
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector
Journal of Discrete Algorithms 5 (2007) 533–545

www.elsevier.com/locate/jda

On the minimum load coloring problem

Nitin Ahuja a, Andreas Baltz b,∗, Benjamin Doerr c, Aleš Přívětivý d, Anand Srivastav b

a Department of Mathematical Optimization, Technical University Braunschweig, Pockelsstrasse 14, D-38106 Braunschweig, Germany
b Department of Computer Science, Christian-Albrechts-University Kiel, Christian-Albrechts-Platz 4, D-24098 Kiel, Germany

c Max-Planck-Institute for Computer Science, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, Germany
d Department of Applied Mathematics, Charles University, Malostranské nám. 25, 11800 Praha, Czech Republic

Received 5 September 2005; received in revised form 18 May 2006; accepted 26 September 2006

Available online 28 November 2006

Abstract

Given a graph G = (V,E) with n vertices, m edges and maximum vertex degree Δ, the load distribution of a coloring ϕ :V →
{red, blue} is a pair dϕ = (rϕ, bϕ), where rϕ is the number of edges with at least one end-vertex colored red and bϕ is the number of

edges with at least one end-vertex colored blue. Our aim is to find a coloring ϕ such that the (maximum) load, lϕ := 1
m ·max{rϕ, bϕ},

is minimized. This problems arises in Wavelength Division Multiplexing (WDM), the technology currently in use for building
optical communication networks. After proving that the general problem is NP-hard we give a polynomial time algorithm for
optimal colorings of trees and show that the optimal load is at most 1/2 + (Δ/m) log2 n. For graphs with genus g > 0, we show

that a coloring with load OPT(1 + o(1)) can be computed in O(n + g logn)-time, if the maximum degree satisfies Δ = o(m2

ng)

and an embedding is given. In the general situation we show that a coloring with load at most 3
4 + O(

√
Δ/m) can be found by

analyzing a random coloring with Chebychev’s inequality. This bound describes the “typical” situation: in the random graph model
G(n,m) we prove that for almost all graphs, the optimal load is at least 3

4 − √
n/m. Finally, we state some conjectures on how our

results generalize to k-colorings for k > 2.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Graph coloring; Graph partitioning

1. Introduction

We consider the following problem. Given a graph G = (V ,E) on n vertices and m edges, define the load of a
k-coloring ϕ :V → {1, . . . , k} as

1

m
· max
i∈{1,...,k}

∣∣{e ∈ E | ϕ−1(i) ∩ e �= ∅}∣∣,
the maximum fraction of edges with at least one end-point in color i, where the maximum is taken over all i ∈
{1, . . . , k}. The question we ask is: How can one minimize the load over all k-colorings?

* Corresponding author.
E-mail address: aba@numerik.uni-kiel.de (A. Baltz).
1570-8667/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2006.09.001

https://core.ac.uk/display/81167183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda
mailto:aba@numerik.uni-kiel.de
http://dx.doi.org/10.1016/j.jda.2006.09.001

534 N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545
In this paper the focus is on coloring the vertices of a graph with 2 colors, red and blue. For a coloring ϕ :V →
{red, blue} we define the load distribution of ϕ by dϕ := (rϕ, bϕ), where rϕ counts the number of edges incident with
at least one red vertex, and bϕ is the number of edges incident with at least one blue vertex. The aim is to find a
coloring ϕ such that the maximum load, lϕ := 1

m
· max{rϕ, bϕ}, is minimized. In the following we shall skip the term

“maximum” and refer to lϕ simply as the load of the coloring ϕ. We call the problem of finding a coloring ϕ that
minimizes lϕ Minimum Load Coloring Problem (MLCP).

MLCP is a natural judicious graph partitioning problem aiming at the optimization of several quantities at the same
time. Let (Vr ,Vb) be a bipartition of G and let E(Vr) (resp. E(Vb)) denote the set of edges with both end-points in
Vr (resp. Vb). Then our problem is equivalent to maximizing min{|E(Vr)|, |E(Vb)|} over all bipartitions of G.

Remark 1.1. Let G = (V ,E) be a graph, (Vr ,Vb) a bipartition of V , and ϕ :V → {red, blue} a coloring with
Vr = ϕ−1(red), Vb = ϕ−1(blue). Then, the bipartition (Vr ,Vb) maximizes min{|E(Vr)|, |E(Vb)|} if and only if lϕ
is minimum.

Proof. Take any partition (V ′
r , V

′
b) and its corresponding coloring ϕ′. We may assume without loss of generality that

|E(Vb)| � |E(Vr)| and |E(V ′
b)| � |E(V ′

r)|. This implies rϕ = |E(Vr)| + |E(Vr,Vb)| � |E(Vb)| + |E(Vr,Vb)| = bϕ—
where E(Vr,Vb) denotes the set of edges connecting Vr to Vb—and similarly rϕ′ � bϕ′ . Now, |E(Vb)| � |E(V ′

b)| is
equivalent to rϕ = |E(Vr)| + |E(Vr,Vb)| = m − |E(Vb)| � m − |E(V ′

b)| = |E(V ′
r)| + |E(V ′

r , V
′
b)| = rϕ′ . �

Similar graph partitioning problems were studied in the survey article of Scott [12]. One of the problems mentioned
in this survey article is minimize max{|E(Vr)|, |E(Vb)|} over all bipartitions of G. The max-min and the min-max
problem are not equivalent as can be seen from the following examples: while for chains (graphs consisting of a single
open path) the optima are the same, on bipartite graphs with 4n vertices and m = 2n edges covering all vertices, the
optimal solutions differ by m/2.

1.1. Motivation

Wavelength division multiplexing (WDM) enables a simple optical fiber to carry more information per unit time
by dividing its carrying capacity into many channels. Each of these channels uses a separate wavelength or frequency.
Thus, in a broadcast WDM network with a passive star coupler a packet transmitted by a node on a particular channel
can be received by all nodes with receivers tuned to that channel. A broadcast WDM network with a passive star
coupler consists of n nodes. Each node or user has a transmitter (resp. receiver) that can be used to transmit (resp.
receive) packets using any of the k (< n) channels. More precisely, a node can transmit (resp. receive) copies of a
packet, albeit not simultaneously, on different channels. It is not allowed to transmit two packets on the same channel
at the same time. The reader is referred to the survey of Rouskas and Thaker [11] or [3] for more details.

