of test functions from D(Qp) with supports in the disc BN and with parameter of constancy

� l. The following embedding holds: Dl
N (Qp) ⊂ Dl′

N ′ (Qp), N � N ′ , l � l′ . Here D(Qp) = limN→∞ ind DN (Qp), DN (Qp) =
liml→−∞ ind Dl

N (Qp). Denote by D′(Qp) the set of all linear functionals on D(Qp).

Denote by Δk(x)
def= Ω(p−k|x|p) the characteristic function of the ball Bk , k ∈ Z, x ∈ Qp , where

Ω(t) =
{

1, 0 � t � 1,

0, t > 1.

If f ∈ D′(Qp), ϕ ∈ D(Qp), then the convolution f ∗ ϕ ∈ E (Qp) and [31, VII, (1.7)]

( f ∗ ϕ)(x) = 〈
f (ξ),ϕ(x − ξ)

〉
. (2.2)

The Fourier transform of a test function ϕ ∈ D(Qp) is defined by the formula

F [ϕ](ξ) =
∫

χp(ξx)ϕ(x)dx, ξ ∈ Qp,

where the function χp(ξx) = e2π i{ξx}p for every fixed ξ ∈ Qp is an additive character of the field Qp , {ξx}p is the fractional
part of the number ξx [31, VII.2, VII.3].

Lemma 2.1. (See [29, III, (3.2)], [31, VII.2].) Fourier transform is a linear isomorphism D(Qp) into D(Qp). Moreover,

ϕ ∈ Dl
N (Qp) iff F [ϕ] ∈ D−N

−l (Qp). (2.3)

We define the Fourier transform F [ f ] of a distribution f ∈ D′(Qp) by the relation [31, VII.3], 〈F [ f ],ϕ〉 = 〈 f , F [ϕ]〉 for
all ϕ ∈ D(Qp).

Any multiplicative character (see [31, III.2]) π of the field Qp can be represented as

π(x)
def= πα(x) = |x|α−1

p π1(x), x ∈ Qp, (2.4)

where π(p) = p1−α and π1(x) is a normed multiplicative character such that

π1(x) = π1
(|x|px

)
, π1(p) = π1(1) = 1,

∣∣π1(x)
∣∣ = 1. (2.5)

We denote π0 = |x|−1
p .

Lemma 2.2. (See [29, I.7], [31, III, (2.2)].) Let A0 = S0 = {x ∈ Qp: |x|p = 1}, Ak = B−k(1) = {x ∈ Qp: |x − 1|p � p−k}, k ∈ N. If π1 is
a normed multiplicative character (2.5), then there exists k ∈ N0 such that

π1(x) ≡ 1, x ∈ Ak. (2.6)

The smallest k0 ∈ N0 for which the equality (2.6) holds is called the rank of the normed multiplicative character π1(x). There
is only one zero rank character, namely, π1(x) ≡ 1.

Let us introduce the p-adic �-functions (see [31, VIII, (2.2), (2.17)]):

�p(α)
def= �p

(|x|α−1
p

) =
∫

Qp

|x|α−1
p χp(x)dx = 1 − pα−1

1 − p−α
, (2.7)

�p(πα)
def= F [πα](1) =

∫
Qp

|x|α−1
p π1(x)χp(x)dx. (2.8)

Here the integrals in the right-hand sides of (2.7), (2.8) are defined by means of analytic continuation with respect to α.
According to [29, III, Theorem (4.2)], �-function (2.8) can be also defined as improper integral limk→∞

∫
−k k ·dx.
p �|x|p�p
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2.2. Homogeneous and quasi associated homogeneous distributions

Let us recall some facts on p-adic homogeneous and quasi associated homogeneous distributions.

Definition 2.1. (See [15, Ch. II, §2.3], [31, VIII.1].) Let πα be a multiplicative character (2.4) of the field Qp . A distribution
f ∈ D′(Qp) is called homogeneous of degree πα if for all ϕ ∈ D(Qp) we have〈

f ,ϕ

(
x

t

)〉
= πα(t)|t|p〈 f ,ϕ〉, ∀ t ∈ Q∗

p,

i.e., f (tx) = πα(t) f (x), t ∈ Q∗
p .

The following theorem gives a description of all homogeneous distributions.

Theorem 2.1. (See [15, Ch. II, §2.3], [31, VIII.1].) Every homogeneous distribution f ∈ D′(Qp) of degree πα has the form

(a) Cπα if πα �= π0 = |x|−1
p ;

(b) Cδ if πα = π0 = |x|−1
p , where C is a constant.

