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Large-field inflation in supergravity requires the approximate global symmetry needed to protect flatness 
of the scalar potential. In helical-phase inflation, the U(1) symmetry of the Kähler potential is assumed, 
the phase part of the complex scalar of a chiral superfield plays the role of inflaton, and the radial part is 
strongly stabilized. The original model of helical phase inflation, proposed by Li, Li and Nanopoulos (LLN), 
employs an extra (stabilizer) superfield. We propose a more economical new class of the helical phase 
inflationary models without a stabilizer superfield. As the specific examples, the quadratic, the natural, 
and the Starobinsky-type inflationary models are studied in our approach.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Inflation well explains the origin of primordial density fluctu-
ations, as well as flatness and homogeneity of our Universe. The 
general idea is so far quite successful, and inflationary models are 
confronted with precise observational data [1,2]. Since inflation is 
a high-energy phenomenon, it is important to study it in a more 
fundamental framework such as supergravity [3] which is well mo-
tivated by particle physics and string theory. In particular, should 
tensor perturbations be detected in a near future, it would im-
ply large (trans-Planckian) excursions of the inflaton field [4]. Then 
the Planck-suppressed corrections cannot be neglected. Even if su-
persymmetry is broken at a higher scale than that of inflation, 
supergravity corrections have substantial impact on the scalar po-
tential.

As is well known, a generic scalar potential in supergravity 
tends to be very steep in the large-field region, because of the ex-
ponential factor of the Kähler potential. Accordingly, it is hard to 
achieve flatness of the scalar potential along the whole inflation-
ary trajectory in the case of large-field models. Therefore, some 
symmetries are usually imposed in the inflationary model building 
in supergravity. A good example is the axion-like shift symmetry 
in the non-SUSY model [5] and in the supergravity-based models 
[6,7].
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The similar approach, assuming the global U(1) symmetry and 
the related monodromy structure of the superpotential, is known 
as the helical-phase inflation, because its inflaton is identified 
with the phase component of a complex scalar field rolling down 
a helicoid potential [8–11]. Like in the more conventional shift-
symmetric approach, a stabilizer superfield is used in all the 
known helical-phase inflationary models. Actually, the inflation-
ary models with the non-compact U(1) and those based on the 
shift symmetry (with or without a stabilizer superfield) are equiv-
alent, being related by the inflaton superfield redefinition �U(1) =
exp(�shift). Still, it makes sense to study them separately because 
adding a simple symmetry-breaking or stabilizing term in one 
approach often leads to a complicated structure in the other ap-
proach.

In the shift-symmetric approach, a stabilizer superfield is 
needed to ensure positivity of the potential. In our previous work 
[12,13] (see also Ref. [14]), we proposed the alternative framework 
to achieve the same goal by stabilizing the scalar superpartner of 
the inflaton. In our approach, a number of the physical degrees of 
freedom was reduced, while a quartic shift-symmetric term was 
added to the Kähler potential.

In this letter, we study the helical-phase inflation without a 
stabilizer superfield. In Sec. 2 the radial part is stabilized by em-
ploying a higher-order (polynomial) term in the Kähler poten-
tial, similarly to Refs. [12,13]. The inflaton is identified with the 
Pseudo-Nambu–Goldstone boson of the approximate U(1) symme-
try of the Kähler potential. A few particular models are studied in 
Sec. 3. We conclude in Sec. 4. Throughout the paper, we use the 
natural (reduced) Planck units, c = h̄ = MP/

√
8π = 1.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Stabilization of the radial component of complex inflaton

Should the inflationary trajectory be along the phase direction 
in the helical phase inflation, the radial direction has to be con-
stant during inflation. For example, in the LLN model it is achieved 
by taking the superpotential proportional to a negative power of 
the inflaton. Balancing the superpotential contribution diverging at 
the origin with the exponentially rising contribution due to the 
Kähler potential results in the stabilization of the radial part at a 
value of the order of the Planck scale.

In our case without a stabilizer superfield, the inflaton potential 
includes both the superpotential itself and its derivative, and the 
formulae become rather complicated. Therefore, instead of dealing 
with a numerical minimization of the radial part, we employ the 
strong stabilization mechanism by using a higher order term in the 
Kähler potential,

K =
(
�̄� − �2

0

)
− ζ

4

(
�̄� − �2

0

)4
. (1)

The first term is the usual (minimal) Kähler potential. The constant 
term is added so that the expectation value of the Kähler poten-
tial approximately vanishes. The second term is introduced for the 
purpose of stabilization. Thanks to that term, the radial part is sta-
bilized at

|�| � �0 − �0
(
�2

0 − 2
)

12ζ�6
0 + 2�4

0 − �2
0 − 2

. (2)

This expression is obtained by expanding the potential up to the 
second order in |�| −�0 and minimizing it. We assume the poten-
tial can be approximated as V = (K �K� − 3)|W |2 = (�2

0 − 3)|W |2, 
and neglect derivatives of the superpotential since they are propor-
tional to the slow-roll parameters. As expected, the stabilized value 
of the radial part approaches to |�| = �0 as ζ goes to infinity. 
Moreover, ζ of order one or smaller is sufficient for the trunca-
tion to be consistent in the case of �0 > 1. More general Kähler 
potentials with similar features may exist, but we find the above 
example to be simple and efficient. Our stabilization mechanism is 
similar to those considered in the literature [12–17].