We call those nodes of the network that want to send packets of data to other nodes active nodes. We assume that
each active node wants to send its packet to exactly r unique other nodes. This enables us to model the WDM network
as an r-uniform hypergraphs where vertices correspond to the nodes of the network and hyperedges represent joint
destinations of data packets sent by active nodes. As an example consider the WDM network in Fig. 1 with n = 5
nodes/users all of which are active and r = 2 (on the left) and the corresponding graph (on the right). In this WDM

Fig. 1. A broadcast WDM network and the corresponding graph.

N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545 535
network node 1 wants to send a message to nodes 2 and 3, node 2 wants to transmit a message to nodes 1 and 5, and
so on. The graph on the right can be interpreted as follows. The edges in the graph correspond to the active nodes in
the network. The two end-vertices of an edge ei in the graph represent the two nodes in the network to which node i

wants to send a message to. So the end-vertices of edge e1 in the graph are 2 and 3, the end-vertices of edge e2 in the
graph are 1 and 5, and so on. Taking the number of channels, k, to be the number of colors, we can define an MLCP
on this graph.

Since the number of channels is less than the number of nodes, two kinds of optimization problems arise. The first
problem is, given the demands of the n nodes, assign channels to receivers of these nodes such that no channel or
wavelength is overloaded with packets. The network performs better when the maximum load over all the channels
is minimized. Once the assignment part is over, the next problem is to schedule the broadcast of packets so as to
minimize the duration or makespan of the broadcast. Baldine and Rouskas [3] use dynamic load balancing while
reconfiguring the demands of some nodes. In [1], Ageev et al. consider the scheduling aspects stated above. Bampis
and Rouskas [4] give approximation algorithms that take both the assignment part and the scheduling part of the whole
problem into account.

In this paper the main focus is on the case k = 2 and r = 2. We hope that our results can serve as a basis for further
research on the general case corresponding to an MLCP on a non-uniform multi-hypergraph.

1.2. Our results

After some preliminaries including the establishment of NP-hardness of the problem in Section 2, we show how
to solve the MLCP on trees optimally in O(n3) time (Section 3). Such an optimal solution is proven to have a load of
at most 1

2 + (Δ/m) log2 n. Section 4 is concerned with graphs of genus g > 0. With a separator theorem proved with
techniques from Djidjev [6] we obtain an O(n + g)-time algorithm for constructing a coloring with load bounded by

1/2+48
√

gΔn/m. This is a (1+o(1))-approximation in case Δ = o(m2

ng
). In Section 5 we analyze arbitrary instances

of the problem. We show that a random coloring has load 3
4 + O(

√
Δ/m) with high probability. This immediately

yields a randomized algorithm that can be turned into a deterministic algorithm via the method of conditional proba-
bilities [2]. The bound is quite strong: in the random graph model G(n,m), almost all graphs have no coloring with
load less than 3

4 − √
n/m. In the last section we consider extensions of our results to k > 2 colors.

2. Preliminaries

In this section we state some basic facts. Let

l(G) := min
{
lϕ | ϕ :V → {red, blue}}

denote the optimal load of a graph G = (V ,E). Given a red-blue coloring ϕ, we shall refer to the set of red vertices
as Vr and to the set of blue vertices as Vb . The set of edges connecting Vr and Vb is denoted by E(Vr,Vb).

Remark 2.1. Let G be a graph, then l(G) ∈ [1/2,1].

Proof. Since every edge of G is counted as red or blue (or both), l(G) � 1
2 . Obviously, every red-blue coloring of G

has load at most 1. �
In particular, each two-coloring of a graph G is a 2-approximation of l(G).
Let G be a star, then l(G) = 1. In fact, stars and the triangle graph are the only graphs with optimum load 1.

Remark 2.2. Let G = (V ,E) be a graph with l(G) = 1 then G is either a triangle or a star.

Proof. If G is neither a triangle nor a star, then E contains two edges e1, e2 with e1 ∩ e2 = ∅. Coloring the endpoints
of e1 in red and the rest of E in blue yields a load that is strictly less than 1. �

Stars also show that the maximum degree Δ of the input graph yields a lower bound of Δ/m on l(G). It is easy to
see that the lower bound of 1/2 is attained only if G consists of monochromatic components.

536 N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545
Remark 2.3. Let G = Kn be the complete graph on n vertices. A coloring ϕ with rϕ � bϕ induces minimum load
on G if and only if |Vr | =
n/2�.

Proof. From
(|Vr |

2

)+|Vr |(n−|Vr |) = rϕ � bϕ = (
n−|Vr |

2

)+|Vr |(n−|Vr |), we infer that |Vr | � n/2. Since the number
of red edges is increasing with |Vr | the claim follows. �

It is also easy to find an optimal two-coloring of cycles and chains. Here, each of the two classes in an optimal
coloring forms a connected component. This is already false for trees (cf. Section 3).

Let us observe that for regular graphs on an even number of vertices, the MLCP is equivalent to the
MINBISECTION-problem of dividing the set of vertices into two equal halves that are connected by a minimum
number of edges.

Lemma 2.1. Let k ∈ N. Let G = (V ,E) be a k-regular graph with n := |V | even, and let ϕ :V → {red, blue} be an
optimal coloring, then either |Vr | = |Vb| or an optimal coloring with |Vr | = |Vb| can be obtained by recoloring an
arbitrary vertex of the larger color class.