Definition 2.2. (See [1,2].) A distribution fm ∈ D′(Qp) is said to be quasi associated homogeneous of degree πα and order m,
m ∈ N0, if for all ϕ ∈ D(Qp) we have〈

fm,ϕ

(
x

t

)〉
= πα(t)|t|p〈 fm,ϕ〉 +

m∑
j=1

πα(t)|t|p log j
p |t|p〈 fm− j,ϕ〉, ∀ t ∈ Q∗

p,

where fm− j ∈ D′(Qp) is an associated homogeneous distribution of degree πα and order m − j, j = 1,2, . . . ,m, i.e.,

fm(tx) = πα(t) fm(x) +
m∑

j=1

πα(t) log j
p |t|p fm− j(x).

If m = 0 we set that the above sum is empty.

The class of quasi associated homogeneous distributions of order m = 0 coincides with the class of homogeneous distribu-
tions.

Theorem 2.2. (See [1,2].) Every associated homogeneous distribution f ∈ D′(Qp) of degree πα(x) and order m ∈ N (with accuracy
up to an associated homogeneous distribution of order � m − 1) has the form

(a) Cπα(x) logm
p |x|p if πα �= π0 = |x|−1

p ;

(b) C P (|x|−1
p logm−1

p |x|p) if πα = π0 = |x|−1
p , where C is a constant.

According to the papers [1,2], an associated homogeneous distribution of degree πα(x) = |x|α−1
p π1(x) �= π0(x) = |x|−1

p and
order m ∈ N is defined as〈

πα(x) logm
p |x|p,ϕ(x)

〉 = ∫
B0

|x|α−1
p π1(x) logm

p |x|p
(
ϕ(x) − ϕ(0)

)
dx +

∫
Qp\B0

|x|α−1
p π1(x) logm

p |x|pϕ(x)dx

+ ϕ(0)

∫
B0

|x|α−1
p π1(x) logm

p |x|p dx, (2.9)

for all ϕ ∈ D(Qp), where

I0(α;m) =
∫
B0

|x|α−1
p π1(x) logm

p |x|p dx = logm
p e

dm I0(α)

dαm
= logm

p e

{
0, π1(x) �≡ 1,

dm

dαm (
1−p−1

1−p−α ), π1(x) ≡ 1,
(2.10)

where the integral

I0(α) =
∫

|x|α−1
p π1(x)dx =

{
0, π1(x) �≡ 1,
1−p−1

1−p−α , π1(x) ≡ 1,
(2.11)
B0



A.Yu. Khrennikov, V.M. Shelkovich / J. Math. Anal. Appl. 350 (2009) 170–183 175
is well defined for Reα > 0, and for α �= α j = 2π i
ln p j, j ∈ Z (2.11) is defined by means of analytic continuation.

According to the same papers, an associated homogeneous distribution of degree π0(x) = |x|−1
p and order m ∈ N is defined

as 〈
P

(
logm−1

p |x|p

|x|p

)
,ϕ

〉
=

∫
B0

logm−1
p |x|p

|x|p

(
ϕ(x) − ϕ(0)

)
dx +

∫
Qp\B0

logm−1
p |x|p

|x|p
ϕ(x)dx, (2.12)

for all ϕ ∈ D(Qp).

3. p-Adic stable distributional asymptotics

Let us introduce a definition of the distributional asymptotics [8] adapted to the case of Qp .

Definition 3.1. A sequence of continuous complex-valued functions ψk(t) on the multiplicative group Q∗
p is called an asymp-

totic sequence, as |t|p → ∞ if ψk+1(t) = o(ψk(t)), |t|p → ∞ for all k = 1,2, . . . .

Definition 3.2. Let f (x, t) ∈ D′(Qp) be a distribution depending on t as a parameter, and Ck(x) ∈ D′(Qp) be distributions,
k = 1,2, . . . . We say that the relation

f (x, t) ≈
∞∑

k=1

Ck(x)ψk(t), |t|p → ∞, (3.1)

is an asymptotical expansion of the distribution f (x, t), as |t|p → ∞, with respect to an asymptotic sequence {ψk(t)} if

〈
f (x, t),ϕ(x)

〉 ≈ ∞∑
k=1

〈
Ck(x),ϕ(x)

〉
ψk(t), |t|p → ∞, (3.2)

for any ϕ ∈ D(Qp), i.e.,

〈
f (x, t),ϕ(x)

〉 − N∑
k=1

〈
Ck(x),ϕ(x)

〉
ψk(t) = o

(
ψN (t)

)
, |t|p → ∞,

for any N .

Definition 3.3. Suppose that a distribution f (x, t) ∈ D′(Qp) has the asymptotical expansion (3.1). If for any test function
ϕ(x) ∈ D(Qp) there exists a number s(ϕ) depending on ϕ such that for all |t|p > s(ϕ) relation (3.2) is an exact equality, we
say that the asymptotical expansion (3.1) is stable and write

f (x, t) =
∞∑

k=1

Ck(x)ψk(t), |t|p → ∞. (3.3)

A number s(ϕ) is called the stabilization parameter of the asymptotical expansion (3.1).