The stabilization parameter ζ in eq. (1) should be real and pos-
itive. Some comments about its magnitude are in order. When ζ
becomes large at a fixed �0, the Kähler metric (the coefficient at 
the kinetic term) may change its sign before reaching the sym-
metric phase, 〈�〉 = 0. It occurs when ζ > 4/�6

0 for the Kähler 
potential in Eq. (1). Then the above Kähler potential should be re-
garded as the effective description of the Higgsed phase around 
〈�〉 ∼ �0. It is enough for our purposes, since the radial part is 
stabilized throughout the process of inflation so we do not have 
to consider its dynamics.1 Conversely, if ζ becomes small at a 
fixed �0, the stabilized position of the radial part shifts inwards, 
|�| < �0, and eventually moves to the origin for ζ → 0. Depending 
on the value of ζ , it is caused either by classical inflaton dynamics, 
quantum fluctuations, or quantum tunneling. To avoid such situa-
tions, we take the value of ζ to be of at least the same order as 
that of the critical value 4/�6

0.
The stabilization strength can be measured by the mass of the 

radial part. When |�| = �0, the canonically normalized squared 
mass of the radial part is given by

m2
radial � 3(12ζ�6

0 + 2�4
0 − �2

0 − 2)

�2
0 − 3

H2 � 20H2 (3)

1 When using the terms (�̄� − �2
0)n with n 	= 1, 4, also allowed by the symme-

try, in Eq. (1), dynamics of the radial part cannot be predicted once its distance 
from �0 is more than that of the order one. It may cause the typical problem of 
initial conditions for inflation. We just assume here that the radial part is within 
the order-one distance from �0 at the onset of inflation.
under the same conditions used for deriving eq. (2). In the last in-
equality we also assume that ζ ≥ 0 and �2

0 > 3. Therefore, it is not 
difficult to strongly stabilize the radial part, i.e. mradial > H . As long 
as the radial component is stabilized with its mass much larger 
than the Hubble scale, the considerations in the next sections are 
independent upon the detailed mechanism of the stabilization.

After inflation, we cannot neglect the derivatives of the super-
potential, so that Eqs. (2) and (3) are no longer valid. The model-
independent expression for the shift of the radial value from �0
is very complicated, but it vanishes in the limit ζ → ∞. The ra-
dial component is not protected by any symmetry, contrary to the 
phase component. We expect the mass of the radial component to 
be of at least the same order as the mass of the phase component. 
As will be clear in Section 3, SUSY is generically broken sponta-
neously. There is a SUSY breaking mass contribution 6

√
ζ�2

0m3/2
near the vacuum, which becomes dominant in the large ζ limit. 
Thus, the radial part is kept fixed near �0 after inflation for a suf-
ficiently large value of ζ .

3. Helical phase inflationary models in our approach

Having stabilized the radial mode at |�| = �0, let us consider 
typical inflationary models, without introducing a stabilizer super-
field. Let us parametrize the inflaton field as � = �0eiθ/

√
2�0 . The 

phase is scaled so that it is canonically normalized. The super-
potential breaks the U(1) symmetry in the Kähler potential, and 
generates the inflaton (scalar) potential. We study chaotic inflation 
with the quadratic potential, the Starobinsky-like plateau potential, 
and a sinusoidal potential in this section.

3.1. Quadratic helical-phase inflation

The logarithmic singularity in the superpotential is the heart of 
the helical phase inflation, which is needed to realize a nontrivial 
spiral shape. Let us take the simplest Ansatz

W = m log
�

f
, (4)

where m sets the scale of inflation, and f ≡ f0eiθ0/
√

2�0 (with f0
and θ0 real) is the dimensional parameter controlling the cosmo-
logical constant.