Proof. Suppose that |Vr | > |Vb|. The number of red edges is rϕ = |Vr |·k
2 + |E(Vr ,Vb)|

2 , and the number of blue edges is

bϕ = |Vb|·k
2 + |E(Vr ,Vb)|

2 , hence

rϕ − bϕ = k

2

(|Vr | − |Vb|
)
� k

since n is even. If we change the color of an arbitrary red vertex v into blue, the number of red edges decreases by at
most k, while the number of blue edges increases by at most k. Consequently, lϕ does not increase and the resulting
coloring is still optimal. On the other hand, lϕ must not decrease either. This means that rϕ has to stay the same or bϕ

has to increase by at least k. Either of these events can occur only if v has only red neighbors. Since v is an arbitrary
red vertex, we conclude that G consists of monochromatic components. If |Vr | > |Vb| + 2 we can recolor another red
vertex v′ without increasing lϕ . But choosing v′ as a neighbor of v results in an overall decrease of lϕ contradicting
the choice of ϕ as an optimal coloring. Hence |Vr | = |Vb| + 2, and thus recoloring v yields an optimal coloring with
|Vr | = |Vb|. �

Given a k-regular graph with an even number of vertices, we see by Lemma 2.1 that every optimal coloring ϕ

induces a bisection of V (either at once or after recoloring an arbitrary vertex of the larger class) with

lϕ = n

2m
· k

2
+ |E(Vr,Vb)|

2m
.

Since ϕ is optimal, |E(Vr,Vb)|, the size of the edge cut separating the classes Vr and Vb , is minimum, so we have a
minimum bisection. On the other hand, every minimum bisection V1, V2 of V gives rise to a coloring with load

n

2m
· k

2
+ |E(V1,V2)|

2m
,

where E(V1,V2) denotes the set of edges between V1 and V2. Obviously, this load is optimal. Hence MLCP and
MINBISECTION are equivalent on regular graphs with n even. For k � 3, MINBISECTION on k-regular graphs is as
hard as general MINBISECTION (see [5]). Since the decision version of MINBISECTION is NP-complete [7], and
the load of any proposed solution for the MLCP can be evaluated in polynomial time, we have established NP-
completeness also for the MLCP.

Theorem 2.1. The decision version of the MLCP is NP-complete.

3. Polynomial time algorithms for trees

In this section, we show how to efficiently compute an optimal solution for the MLCP on trees. We also show that
any tree G with n vertices and maximum vertex degree Δ has load at most 1

2 + (Δ/m) log2 n. The key to prove this
result is the following more general lemma.

N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545 537
Lemma 3.1. Let G = (V ,E) be a tree on n vertices and let m1,m2 ∈ N such that m1 + m2 = n − 1. Then there is a
red-blue coloring of V such that at least m1 +1−Δ log2 n edges are monochromatic red and at least m2 +1−Δ log2 n

are monochromatic blue.

Proof. We use induction. Clearly, the lemma holds for n � 3. Let us assume that the lemma holds for all trees on
less than n vertices. Let v ∈ V be a vertex such that deleting v breaks G into k � 2 components Ci , i ∈ {1, . . . , k},
where the number of vertices ni in component Ci is at most n/2. (To show the existence of v, assume for the sake of
a contradiction that each vertex is the origin of at least one branch with more than n

2 nodes. Let v be a vertex whose
maximum branch C is minimum, and let v′ be the neighbor of v in C. Denote the maximum branch of v′ by C′. Then
|C′| � max{n − |C|, |C| − 1} � max{n

2 − 1, |C| − 1} < |C| contradicting the minimality of |C|.) It is easy to see that
there exist I1, I2 ⊆ {1, . . . , k} such that:

(i) I1 ∩ I2 = ∅,
(ii) |{1, . . . , k} \ (I1 ∪ I2)| = 1,

(iii)
∑

i∈I1
ni � m1, and

(iv)
∑

i∈I2
ni � m2.

Note that either I1 or I2 can also be empty, but not both. Color the vertices of components with indices in I1 (resp. I2)
with red (resp. blue). The central vertex v is arbitrarily colored red or blue. Let Cj be the component that is left
uncolored, that is, {1, . . . , k} \ (I1 ∪ I2) = {j}. Let m′

1 = m1 − (
∑

i∈I1
ni) − 1 and m′

2 = m2 − ∑
i∈I2

ni . Then, m′
1 +

m′
2 = nj − 1 is a partition of the number of edges of Cj . By induction, there is a red-blue coloring of Cj such that at

least m′
1 + 1 −Δ log2 nj of its edges are monochromatic red and at least m′

2 + 1 −Δ log2 nj are monochromatic blue.
Now, the total number of monochromatic red edges is at least

∑
i∈I1

(ni − 1) + m′
1 + 1 − Δ log2 nj � m1 − |I1| −

Δ log2(n/2), which is at least m1 + 1 − Δ log2 n. Similarly, the total number of monochromatic blue edges is at least
m2 + 1 − Δ log2 n. �

From the lemma, we easily deduce the following.

Theorem 3.1. Let G = (V ,E) be a tree on n vertices with maximum vertex degree Δ. Then l(G) � 1
2 + (Δ/m) log2 n.

We did not try to optimize the error term (Δ/m) log2 n. It is clear that it has to contain a linear dependence on Δ,
this is shown by stars, and a logarithmic dependence on the number of vertices. The latter is shown by a complete
ternary tree.

Remark 3.1. Let G be a complete ternary tree, then l(G) � 1
2 + log3(n)−1

2m
.

Proof. For d ∈ N, we denote by Gd = (Vd,Ed) the complete ternary tree with leaves at distance d from the root.
We consider the nodes as grouped into levels according to the distance from the root, so the root is at level 0, and the
leaves are the level d nodes. Moreover we view the edges as being directed from lower to higher level nodes. Let ϕ

be an optimal coloring of Gd such that rd := rϕ = m · l(Gd) and bd := bϕ is as small as possible. We call a node v

i-unsaturated (i ∈ {0, . . . ,3}) if exactly i of its direct successors have a different color than v. A 0-unsaturated vertex
is called saturated, and an i-unsaturated vertex with i > 0 is referred to as unsaturated. We will show that without
loss of generality we may assume that

(i) Gd contains no 3-unsaturated vertices,
(ii) each level contains at most one unsaturated vertex.