4. Asymptotic formulas for singular Fourier integrals (the case π1(x) ≡ 1)

4.1. The case fπα ;m(x) = |x|α−1
p logm

p |x|p , α �= 0, m = 0,1,2, . . .

Theorem 4.1. Let ϕ ∈ Dl
N (Qp). Then the functional Jπα,m;ϕ(t) has the following asymptotical behavior:

(a) If m = 0, then

Jπα,0;ϕ(t) = 〈|x|α−1
p χp(xt),ϕ(x)

〉 = ϕ(0)
�p(α)

|t|αp , |t|p > p−l, (4.1)

the �-function �p(α) is given by (2.7), i.e., in the weak sense

|x|α−1
p χp(xt) = δ(x)

�p(α)

|t|αp , |t|p → ∞. (4.2)

(b) If m = 1,2, . . . , then

Jπα,m;ϕ(t) = 〈|x|α−1
p logm

p |x|pχp(xt),ϕ(x)
〉 = ϕ(0)

m∑
Ck

m logk
p e

dk�p(α)

dαk

logm−k
p |t|p

|t|αp , |t|p > p−l, (4.3)

k=0
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i.e., in the weak sense

|x|α−1
p logm

p |x|pχp(xt) = δ(x)
m∑

k=0

Ck
m logk

p e
dk�p(α)

dαk

logm−k
p |t|p

|t|αp , |t|p → ∞, (4.4)

with respect to an asymptotic sequence {|t|−α
p logm−k

p |t|p: k = 0,1, . . . ,m}.

Thus for any ϕ ∈ D(Qp), relations (4.1), (4.3) are exact equalities for sufficiently big |t|p > p−l , i.e., these asymptotical expansions
are stable with the stabilization parameter s(ϕ) = p−l .

Proof. Let Reα > 0. In this case |x|α−1
p logm

p |x|pϕ(x) ∈ L1(Qp), and the integral

Jπα,m;ϕ(t) = 〈|x|α−1
p logm

p |x|pχp(xt),ϕ(x)
〉 = ∫

Qp

|x|α−1
p logm

p |x|pχp(xt)ϕ(x)dx

converges absolutely. Hence, according to the Riemann–Lebesque theorem [31, VII.3], Jπα,m;ϕ(t) → 0, as |t|p → ∞. More
precisely, since ϕ(x) ∈ Dl

N (Qp) then, in view of Lemmas 7.1, 7.2,

Jπα,m;ϕ(t) = ϕ(0)
1

|t|αp
m∑

k=0

Ck
m logk

p e
dk�p(α)

dαk
logm−k

p |t|p, ∀ |t|p > p−l. (4.5)

Thus relations (4.1)–(4.4) hold.
Let Reα < 0. In this case we define the functional Jπα,m;ϕ(t) by the analytical continuation with respect to α. According

to (2.9), (2.10):

Jπα,m;ϕ(t) = 〈|x|α−1
p logm

p |x|pχp(xt),ϕ(x)
〉

=
∫
B0

|x|α−1
p logm

p |x|pχp(xt)
(
ϕ(x) − ϕ(0)

)
dx +

∫
Qp\B0

|x|α−1
p logm

p |x|pχp(xt)ϕ(x)dx

+ ϕ(0)

∫
B0

|x|α−1
p logm

p |x|pχp(xt)dx, (4.6)

for all ϕ ∈ D(Qp), where the last integral in (4.6) is defined by means of analytic continuation with respect to α.
Since ϕ ∈ Dl

N (Qp), it is natural to rewrite functional (4.6) as the following sum:

Jπα,m;ϕ(t) = J 1
πα,m;ϕ(t) + J 2

πα,m;ϕ(t) + ϕ(0) J 0
πα,m(t), (4.7)

where

J 1
πα,m;ϕ(t) =

∫
Bl

|x|α−1
p logm

p |x|pχp(xt)
(
ϕ(x) − ϕ(0)

)
dx, (4.8)

J 2
πα,m;ϕ(t) =

∫
Qp\Bl

|x|α−1
p logm

p |x|pχp(xt)ϕ(x)dx, (4.9)

J 0
πα,m(t) =

∫
Bl

|x|α−1
p logm

p |x|pχp(xt)dx. (4.10)

Here integral (4.10) is defined by means of analytic continuation with respect to α.
For Reα > 0 and m = 0, according to (7.4), integral (4.10) is equal to

J 0
πα,0(t) = F

[|x|α−1
p Δl(x)

]
(t) =

∫
Bl

χp(tx)|x|α−1
p dx = 1 − p−1

1 − p−α
pαlΔ−l(t) + �p(α)

|t|αp
(
1 − Δ−l(t)

)
. (4.11)

For any α �= α j = 2π i
ln p j, j ∈ Z we define J 0

πα,0(t) by means of analytic continuation with respect to α.
Differentiating relation (4.11) with respect to α, we obtain