After stabilization, the inflaton potential becomes

V = 1

2
m2

inf (θ − θ0)
2 + �, (5)

with

minf =
|m|

√
�2

0 − 3

�0
, (6)

� = |m|2
(

1

�2
0

+ 2 log
�0

f0
+

(
�2

0 − 3
) ∣∣∣∣log

�0

f0

∣∣∣∣
2
)

. (7)

Thus, the positive quadratic scalar potential is obtained under the 
condition �0 >

√
3. The cosmological constant can be eliminated 

by choosing

f0 = �0e
1

�0(�0±√
3) . (8)

The full potential is shown in Fig. 1 for a limited field range. As is 
clear from the figure, the radial part is strongly stabilized, while its 
mass increases with the potential. This is also implied by Eq. (3).

In this model, SUSY is not restored after inflation. The gravitino 
mass at the vacuum is

m3/2 = |m| √ . (9)

�0(�0 ± 3)
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Fig. 1. The quadratic potential for helical phase inflation. The parameters are cho-
sen as �0 = 1.8, ζ = 0.11, and m = 1. The complex scalar is parametrized as 
� = r√

2
eiθ/

√
2�0 .

On the one hand, in the case of (�0 − √
3) 
 1, the inflaton be-

comes much lighter than the gravitino, minf 
 m3/2. On the other 
hand, in the large �0 limit, the inequality is reversed, m3/2 
 minf.

The inflationary predictions of the model are well-known, and 
they do not change in our embedding. Nevertheless, a few com-
ments are in order. By using the observed value of the amplitude 
of scalar perturbations, As = 2.2 ×10−9, the inflaton mass is deter-
mined as minf = 1.8 (1.5) × 1013 GeV at the e-foldings N = 50 (60). 
The gravitino mass is roughly of the same order. SUSY breaking is 
then supposed to be mediated to the MSSM sector by the anomaly 
mediation, and is not compatible with the traditional low-energy 
SUSY scenario. It is the typical consequence of removing a sta-
bilizer field, see Ref. [12]. In the last case, SUSY breaking at the 
intermediate scale [18–24] can be motivated e.g., by noticing that 
it stabilizes the electro-weak vacuum.

Though the quadratic potential is already excluded by Planck 
observations, some modifications or coupling to other sectors may 
make the quadratic model consistent with the data (see e.g.,
Ref. [25]). Instead of studying such possibilities, we directly con-
struct some viable inflationary models in the next subsections.

3.2. Starobinsky-like helical-phase inflation

In the previous subsection, the logarithm log� = log �0 +
iθ/(

√
2�0) in the superpotential leads to the quadratic poten-

tial. A plateau-type potential consists of the exponential factors 
like e−θ , so let us consider the exponential of the logarithm, 
ei log � = �i which is equivalent to the imaginary power of the su-
perfield. In other words, let us take the following superpotential:

W = m
(

c + �i
)

, (10)

where m and c are the constant parameters that determine the 
scale of inflation and the cosmological constant (see below).

After stabilization, the inflaton potential becomes

V = |m|2
(

A + Be−θ/
√

2�0 + Ce−2θ/
√

2�0
)

, (11)

with the coefficients

A = |c|2
(
�2

0 − 3
)

, (12)
Fig. 2. The Starobinsky-like potential for helical phase inflation. The parameters 
are chosen as �0 = 1.8, ζ = 0.11, ϕ = 3.85, and m = 1. The complex scalar is 
parametrized as � = r√

2
eiθ/

√
2�0 .

B = 2|c|
[(

�2
0 − 3

)
cos (log�0 − ϕ) − sin (log�0 − ϕ)

]
, (13)

C = �2
0 − 3 + 1

�2
0

, (14)

where the phase ϕ is defined by c = |c|eiϕ .
For any �0 larger than 

√
3, A and C are positive definite, and 

the sign of B depends on ϕ . There exists a solution of ϕ such 
that B is negative and, moreover, the cosmological constant van-
ishes. Though it is fully straightforward, the solution itself is not 
very illuminating and, hence, is not shown here. The potential is a 
generalization of the Starobinsky potential. Such potentials are of-
ten called “Starobinsky-like” in the literature. Our Starobinsky-like 
scalar potential is shown in Fig. 2.

The masses of inflaton and gravitino are given by

minf = |mc|
�0

√
�2

0 − 3 , (15)

m3/2 = |mc|
∣∣∣∣∣eiϕ − ei log �0

√
�2

0(�
2
0 − 3)

�2
0(�

2
0 − 3) + 1

∣∣∣∣∣ . (16)

The inflaton mass reads minf = 3.5 (2.9) × 1013 GeV at N = 50 (60). 
In this model, the inflaton is always lighter than the gravitino. In 
the limit �0 → ∞, the inflaton mass approaches half of the grav-
itino mass.

The spectral index is the same as that of the Starobinsky model, 
but the tensor-to-scalar ratio is different:

1 − ns = 2

N
and r = 16�2

0

N2
, (17)

in the leading order of N−1. With �2
0 > 3, the tensor-to-scalar ratio 

is enhanced, when being compared to the Starobinsky model (r =
12/N2). With an arbitrary imaginary power �bi instead of �i in 
Eq. (10), where b is a real parameter, the tensor-to-scalar ratio is 
divided by |b| as r = 16�2

0/|b|N2.