Consider the levels in increasing order: moving any unsaturated vertex and all of its successors to the center of its
respective level does not change the load distribution of the coloring. We can thus perform these operations while
maintaining the values of rd and bd . After this procedure Gd has the following structure: it consists of a red Gd−1, an
optimally colored Gd−1, and a blue Gd−1 that are connected to the (red or blue) root vertex. Since for each d ′ ∈ N,

538 N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545
Gd ′ has 3d′+1−3
2 edges, we can recursively estimate

2 · rd � rd + bd � 2 · |Ed−1| + rd−1 + bd−1 + 4

� 2 · (|Ed−1| + |Ed−2|
) + rd−2 + bd−2 + 8

� 2 · (|Ed−1| + · · · + |E1|
) + 3 + 4(d − 1)

= 2

(
d−1∑
i=1

3i+1 − 3

2

)
+ 4d − 4

= 3d+1 − 1

2
− 4 − 3(d − 1) + 4d − 1

= 3d+1 − 3

2
+ d − 1

= |Ed | + d − 1,

and hence, rd � |Ed |+d−1
2 . Since |Ed | + d − 1 is odd we infer

l(Gd) � |Ed | + d

2m
� 1

2
+ log3(n) − 1

2m
.

To see that (i) holds, note that if Gd does not contain both red and blue leaves, then

l(Gd) � 3d/m = 2|Ed | + 3

3m
>

1

2
+ log3(n)/m.

So we may assume that Gd has red and blue leaves. Since rd and bd are minimal, Gd contains triples of red and blue
leaves whose predecessors are saturated. Hence Gd does not contain any 3-unsaturated vertex at level d − 1. Clearly
the root of Gd cannot be 3-unsaturated either. Now consider a 3-unsaturated vertex v of arbitrary color, say red. It
is easy to check that by coloring v and its predecessor in blue and replacing three blue leaves together with their
predecessor by red vertices, the load can only decrease.

For the proof of (ii), we can convince ourselves that given two unsaturated vertices at the same level we can saturate
one of them without increasing the load by exchanging two of the unsaturated vertices’ branches. �

This example also demonstrates that in an optimal coloring the color classes may induce disconnected subgraphs.
Note that the proof of Lemma 3.1 is constructive. We thus have an efficient algorithm computing colorings with

load at most 1
2 + (Δ/2) log2 n. However, it is also possible to compute optimal colorings for trees efficiently.

Theorem 3.2. On trees with n vertices, the MLCP can be solved in time O(n3).

Proof. Let G = (V ,E) be a tree on n vertices. Let us consider G as being rooted in some arbitrary vertex a. We
assign each v ∈ V a distance distv given by the length of the path from a to v and view each edge e ∈ E as pointing
from lower to higher level nodes. So, we think of G as a directed tree with the root a at level 0, the successors
N(a) := {v ∈ V | (a, v) ∈ E} of a at level 1, etc. For each v ∈ V we denote by Tv the induced subtree of G rooted in
v, i.e., Tv is the subgraph of G induced by v and all of its (iterated) successors. We define for each arbitrary subtree
G′ of G with root a′,

DG′ := {
(r, b) | (r, b) = dϕ for some coloring ϕ of G′ with ϕ(a′) = red

}
,

the set of possible load distributions for G′ (we may assume ϕ(a′) = red without loss of generality). Suppose, we
can efficiently compute DG. Since |DG| � n2, we can also efficiently find the load l(G) of an optimal coloring by
searching DG for the load distribution with smallest maximum component. We will show that DG can be determined
in polynomial time by iteratively computing DTv for all v ∈ V , in reverse breadth first order. The iteration is based on
two operations:

N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545 539
(OP1) Consider a subtree G′ of G with root a′ �= a, v ∈ V with (v, a′) ∈ E, and the tree v + G′ := (V (G′) ∪
{v},E(G′) ∪ {(v, a′)}) obtained by appending the edge (v, a′) to G′. We define

v + DG′ := {
(r + 1, b) | (r, b) ∈ DG′

} ∪ {
(b + 1, r + 1) | (r, b) ∈ DG′

}
.

(OP2) Consider two subtrees G′
1,G

′
2 of G that do not intersect but in their joint root a′. Let G′

1 + G′
2 := (V (G′

1) ∪
V (G′

2),E(G′
1) ∪ E(G′

2)) denote the composite tree and define

DG′
1
+ DG′

2
:= {

(r1 + r2, b1 + b2) | (r1, b1) ∈ DG′
1
, (r2, b2) ∈ DG′

2

}
.

Since for each tree G′ we defined DG′ to contain only load distributions of colorings where the root of G′ is colored
red, it will be necessary to eventually flip colors in the course of our desired iteration. For convenience, let us denote
the inverse coloring of a given coloring ϕ (where colors red and blue are exchanged) by ϕ.

Claim 1. For all subtrees G′ = (V ′,E′) of G with root a′ and all v ∈ V with (v, a′) ∈ E, Dv+G′ = v + DG′ .

Proof. Let (r, b) ∈ Dv+G′ and let ϕ :V ′ ∪ {v} → {red, blue} be a coloring with dϕ = (r, b) and ϕ(v) = red. Let
ϕ′ := ϕ|V ′ denote the restriction of ϕ on V ′. Then f ′ is a coloring of G′. If ϕ′(a′) = red, then (r ′, b′) := dϕ′ =
(r − 1, b) ∈ DG′ and thus (r, b) = (r ′ + 1, b) ∈ v + DG′ , whereas if ϕ′(a′)= blue, then dϕ′ = (r − 1, b − 1) and ϕ′
induces a load distribution d

ϕ′ = (r ′, b′) := (b − 1, r − 1) ∈ D′
G, so (r, b) = (b′ + 1, r ′ + 1) ∈ v + DG′ .

Let (r, b) ∈ v + DG′ . There is a coloring ϕ :V ′ → {red, blue} with ϕ(a′) = red and either dϕ = (r − 1, b) or
dϕ = (b − 1, r − 1). In the first case, extending ϕ to V ′ ∪ {v} by coloring v red gives a coloring ϕ′ of v + G′ with
dϕ′ = (r, b), in the second case we similarly extend ϕ′. �
Claim 2. For all subtrees G′

1 = (V ′
1,E

′
1),G

′
2 = (V ′

2,E
′
2) intersecting only in their joint root a′, DG′

1+G′
2
= DG′

1
+DG′

2
.