J 0
πα,m(t) = F

[|x|α−1
p logm

p |x|pΔl(x)
]
(t) =

∫
Bl

χp(tx)|x|α−1
p logm

p |x|p dx = logm
p e

dm

dαm
J 0
πα,0(t)

= Δ−l(t)
(
1 − p−1) dm

dαm

(
pαl

1 − p−α

)
logm

p e + (
1 − Δ−l(t)

) 1

|t|αp
m∑

Ck
m logk

p e
dk�p(α)

dαk
logm−k

p |t|p . (4.12)

k=0
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Note that by using formulas from [15, Ch. II, §2.2], [31, IV], relation (4.12) can be calculated explicitly.
According to (4.12), we have

J 0
πα,m(t) = 1

|t|αp
m∑

k=0

Ck
m

dk�p(α)

dαk
logm−k

p |t|p, |t|p > p−l. (4.13)

Since ϕ ∈ Dl
N (Qp), it is clear that the functions

|x|α−1
p logm

p |x|p
(
ϕ(x) − ϕ(0)

)
Δl(x) = 0,

|x|α−1
p logm

p |x|pϕ(x)
(
1 − Δl(x)

) ∈ Dl
N (Qp).

Thus for their Fourier transforms, according to (2.3), we have

J 1
πα,m;ϕ(t) =

∫
Bl

|x|α−1
p logm

p |x|pχp(xt)
(
ϕ(x) − ϕ(0)

)
dx = 0,

J 2
πα,m;ϕ(t) =

∫
Qp\Bl

|x|α−1
p logm

p |x|pχp(xt)ϕ(x)dx = 0, (4.14)

for all |t|p > p−l . Thus for Reα < 0 relations (4.7), (4.14), (4.13) imply (4.1)–(4.4). �
4.2. The case fπ0;m(x) = P (

logm
p |x|p

|x|p
), m = 0,1,2, . . .

Theorem 4.2. Let ϕ ∈ Dl
N (Qp). Then the functional Jπα,m;ϕ(t) has the following asymptotical behavior:

(a) If m = 0, then

Jπ0,0;ϕ(t) =
〈

P

(
1

|x|p

)
χp(xt),ϕ(x)

〉
= ϕ(0)

(
− 1

p
−

(
1 − 1

p

)
logp

( |t|p

p−l

))
, |t|p > p−l, (4.15)

i.e., in the weak sense

P

(
1

|x|p

)
χp(xt) = δ(x)

(
− 1

p
−

(
1 − 1

p

)
logp

( |t|p

p−l

))
, |t|p → ∞. (4.16)

(b) If m = 1,2, . . . , then

Jπ0,m;ϕ(t) =
〈

P

(
logm

p |x|p

|x|p

)
χp(xt),ϕ(x)

〉

= ϕ(0)

{
1

p
(−1)m+1(logp |t|p − 1

)m

+
(

1 − 1

p

)
1

m + 1

(
(−1)m+1(logm+1

p |t|p − (−l)m+1) − (−1)mC1
m+1B1

(
logm

p |t|p − (−l)m)
+

m∑
r=2

(−1)m+1−r Cr
m+1Br

(
logm+1−r

p |t|p − (−l)m+1−r))}
, |t|p > p−l, (4.17)

where the Bernoulli numbers Br , r = 0,1, . . . ,m are defined by (7.7), i.e., in the weak sense,

P

(
logm

p |x|p

|x|p

)
χp(xt) = δ(x)

{
− 1

p

(− logp |t|p + 1
)m

+
(

1 − 1

p

)
1

m + 1

(
(−1)m+1(logm+1

p |t|p − (−l)m+1) − (−1)mC1
m+1B1

(
logm

p |t|p − (−l)m)
+

m∑
r=2

(−1)m+1−r Cr
m+1Br

(
logm+1−r

p |t|p − (−l)m+1−r))}
, |t|p → ∞, (4.18)

with respect to an asymptotic sequence {logm+1−k
p |t|p: k = 0,1, . . . ,m + 1}.
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Thus for any ϕ ∈ D(Qp), relations (4.15), (4.17) are exact equalities for sufficiently big |t|p > p−l , i.e., these asymptotical expansions
are stable with the stabilization parameter s(ϕ) = p−l .