3.3. Natural helical-phase inflation

The previous examples are based on the superpotentials having 
the singularity at the origin. However, it is not the necessary fea-
ture of our mechanism because of the super-Planckian value of the 



S.V. Ketov, T. Terada / Physics Letters B 752 (2016) 108–112 111
Fig. 3. The sinusoidal potential for helical phase inflation. The parameters are chosen 
as �0 = 5, ζ = 0.03, m = 1, and ϕ = π , and the upper sign is taken in Eq. (22). The 
complex scalar is parametrized as � = r√

2
eiθ/

√
2�0 .

radial component. Let us take the superpotential of the previous 
subsection and replace its imaginary power by a real power as

W = m (c + �) . (18)

This is simply a linear function without the monodromy structure. 
In this case, a large value of |�| is required not only by the positiv-
ity of the stabilized potential but also by the observational status 
of natural inflation.

After stabilization, the inflaton potential becomes

V = |m|2
[

D + E cos

(
θ√
2�0

− ϕ

)]
, (19)

with the coefficients

D = |c|2(�2
0 − 3) + �4

0 − �2
0 + 1 , (20)

E = 2|c|�0(�
2
0 − 2) , (21)

and ϕ is again the argument of c, c = |c|eiϕ . The cosmological con-
stant vanishes when

|c| = �0(�
2
0 − 2) ± √

3

�2
0 − 3

. (22)

In this case, the potential is positive when �2
0 > 3 (2) for the upper 

(lower) sign, and the sinusoidal scalar potential of natural inflation 
is obtained. The potential is shown in Fig. 3.

The masses of inflaton and gravitino are given by

minf = |mc|
√

�2
0 − 2

�0
, (23)

m3/2 = |m|
�0 ∓ √

3
. (24)

Again, if the absolute value of the field is barely larger than the 
critical value

√
2 (this is for the lower sign), the inflaton is much 

lighter than the gravitino. In the large VEV case, gravitino becomes 
much lighter than the inflaton.

The parameter of the natural inflation is tightly constrained by 
the CMB observations. The decay constant (in our case 

√
2�0) 

must be larger than 6.9 at 95% confidence level [2], so that the 
lower bound on the absolute value is obtained as �0 � 4.9. When 
choosing �0 = 5, the inflaton mass is minf = 1.1 (0.96) × 1013 GeV
at N = 50 (60).
4. Conclusion

In this paper we studied helical phase inflation with a single 
chiral superfield in supergravity, i.e. without the stabilizer super-
field used in the known versions of helical phase inflation in the 
literature.

In order to ensure positivity of the scalar potential and avoid 
computational complexity, we introduced a stabilization term to 
the Kähler potential that fixes the radial component of the inflaton 
complex scalar at a sufficiently large value. It results in technical 
simplification also. After the stabilization, a slow-roll inflation oc-
curs in the direction of the phase component.

We exemplified our findings on the three simple models of 
the single-superfield helical-phase inflation. It implies that there 
should be many more possibilities to obtain viable inflationary po-
tentials in our approach. One such noticeable generalization is a 
hybrid version of the models in Subsections 3.2 and 3.3. Let us 
take an arbitrary complex power of the inflaton superfield, W =
m(c + �a+ib) with a and b real. This model interpolates between 
the natural inflation and the Starobinsky-like inflation. A similar 
model was studied in the presence of the stabilizer superfield in 
Ref. [11].

Although the radial part is stabilized at an over-Planckian value, 
higher order terms in the Kähler potential are not necessarily prob-
lematic as long as we expand it around �̄� = �2

0 as in eq. (1) (see 
also footnote 1). However, possible shift symmetry breaking terms 
in the Kähler potential may affect the inflaton potential and in-
flationary observables [10,26,27]. It is an interesting topic to be 
studied also in our setup elsewhere.

In the models in Subsections 3.1 and 3.2, singularities and the 
monodromy structure are introduced in the superpotential, as in 
the LLN approach. This is beyond the usual field theory framework, 
and it is regarded as an effective description. A possible UV com-
pletion of helical phase inflation in string theory was argued in 
Ref. [11].

In summary, we proposed the new type of inflationary mecha-
nism in supergravity, combining the ideas of helical phase inflation 
[8–11] and single-superfield inflation with the higher dimensional 
stabilization term in the Kähler potential [12,13]. Our models are 
simple: the kinetic term is approximately canonical, the superpo-
tential is very economical, and no stabilizer superfield (or extra 
d.o.f.) is present.
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