Proof. Let (r, b) ∈ DG′
1+G′

2
and let ϕ : V ′

1 ∪ V ′
2 → {red, blue} be a coloring with dϕ = (r, b) and ϕ(a′) = red. Obvi-

ously, ϕ|V ′
1

and ϕ|V ′
2

are colorings of G′
1 and G′

2, respectively, with ϕ|V ′
1
(a′) = ϕ|V ′

2
(a′) = red and dϕ|V ′

1
+ dϕ|V ′

2
=

(r, b). Hence DG′
1+G′

2
⊆ DG′

1
+ DG′

2
.

On the other hand, if (r, b) ∈ DG′
1
+ DG′

2
, then there are colorings ϕ1, ϕ2 of G′

1 and G′
2, respectively, with dϕ1 =

(r1, b1), dϕ2 = (r2, b2), (r1 + r2, b1 + b2) = (r, b), and ϕ1(a
′) = ϕ2(a

′) = red. Clearly, ϕ′ := ϕ1 ∪ ϕ2 is a coloring of
G′

1 + G′
2 with ϕ′(a′) = red and dϕ′ = (r, b), thus DG′

1
+ DG′

2
⊆ DG′

1+G′
2
. �

As an easy consequence we observe the following fact.

Corollary 3.1. For all v ∈ V ,

DTv =
∑

v′∈N(v)

Dv+Tv′ =
∑

v′∈N(v)

v + DTv′ ,

where the sums are defined inductively by (OP1) and (OP2).

Now the algorithm for computing l(G) is straightforward:

1. Let level := max{distv | v ∈ V } − 1, DTv′ := {(0,0)} for all v′ ∈ V with distv′ = level + 1.
2. For all v ∈ V with distv = level: let

DTv :=
{ {(0,0)}, if v is a leaf,∑

v′∈N(v)(v + DTv′) otherwise.

3. Set level := level − 1.
4. If level � 0 then go to 2.
5. Output min{max{r, b} | (r, b) ∈ DTa }.

540 N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545
Note that the time required for operation (OP1) is bounded by 2|DG′ | = O(n2), since we have to consider each
(r, b) ∈ DG′ twice, and (r, b) takes at most n2 values. Operation (OP2) consists of |DG′

1
| · |DG′

2
| = O(n4) steps. The

running time of the algorithm is dominated by the iterated calls of line 2, i.e., by the computations of DTv . Computing
DTv involves deg(v) operations of type (OP2), where each summand is computed via a type (OP1) operation. Hence,
the overall running time is bounded by

∑
v∈V deg(v) · O(n4 +n2) = O(n5). However, we can reduce the running time

to O(n3) by neglecting “irrelevant” colorings. Note that, if (r, b1) and (r, b2) ∈ DTv are possible load distributions for
a tree Tv imposed by colorings ϕ1 and ϕ2, then the load distribution with larger second component, say (r, b2), will
be irrelevant for computing l(G) (suppose, ϕ is an optimal coloring of G with ϕ|Tv

= ϕ2, then replacing ϕ on Tv by
ϕ1 will not increase the load). Thus, for each r we have to store only b := min{b′ | (r, b′) ∈ DTv }. Defining the set of
relevant load distributions

D̂G′ := {
(r, b) | (r, b) ∈ DG′ , b = min

{
b′ | (r, b′) ∈ DG′

}}
for each subtree G′ of G, we have that |D̂G′ | = O(n). Obviously, D̂G can be computed iteratively via operations
similar to (OP1) and (OP2) that are performed on D̂G′ instead of DG′ and thus require only O(n) and O(n2) steps,
respectively. This yields the desired O(n3) bound. The iterative procedure for computing DG (or D̂G) can be easily
modified such that it gives not only the optimal load, but also an optimal coloring. To this end we record for each v ∈ V

and each (r, b) ∈ DTv , the summands from the distributions of the neighboring subtrees that add up to (r, b) together
with the information whether or not a swap of colors occurred. This information is stored as a set pv(r, b) of 4-tuples
(r ′, b′, i, v′), where v′ is a successor of v and i is 0 or 1 depending on whether (r ′, b′) ∈ DTv′ or (b′, r ′) ∈ DTv′ . More
precisely, we alter step 2 of the previous algorithm in the following way.

2. For all v ∈ V with distv = level do begin
2.1. if v is a leaf then set DTv := {(0,0)}
2.2. else begin

2.2.1. Let v1, . . . , vν be the neighbors of v.
2.2.2. For all (r, b) ∈ DTv1

define pv(r + 1, b) := {(r, b,0, v1)} and pv(b + 1, r + 1) := {(r, b,1, v1)}. Let
D1 := {(r + 1, b), (b + 1, r + 1) | (r, b) ∈ DTv1

}.
2.2.3. For i := 2 to ν do begin

2.2.3.1. Di := ∅.
2.2.3.2. For all (r, b) ∈ Di−1 and all (r ′, b′) ∈ DTvi

do begin
2.2.3.2.1. if (r + r ′ + 1, b + b′) /∈ Di then include it into Di and define pv(r + r ′ + 1, b +

b′) := pv(r, b) ∪ {(r ′, b′,0, vi)}.
2.2.3.2.2. If (r + b′ + 1, b + r ′ + 1) /∈ Di then include it into Di and define pv(r + b′ +

1, b + r ′ + 1) := pv(r, b) ∪ {(r ′, b′,1, vi)}.
2.2.3.3. end

2.2.4. Let DTv := Dν .
2.3. end

Starting from an optimal load distribution d = (r0, b0) we trace back the load computations via p and determine for
each node an optimal color with the following algorithm.

1. Define ϕ(a) := red, v := a, d := (r0, b0), M := ∅.
2. Set M := M ∪ pv(d).
3. If M = ∅ then output ϕ and stop.
4. Let (r ′, b′, i, v′) ∈ M , set M := M \ {(r ′, b′, i, v′)}.
5. Define

ϕ(v′) :=
{

ϕ(v) if i = 0
{red, blue} \ ϕ(v) otherwise.