Proof. According to (2.12), we have

Jπ0,m;ϕ(t) =
〈

P

(
logm

p |x|p

|x|p

)
χp(xt),ϕ(x)

〉
=

∫
B0

logm
p |x|p

|x|p

(
ϕ(x)χp(xt) − ϕ(0)

)
dx +

∫
Qp\B0

logm
p |x|p

|x|p
χp(xt)ϕ(x)dx, (4.19)

for all ϕ ∈ D(Qp), m = 0,1,2, . . . .
Since ϕ ∈ Dl

N (Qp), it is natural to rewrite the functional Jπ0,m;ϕ(t) in the form of the sum of integrals:

Jπ0,m;ϕ(t) = J 1
π0,m;ϕ(t) + J 2

π0,m;ϕ(t) + ϕ(0) J 0
π0,m(t), (4.20)

where

J 1
π0,m;ϕ(t) =

∫
Bl

logm
p |x|p

|x|p
χp(xt)

(
ϕ(x) − ϕ(0)

)
dx, (4.21)

J 2
π0,m;ϕ(t) =

∫
Qp\Bl

logm
p |x|p

|x|p
χp(xt)ϕ(x)dx, (4.22)

J 0
π0,m(t) =

∫
Bl

logm
p |x|p

|x|p

(
χp(xt) − 1

)
dx. (4.23)

Since ϕ ∈ Dl
N (Qp), it is clear that

logm
p |x|p

|x|p

(
ϕ(x) − ϕ(0)

)
Δl(x) = 0,

logm
p |x|p

|x|p
ϕ(x)

(
1 − Δl(x)

) ∈ Dl
N (Qp).

Thus as above, according to (2.3), for their Fourier transforms (4.21), (4.22) we have

J 1
π0,m;ϕ(t) = J 2

π0,m;ϕ(t) = 0, ∀|t|p > p−l. (4.24)

Let us calculate integral (4.23). Suppose that |t|p = pM , M > −l.
We start with the case m = 0. Taking into account that −M + 1 � l, according to formulas from [15, Ch. II, §2.2], [31, IV],

we have

J 0
π0,0(t) =

∫
Bl

χp(xt) − 1

|x|p
dx =

l∑
γ =−∞

p−γ

∫
Sγ

(
χp(xt) − 1

)
dx

= −p−(−M+1) p−M+1−1 −
l∑

γ =−M+1

p−γ

(
1 − 1

p

)
pγ

= − 1

p
−

(
1 − 1

p

)
(l + M) = − 1

p
−

(
1 − 1

p

)
logp

( |t|p

p−l

)
. (4.25)

Relations (4.24) and (4.25) imply that

Jπ0,0;ϕ(t) = ϕ(0)

(
− 1

p
−

(
1 − 1

p

)
logp

( |t|p

p−l

))
, |t|p > p−l. (4.26)

Note that the last relation can also be proved if we use the representation of functional (4.19) in the form of convolution
Jπ0,m;ϕ(t) = F [P ( 1

|x|p
)](t) ∗ F [ϕ(x)](t), and formula [31, IX, (2.8)]:

F
[(

1 − p−1) logp |x|p
]
(t) = −P

(
1

)
− p−1δ(t).
|t|p
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In the case m = 1,2, . . . , for |t|p = pM , M > −l, using formulas from [15, Ch. II, §2.2], [31, IV], we obtain

J 0
π0,m(t) =

∫
Bl

logm
p |x|p

|x|p

(
χp(xt) − 1

)
dx

=
l∑

γ =−∞
p−γ γ m

∫
Sγ

(
χp(xt) − 1

)
dx

= −p−(−M+1)(−M + 1)m p−M+1−1 −
l∑

γ =−M+1

p−γ γ m
(

1 − 1

p

)
pγ

= − 1

p
(−M + 1)m −

(
1 − 1

p

) l∑
γ =−M+1

γ m. (4.27)

Next, using formulas (7.8), (7.9), relation (4.27) can be easily transformed to the following form

J 0
π0,m(t) = − 1

p
(−M + 1)m −

(
1 − 1

p

)(
Sm(l) − Sm(−M)

)
= − 1

p
(−M + 1)m

+
(

1 − 1

p

)
1

m + 1

(
(−M)m+1 − lm+1 − C1

m+1B1
(
(−M)m − lm

) +
m∑

r=2

Cr
m+1Br

(
(−M)m+1−r − lm+1−r))

= − 1

p
(−1)m(logp |t|p − 1)m +

(
1 − 1

p

)
1

m + 1

(
(−1)m+1(logm+1

p |t|p − logm+1
p p−l)

− (−1)mC1
m+1B1

(
logm

p |t|p − logm
p p−l) +

m∑
r=2

(−1)m+1−r Cr
m+1Br

(
logm+1−r

p |t|p − logm+1−r
p p−l)), (4.28)

where the Bernoulli numbers Br , r = 0,1, . . . ,m are defined by (7.7), the polynomial Sm(γ0) is given by (7.8).
Relations (4.20), (4.24), (4.28) imply

Jπ0,m;ϕ(t) = ϕ(0)

{
1

p
(−1)m+1(logp |t|p − 1)m

+
(

1 − 1

p

)
1

m + 1

(
(−1)m+1(logm+1

p |t|p − logm+1
p p−l) − (−1)mC1

m+1B1
(
logm

p |t|p − logm
p p−l)

+
m∑

r=2

(−1)m+1−r Cr
m+1Br

(
logm+1−r

p |t|p − logm+1−r
p p−l))}

, (4.29)

for all |t|p > p−l .
Thus relations (4.17), (4.18) hold. �

Corollary 4.1. If α = 1, then relations (4.1), (2.7) imply the statement (2.3) of Lemma [31, VII.2].

Remark 4.1. The asymptotical expansion (4.4) can be represented in the form

|x|α−1
p logm

p |x|pχp(xt) = δ(x)
logm

p |t|p

|t|αp

(
N∑

k=0

Ak(α) log−k
p |t|p + o

(
log−N

p |t|p
))

, |t|p → ∞, (4.30)

where Ak(α) is an explicit computable constant, k = 0,1, . . . . Here a stabilization property is expressed be the following
assertion: for N � m and for enough large |t|p the remainder disappears and the asymptotic expansion turns to an exact equality.2

The same remark is also true for the case of asymptotical expansions (4.18).

2 We emphasize the representation (4.30) after a remark of the anonymous referee of this paper.
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Remark 4.2. Since ϕ ∈ Dl
N (Qp), to calculate asymptotics of the functionals Jπα,m;ϕ(t) and Jπ0,m;ϕ(t) (for the case π1(x) ≡ 1,

α �= 0), it is natural to represent these functionals as the sums of integrals (4.7) and (4.20), respectively. However, we can
represent these functionals as the sums of integrals

J̃ 1
πα,m;ϕ(t) =

∫
Bl0

|x|α−1
p (x) logm

p |x|pχp(xt)
(
ϕ(x) − ϕ(0)

)
dx, (4.31)

J̃ 2
πα,m;ϕ(t) =

∫
Qp\Bl0

|x|α−1
p logm

p |x|pχp(xt)ϕ(x)dx, (4.32)

J̃ 0
πα,m(t) =

∫
Bl0

|x|α−1
p logm

p |x|pχp(xt)dx, (4.33)

where l0 ∈ Z. For example, we can choose l0 = 0, as in the standard representations (4.6) and (4.19). In this case

|x|α−1
p logm

p |x|p
(
ϕ(x) − ϕ(0)

)
Δl0 (x) ∈ Dmin(l,l0)

N (Qp),

|x|α−1
p logm

p |x|pϕ(x)
(
1 − Δl0 (x)

) ∈ Dmin(l,l0)
N (Qp).

and, as above, according to (2.3), J̃ 1
πα,m;ϕ(t) = J̃ 2

πα,m;ϕ(t) = 0 for all |t|p > pmax(−l,−l0) . Thus repeating the above calculations
almost word for word, we obtain the asymptotic formulas from Theorem 4.1. However, in this case the minimal stabilization
parameter is equal to s(ϕ) = pmax(−l,−l0) .

The same remark is also true for the case of Theorems 4.2.

5. Asymptotic formulas for singular Fourier integrals (the case π1(x) �≡ 1)

Now we consider the case of distributions fπα;m(x) = |x|α−1
p π1(x) logm

p |x|p , m = 0,1,2, . . . .

Theorem 5.1. Let ϕ ∈ Dl
N (Qp), and let k0 > 0 be the rank of the character π1(x). Then the functional Jπα,m;ϕ(t) has the following

asymptotical behavior:

(a) If m = 0, then

Jπα,0;ϕ(t) = 〈|x|α−1
p π1(x)χp(xt),ϕ(x)

〉 = ϕ(0)
�p(πα)

|t|αp π1(t)
, |t|p > p−l+k0 , (5.1)

for all ϕ ∈ Dl
N (Qp), where the �-function �p(πα) is given by (2.8), i.e., in the weak sense

|x|α−1
p π1(x)χp(xt) = δ(x)

�p(πα)

|t|αp π1(t)
, |t|p → ∞. (5.2)

(b) If m = 1,2, . . . , then

Jπα,m;ϕ(t) = 〈|x|α−1
p π1(x) logm

p |x|pχp(xt),ϕ(x)
〉

= ϕ(0)

m∑
k=0

Ck
m logk

p e
dk�p(πα)

dαk

logm−k
p |t|p

|t|αpπ1(t)
, |t|p > p−l+k0 , (5.3)

for all ϕ ∈ Dl
N (Qp), i.e., in the weak sense

|x|α−1
p π1(x) logm

p |x|pχp(xt) = δ(x)
m∑

k=0

Ck
m logk

p e
dk�p(πα)

dαk

logm−k
p |t|p

|t|αpπ1(t)
, |t|p → ∞, (5.4)

with respect to an asymptotic sequence {π−1
α+1(t) logm−k

p |t|p: k = 0,1, . . . ,m}.

Thus for any ϕ ∈ D(Qp), relations (5.1), (5.3) are exact equalities for sufficiently big |t|p > p−l+k0 , i.e., these asymptotical expan-
sions are stable with the stabilization parameter s(ϕ) = p−l+k0 .