6. Set v := v′, d := (r ′, b′), and go to 2.

N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545 541
We assume that pv(0,0) = ∅ for all v ∈ V . Note that ϕ(v′) does not depend on the order in which we select elements
from M . The above algorithm can be implemented to run in O(n) time. Thus the time required to solve the MLCP on
trees with n vertices is O(n3). This ends the proof of Theorem 3.2. �
4. An approximation algorithm for graphs with genus g

In this section, we show how a (1 + o(1))-approximate solution for the MLCP for graphs of genus g > 0 can be

computed if Δ = o(m2

ng
). Recall that the genus of a graph is the smallest integer g such that the graph can be drawn

without crossing itself on a sphere with g “handles”. The problem of determining the genus of a graph is NP-hard [14].
A trivial upper bound on the genus g of a graph with m edges and n vertices is m− 1 since each crossing of two edges
can be eliminated by introducing a handle. A lower bound of g � m−3n

6 + 1 can be obtained by generalizing Euler’s
formula for planar graphs (see [15]). The main idea of our algorithm is to partition V into two sets A and B such that

• the number of edges having both endpoints in A is at most m/2,
• the same holds for B ,
• there are only O(

√
gΔn) edges between the sets A and B .

By coloring A and B with different colors, we obtain a coloring ϕ with lϕ(G) � 1/2 + c
√

gΔn/m. Since l(G) � 1/2,

for Δ = o(m2

gn
) we have a (1 + o(1))-approximate solution. A polynomial time algorithm finding a partition with

O(
√

n)-vertex separator for planar graphs (g = 0) was described in [10] and then extended for graphs of genus g > 0
in [6]. Let E(A), E(B), and E(A,B) denote the sets of monochromatic edges in A, B , and the set of bichromatic
edges connecting A and B , respectively. Let us define a weighted graph (G,w) as a graph G = (V ,E) equipped with
a mapping w :V → R�0 assigning each vertex a nonnegative weight. We extend the notion of weight to arbitrary
subsets V ′ of V in an obvious way as w(V ′) = ∑

v∈V ′ w(v). For our purpose we use the following theorem, given
in [13].

Theorem 4.1. [13] Let G be a graph of genus g > 0, having nonnegative vertex weights summing to one such that no
weight exceeds 2/3. There is a partition of V into sets A and B , such that weight(A) � 2/3, weight(B) � 2/3, and
|E(A,B)| � 5

√
3gΔn. Provided that we are given an embedding of G into its genus surface, there is an O(n+g)-time

algorithm which finds such a partition.

By assigning to each vertex of G a uniform weight of 1/n, we obtain the following corollary.

Corollary 4.1. Let G be a graph of genus g > 0. Then the vertices of G can be partitioned into two sets A and B ,
such that neither A nor B contains more than 2n/3 vertices and |E(A,B)| � 5

√
3gΔn. Provided that we are given

an embedding of G into its genus surface, there is an algorithm which finds such a partition in time O(n + g).

Theorem 4.1 can be applied in the following way: for any graph of bounded genus g > 0, we assign to each
vertex v ∈ V a weight w(v) = deg(v)

2m
. The theorem yields a partition of V into A and B , such that |E(A)| � 2

3m,
|E(B)| � 2

3m, and there are at most 5
√

3gΔn edges between A and B . The factor 2
3 can be reduced to 1

2 by iterating
the algorithm. We show this in the proof of the following Theorem 4.2. Let us remark that although it is tempting to
assign the weights w(v) = deg(v)

2m
to vertices v ∈ V , the separation of the graph is done as in Corollary 4.1 with respect

to uniform weights.

Theorem 4.2. Let G be a graph of genus g > 0. There is a partition of V into sets A, B , such that |E(A)| � |E(B)| �
1
2m + 48

√
gΔn, and |E(A,B)| � 48

√
gΔn. Provided that we are given an embedding of G into its genus surface,

there is an algorithm which finds such a partition in time O(n + g logn).

Proof. Let G = (V ,E) be an n-vertex graph with m edges of genus g > 0. Let us define sequences of sets (Ai), (Bi)

and (Ci) and a sequence of sets of edges (Wi) such that:

542 N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545
(i) Ai , Bi and Ci partition V ,
(ii) |E(Ai)| � |E(Bi)| and |E(Bi) \ Wi | � 1

2 |E|,
(iii) in the ith step at most 5

√
3gΔ|Ci−1| edges are added to Wi ,

(iv) E(Ai,Bi) ⊆ Wi ,
(v) |Ci | � 2/3|Ci−1|.

Let A0 = B0 = ∅, C0 = V , W0 = ∅. Then (i), (ii), and (iv) trivially hold. If Ai−1,Bi−1,Ci−1, and Wi−1 have
been defined, and Ci−1 �= ∅, let G∗ be the subgraph of G induced by the vertex set Ci−1. Let A∗, B∗ be a partition
of G∗ according to Corollary 4.1. The new “cut” edges E(A∗,B∗) together with Wi−1 form the new set Wi , i.e.
Wi := Wi−1 ∪ E(A∗,B∗). Without loss of generality we shall assume that |E(A∗)| � |E(B∗)|. If |E(Ai−1 ∪ A∗)| �
|E(Bi−1)|, we put Ai := Ai−1 ∪ A∗ and Bi := Bi−1, otherwise we put Ai := Bi−1 and Bi := Ai−1 ∪ A∗. It is easy to
check that (i)–(v) hold for our constructed sequences (Ai), (Bi), (Ci), and (Wi).

Let k be the smallest index for which Ck = ∅. Let A = Ak , B = Bk . By (i), A, B is a partition of V . By (iv), the
number |E(A,B)| is bounded by |Wk|, and by (iii) and (v), this is bounded by

∞∑
i=0

5
√

3gΔn(2/3)i/2 � 48
√

gΔn.

By (ii),∣∣E(A)
∣∣ �

∣∣E(B)
∣∣ � 1

2
|E| + |Wk| � 1

2
m + 48

√
gΔn.

Since the algorithm performs at most k = O(logn) iterations, the running time is bounded by O(|Ci−1| + g) �
c1((2/3)in + g), the total running time is bounded by

c logn∑
i=0

c1
(
(2/3)in + g

) = O(n + g logn). �

Corollary 4.2. Let G be any graph of genus g > 0. Given an embedding of G into its genus surface, a coloring ϕ with
lϕ(G) � 1/2 + 96

√
gΔn/m can be constructed in time O(n + g logn).