Proof. Let m = 0. Taking into account formulas [31, VII, (3.10), (5.4)], the functional Jπα,0;ϕ(t) can be rewritten as a convo-
lution:

Jπα,0;ϕ(t) = 〈|x|α−1
p π1(x)χp(xt),ϕ(x)

〉 = F
[|x|α−1

p π1(x)ϕ(x)
]
(t) = F

[|x|α−1
p π1(x)

]
(t) ∗ ψ(t), (5.5)
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where ψ(ξ) = F [ϕ(x)](ξ) and according to [31, VIII, (2.1)],

F
[|x|α−1

p π1(x)
]
(t) = �p(πα)|t|−α

p π−1
1 (t). (5.6)

Since ϕ(x) ∈ Dl
N (Qp) then, in view of (2.3), ψ(ξ) ∈ D−N

−l (Qp). If |t|p > p−l , according to (5.6), (2.2), relation (5.5) can be
rewritten as

Jπα,0;ϕ(t) = �p(πα)

∫
Qp

|t − ξ |−α
p π−1

1 (t − ξ)ψ(ξ)dξ. (5.7)

Since |t|p > p−l and ξ ∈ B−l the last integral is well defined for any α. Moreover, we have |t − ξ |p = |t|p for |t|p > p−l ,
ξ ∈ B−l . Thus relation (5.7) can be transformed to the form

Jπα,0;ϕ(t) = �p(πα)|t|−α
p π−1

1 (t)Ψ (t), |t|p > p−l, (5.8)

where

Ψ (t) =
∫

B−l

π−1
1

(
1 − ξ

t

)
ψ(ξ)dξ. (5.9)

Let k0 be the rank of the character π1(x) �≡ 1. In is clear that if |t|p > p−l+k0 , then the inequality | ξ
t |p � p−k0 holds for

all ξ ∈ B−l . Thus in view of (2.6), we see that π−1
1 (1 − ξ

t ) ≡ 1 for all ξ ∈ B−l and |t|p > p−l+k0 . Next, applying an analog
of the Lebesque theorem to limiting passage under the sign of an integral to (5.9), and taking into account that |π1(x)| = 1
and ∫

B−l

ψ(ξ)dξ =
∫

Qp

ψ(ξ)dξ = ϕ(0),

we see that (5.8), (5.9) imply relations (5.1), (5.2) for all |t|p > p−l+k0 .
If m = 1,2, . . . , differentiating (5.8) with respect to α, we obtain

Jπα,m;ϕ(t) = logm
p

dm

dαm
Jπα,0;ϕ(t) =

m∑
k=0

Ck
m logk

p e
dk�p(πα)

dαk
|t|−α

p logm−k
p |t|pπ

−1
1 (t)Ψ (t), |t|p > p−l. (5.10)

Just as above, since Ψ (t) = ϕ(0) for |t|p > p−l+k0 , relation (5.10) implies (5.3), (5.4). �
The analogues of Remarks 4.1, 4.2 are also true for the case of Theorem 5.1.

6. p-Adic version of the Erdélyi lemma

Theorems 4.1, 5.1 for Reα > 0 imply the following p-adic version of the well-known Erdélyi lemma.

Corollary 6.1. Let k0 be the rank of the character π1 , and ϕ ∈ Dl
N (Qp). Then for Reα > 0, m = 0,1,2, . . . , we have

∫
Qp

|x|α−1
p π1(x) logm

p |x|pχp(xt)ϕ(x)dx = ϕ(0)

m∑
k=0

Ck
m logk

p e
dk�p(πα)

dαk

logm−k
p |t|p

|t|αpπ1(t)
, |t|p > p−l+k0 .

Moreover, for any ϕ ∈ D(Qp), the last relation is a stable asymptotical expansion.

7. Some auxiliary lemmas

Lemma 7.1. Let ϕ(x) ∈ Dl
N (Qp) and ψ(t) = F [|x|αpϕ(x)](t), Reα > −1. Then

ψ(t) =
{∈ D−N

−l (Qp), |t|p � p−l,

ϕ(0)�p(α + 1) 1
|t|α+1

p
, |t|p > p−l,

(7.1)

where �p(α) is given by formula (2.7).
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Proof. Since Reα > −1 the integral ψ(t) converges absolutely. We rewrite it as the sum ψ(t) = ψ1(t) + ψ2(t), where

ψ1(t) =
∫
Bl

χp(tx)|x|αp ϕ(x)dx, ψ2(t) =
∫

Qp\Bl

χp(tx)|x|αpϕ(x)dx. (7.2)

If x ∈ Qp \ Bl the function |x|αp has a parameter of constancy � l, i.e., |x|αpϕ(x) ∈ Dl
N . Hence according to (2.3),

ψ2(t) = F
[|x|αp (

1 − Δl(x)
)
ϕ(x)

]
(t) ∈ D−N

−l , (7.3)

i.e. ψ2(t) = 0 if |t|p > p−l .

Since ϕ(x) ∈ Dl
N (Qp), the function ψ1(t) can be rewritten as

ψ1(t) =
∫
Bl

χp(tx)|x|αp ϕ(x)dx = ϕ(0)

∫
Bl

χp(tx)|x|αp dx.

Next, according to [31, VII.2, Example 9] and (2.7), for Reα > −1 we have

F
[|x|αp Δl(x)

]
(t) =

∫
Bl

χp(tx)|x|αp dx = 1 − p−1

1 − p−(α+1)
pl(α+1)Δ−l(t) + �p(α + 1)

|t|α+1
p

(
1 − Δ−l(t)

)
. (7.4)

To complete the proof of the lemma, it remains to use (7.2)–(7.4). �
Lemma 7.2. Let ϕ(x) ∈ Dl

N (Qp), ψ(t) = F [|x|αp logm
p |x|pϕ(x)](t), Reα > −1, m = 1,2, . . . . Then

ψ(t) =
⎧⎨⎩∈ D−N

−l (Qp), |t|p � p−l,

ϕ(0)
∑m

k=0 Ck
m logm−k

p e
dm−k�p(α+1)

dαm−k

logk
p |t|p

|t|α+1
p

, |t|p > p−l.
(7.5)

Proof. Since Reα > −1, by differentiating the identity (7.4) with respect to α, we derive the following identity:

F
[|x|αp logm

p |x|pΔl(x)
]
(t) =

∫
Bl

χp(tx)|x|αp logm
p |x|p dx

= (
1 − p−1) logm

p e
dm

dαm

(
pl(α+1)

1 − p−(α+1)

)
Δ−l(t)

+ (
1 − Δ−l(t)

) m∑
k=0

Ck
m logm−k

p e
dm−k�p(α + 1)

dαm−k

logk
p |t|p

|t|α+1
p

, (7.6)

where Ck
m are binomial coefficients, �p(α) is given by formula (2.7).

Next, repeating the constructions of Lemma 7.1 practically word for word, we obtain the proof of Lemma 7.2. �
Now we introduce the well-known relation, which we shall need to calculate some integrals.
Recall that the Bernoulli numbers are defined by the following recurrence relation

B0 = 1,

γ −1∑
r=0

Cr
γ Br = 0. (7.7)

In particular, B1 = − 1
2 , B2 j−1 = 0, j = 2,3, . . . , B2 = 1

6 , B4 = − 1
30 .

Proposition 7.1. (See [25].)

Ss(γ0) =
γ0∑

γ =1

γ s = 1

s + 1

s∑
r=0

Cr
s+1Brγ

s+1−r
0 + γ s

0

= 1

s + 1

(
γ s+1

0 − C1
s+1B1γ

s
0 + C2

s+1B2γ
s−1

0 + · · · + C s
s+1Bsγ0

)
, γ0 � 1, (7.8)

where Br are the Bernoulli numbers, r = 0,1, . . . , s, s = 0,1,2, . . . .

One can consider the right-hand side of Ss(γ0) as a polynomial with respect to γ0.
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Lemma 7.3. (See [1,3].) If we consider Ss(γ0) as a polynomial with respect to γ0 then for γ0 � −1, s = 0,1,2, . . . , we have

0∑
γ =γ0+1

γ s = −Ss(γ0). (7.9)

Proof. To prove the lemma we rewrite the last sum by using relation (7.8) as

0∑
γ =γ0+1

γ s = (−1)s
−γ0−1∑
γ =1

γ s

= − 1

s + 1

(
(γ0 + 1)s+1 − (−1)C1

s+1B1(γ0 + 1)s + C2
s+1B2(γ0 + 1)s−1 + · · · + (−1)sC s

s+1Bs(γ0 + 1)
)
. (7.10)

Using (7.7), it is easy to see that the coefficients of γ s+1
0 , γ s

0 , γ s−1
0 in the last sum are equal to 1, C1

s+1 + C1
s+1B1 =

−C1
s+1B1, and C2

s+1 +C1
s+1B1C1

s +C2
s+1B2 = C2

s+1B2, respectively. Taking into account relation (7.8) and the relation B2k−1 = 0,

j = 2,3, . . . , we calculate the coefficient of γ
s− j

0 :

C s− j
s+1 + C1

s+1B1C s− j
s + C2

s+1B2C s− j
s−1 − C3

s+1B3C s− j
s−2 + . . . + (−1) j C j

s+1B j C
s+1− j
s− j + (−1) j+1C j+1

s+1 B j+1

= C j+1
s+1

j∑
r=0

Cr
j+1Br + C j+1

s+1 B j+1 = C j+1
s+1 B j+1,

j = 2,3, . . . , s − 1. The coefficient of γ 0
0 is equal to

∑s
r=0 Cr

s+1Br = 0. The lemma is thus proved. �
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