For a planar graph G, we can similarly use the following separator theorem from [8] to show that a coloring ϕ

with lϕ(G) � 1
2 + 1.58

√
d2

1 + · · · + d2
n/m can be constructed in time O(n2 · α(n,n)), where d1, . . . , dn is the degree

sequence of G and α(n,n) is the inverse of Ackerman’s function.

Theorem 4.3. (Theorem 1.2 of [8]) A planar embedded graph G has a weighted-simple-cycle separator of size

� 1.58
√

d2
1 + · · · + d2

n . The separator is computable in O(nα(n,n)) sequential time.

5. Randomized approximation

5.1. Approximation for general graphs

In this section, we study the MLCP on arbitrary graphs. Since the problem is NP-hard, approximate solutions are
the best one can expect to find efficiently. We first analyze the load of random colorings. With high probability, their
load is less than 3

4 + O(
√

Δ/m). This shows existence of such colorings, and also yields a randomized algorithm
which can be derandomized via the standard method of conditional probabilities [2]. Since 1

2 is a trivial lower bound
for lϕ , these results yield a (1.5 + o(1))-approximation algorithm if Δ = o(m).

We analyze random colorings with Chebychev’s inequality.

Lemma 5.1 (Chebychev’s inequality). Let (Ω,P) be a discrete probability space and X :Ω → R a random variable
with finite variance. Then for every ε > 0,

P
(∣∣X − E(X)

∣∣ � ε
)
� Var(X)

.

ε2

N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545 543
Theorem 5.1. There is a coloring ϕ such that lϕ � 3
4 +

√
(Δ

4 + 3
8)/m.

Proof. Let ϕ :V → {red, blue} be a random coloring such that P(ϕ(v) = red) = 1
2 = P(ϕ(v) = blue) independently

for all v ∈ V . For each v ∈ V , let

Xv :=
{

1, if ϕ(v) = red,

0 otherwise
be a random variable indicating if v is colored red. Then, {Xv | v ∈ V } is a set of independent random variables
satisfying rϕ = ∑

{v,w}∈E(Xv + Xw − xvXw), and we can calculate the expectation

E(rf) =
∑

{v,w}∈E

(
E(Xv) + E(Xw) − E(Xv) · E(Xw)

) = 3

4
m.

For e = {v,w} ∈ E, let

Ye := (Xv + Xw − XvXw),

then

E(r2
ϕ) = E

((∑
e∈E

Ye

)2)
= E

(∑
e∈E

Y 2
e

)
+ 2E

(∑
|e∩e′|=1
e,e′∈E

Ye · Ye′
)

+ 2E

(∑
|e∩e′|=0
e,e′∈E

Ye · Ye′
)

.

We consider the three expectation terms in the above sum separately.

E

(∑
e∈E

Y 2
e

)
=

∑
e∈E

E(Y 2
e)

=
∑

{v,w}∈E

E(X2
v + X2

w + X2
vX

2
w + 2XvXw − 2X2

vXw − 2XvX
2
w)

=
∑

{v,w}∈E

E(Xv + Xw + XvXw + 2XvXw − 2XvXw − 2XvXw)

=
∑

{v,w}∈E

E(Xv + Xw − XvXw) = E(rϕ) = 3

4
m.

E

(∑
|e∩e′|=1
e,e′∈E

YeYe′
)

=
∑

{u,v},{v,w}∈E

E
(
(Xu + Xv − XuXv)(Xv + Xw − XvXw)

)

=
∑

{u,v},{v,w}∈E

E(XuXv + XuXw − XuXvXw + Xv + XvXw

− XvXw − XuXv − XuXvXw + XuXvXw)

=
∑

{u,v},{v,w}∈E

E(Xv) + E(XuXw) − E(XuXvXw) = λ · 5

8
,

where λ denotes the number of two element sets {e, e′} such that |e ∩ e′| = 1. Each fixed edge e is incident with at
most 2Δ edges e′. Summing over E, we count each two element set {e, e′} twice, hence λ � mΔ. Finally,

E

(∑
|e∩e′|=0
e,e′∈E

YeYe′
)

=
∑

{t,u},{v,w}∈E

E(Xt + Xu − XtXu)(Xv + Xw − XvXw)

=
∑

E(XtXv + XtXw − XtXvXw + XuXv + XuXw

− XuXvXw − XtXuXv − XtXuXw + XtXuXvXw)

544 N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545
=
((

m

2

)
− λ

)
(1 − 1/2 + 1/16) = 9

16

((
m

2

)
− λ

)
.

This yields the estimate

E(r2
ϕ) = 9

16
m2 + 3

16
m + 1

8
λ � 9

16
m2 + 3

16
m + mΔ

8
,

giving

Var(rϕ) = E(r2
ϕ) − E(rϕ)2 � m

(
Δ

8
+ 3

16

)
.

By Chebychev’s inequality,

P

(
rϕ − 3

4
m > ε

)
< P

(∣∣∣∣rϕ − 3

4
m

∣∣∣∣ > ε

)
�

m(Δ
8 + 3

16)

ε2
= 1

2

for ε =
√

m(Δ
4 + 3

8).

Similarly, P(bϕ − 3
4m > ε) < 1

2 , thus with positive probability both rϕ and bϕ are at most 3
4 +

√
m(Δ

4 + 3
8). In

particular, a coloring with lϕ � 3
4 +

√
(Δ

4 + 3
8)/m exists. �

Note that the dependence on Δ cannot be avoided. This is shown by star graphs. Moreover, if Δ = o(m), then
the bound of 3

4 + o(1) cannot be improved in general. The complete graph Kn = ({1, . . . , n}, ({1,...,n}
2

)
) satisfies lϕ �

(3
8n2 − 1

4n)/m = 3
4 + o(1) for all colorings ϕ.

5.2. Random graphs

In fact, in some sense almost all graphs have a load of 3
4 − o(1). We prove the following result.

Theorem 5.2. For a random graph G = (V ,E), |V | = n obtained by choosing a random set E of m edges (without
repetition), we have l(G) � 3

4 − √
n/m with probability greater than 1 − 2−n.

In other words, all but a fraction of less than 2−n of the graphs having n vertices and m edges have a load of at
least 3

4 − √
n/m. If n = o(m), this shows that almost all graphs have a load of 3

4 − o(1).

Proof of Theorem 5.2. Let G = (V ,E) be the random graph described in the theorem, that is, E is a random element
from {E ⊆ (

V
2

) | |E| = m}. Fix any two-coloring χ of V . W.l.o.g. we may assume that at least n/2 vertices are colored

red. Let B = {e ∈ (
V
2

) |χ(e) = {blue}}, the set of all possible edges that are monochromatic blue. Clearly, |B| � 1
4

(
n
2

)
.

Note that the hypergeometric distribution admits the usual Chernoff bounds for independent random variables (cf. e.g.
Theorem 2.10 in Janson, Łuczak and Rucinski [9]). Hence with λ = √

mn, the number N = |B ∩E| of monochromatic
blue edges satisfies

P

(
N � m

4
+ λ

)
� P

(
N � m · |B|/

(
n

2

)
+ λ

)
= P

(
N − E[N] � λ

)
� exp(−2λ2/m) = exp(−2n).

Hence for any fixed coloring, the probability that our random graph has load at most 3
4 − λ/m is less than exp(−2n).

We conclude that the probability that there is a 2-coloring achieving a load of at most 3
4 − λ/m, is less than 2n (the

number of colorings) times this value, that is, 2n exp(−2n) = (2/e2)n � 2−n. This proves the claim. �
6. MLCP with more than two colors

Most of our results have a natural extension to the MLCP with more than two colors. We believe that the following
conjectures can be proven in a way that similar to (but technically more involved than) the two-color case.

N. Ahuja et al. / Journal of Discrete Algorithms 5 (2007) 533–545 545
• For any fixed number of colors, the MLCP is NP-complete.
• For any fixed number of colors, there is a polynomial time algorithm computing a minimal load coloring for trees.
• A tree G with m edges can be colored in k colors with load bounded by 1

k
+ O((Δ/m) logm).

• For all graphs G = (V ,E) there is a k-coloring with load at most 2k−1
k2 + O(

√
Δ/m).

• For graphs on n vertices with genus g > 0 we can find a k-coloring with load bounded by 1/k + O(
√

gΔn/m).

There are graphs having small load in some numbers of colors and large one in others. We give three examples.

(i) Let G be a graph consisting of two disjoint cliques on n vertices. Then the load in two colors is 1
2 , shown by

coloring both cliques monochromatic in a different color. This is smallest possible for any graph. Let γ = √
3−1.

In three colors, an optimal coloring will contain (γ + o(1))n red vertices in the first clique, (γ + o(1))n blue
vertices in the second and (1 − γ + o(1))n green vertices in each clique. This yields a load of (2

√
3 − 3 +

o(1))n2/m ≈ 0.4641. Compared to the smallest possible value of 1
3 , this is quite large.

(ii) If G consists of three disjoint cliques of n vertices each, then the 3-color load is smallest possible with 1
3 , but the

2-color load is approximately 7
12 .

(iii) The same behavior is also displayed by trees. A complete 3-ary tree T has a 3-color load of 1
3 + 2/m. However,

we proved it to have a 2-color load of 1
2 +�(log(n)/m), which is (up to the implicit constant) maximum possible

for trees as shown in Theorem 3.1.

Acknowledgements

We thank the anonymous referees for their very helpful detailed comments on a preliminary version of this paper.
The second author was supported by DFG grant SR 7/9-3.

References

[1] A.A. Ageev, A.V. Fishkin, A.V. Kononov, S.V. Sevastianov, Open block scheduling in optical communication networks, in: Lecture Notes in
Computer Science, vol. 2909, Springer, Berlin, 2004, pp. 13–26.

[2] N. Alon, J. Spencer, The Probabilistic Method, Wiley Interscience, New York, 1992.
[3] I. Baldine, G.N. Rouskas, Reconfiguration and dynamic load balancing in broadcast WDM networks, Photonic Network Communications

Journal 1 (1) (1999) 49–64.
[4] E. Bampis, G.N. Rouskas, The scheduling and wavelength assignment problem in optical WDM networks, IEEE/OSA Journal of Lightwave

Technology 20 (5) (2002) 782–789.
[5] P. Berman, M. Karpinski, Approximation hardness of bounded degree MIN-CSP and MIN-BISECTION, Electronic Colloquium on Compu-

tational Complexity, Report No. 26, 2001.
[6] H.N. Djidjev, A separator theorem, Comptes Rendus de l’Academie Bulgare des Sciences 34 (1981) 643–645.
[7] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput. Sci. 1 (33) (1976) 237–267.
[8] H. Gazit, G.M. Miller, Planar separators and the Euclidean norm, in: Proc. of the SIGAL Internat. Symp. on Algorithms, in: Lecture Notes in

Computer Science, vol. 450, Springer, Berlin, 1990, pp. 338–347.
[9] S. Janson, T. Łuczak, A. Rucinski, Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience,

New York, 2000.
[10] R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM Journal on Applied Mathematics 36 (1979) 177–189.
[11] G.N. Rouskas, D. Thaker, Multi-destination communication in broadcast WDM networks: A survey, Optical Networks 3 (1) (2002) 34–44.
[12] A.D. Scott, Judicious partitions and related problems, Surveys in Combinatorics (2005) 95–117.
[13] O. Sýkora, I. Vr

∨
to, Edge separators for graphs of bounded genus with applications, in: Proc. of the 17th International Workshop on Graph

Theoretic Concepts in Computer Science, 1992, pp. 159–168.
[14] C. Thomassen, The graph genus problem is NP-complete, Journal of Algorithms 10 (4) (1989) 568–576.
[15] D.B. West, Introduction to Graph Theory, Prentice-Hall, Englewood Cliffs, NJ, 1996.

	On the minimum load coloring problem
	Introduction
	Motivation
	Our results

	Preliminaries
	Polynomial time algorithms for trees
	An approximation algorithm for graphs with genus g
	Randomized approximation
	Approximation for general graphs
	Random graphs

	MLCP with more than two colors
	Acknowledgements
	References

