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Abstract

The objective of the present study is to find out the optimum combination of process parameters in EDM process so that surface
roughness reaches a minimum value and the metal removal rate (MRR) reaches a maximum value. In this study, five roughness
parameters (viz. center line average roughness, root mean square roughness, mean line peak spacing, skewness and kurtosis)
along with MRR have been considered. To optimize the multi-response problems, Taguchi method alone is unable to solve the
problem. Thus, the multi-response characteristics must be converted to a single performance index. In this study weighted
principal components analysis (WPCA) method is used for this conversion. For the experimentation, Taguchi L,; orthogonal
design with four process parameters, viz., pulse on time, pulse off time, discharge current and voltage at three different levels is
used. The optimum combination of process parameters has been found out and verified through the confirmation test. The result
of the confirmation test shows a good agreement with the predicted value. This indicates the utility of the WPCA technique as
multi-objective optimizer in the field of EDM. In addition, the surface morphology is studied with the help of scanning electron
microscopy (SEM) analysis.
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1. Introduction

Electrical discharge machining (EDM) is a controlled metal-removal process that is used to remove metal by
means of electric spark erosion. In this process, an electric spark is used as the cutting tool to cut (erode) the work
piece to produce the finished product to the desired shape. The metal-removal process is performed by applying a
pulsating (ON/OFF) electrical charge of high-frequency current through the electrode to the work piece. This
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removes (erodes) very tiny pieces of metal from the work piece at a controlled rate. The dielectric oil, that provides
a means of flushing, is pumped through the arc gap. This removes suspended particles of work piece material and
electrode from the work cavity. EDM process is popular non-conventional machining process and there are many
researchers who have studied the performance characteristics of EDM process. Zhang et al. [1] have investigated
the effects on material removal rate, surface roughness and diameter of discharge points in electro-discharge
machining (EDM) on ceramics. From the experimental results, they have shown that the material removal rate,
surface roughness and the diameter of discharge point all increase with increasing pulse-on time and discharge
current. Lin and Lin [2] have studied an approach for the optimization of the electrical discharge machining
process (work-piece polarity, pulse on time, duty factor, open discharge voltage, discharge current, and dielectric
fluid) with multiple performance characteristics viz. MRR, surface roughness and electrode wear ratio using grey
relational analysis. Haron et al. [3] have studied the effect of MRR and tool wear on AISI 1045 tool steel, which
shows the maximum MRR is obtained when copper or graphite electrode is used, also current and electrode
diameter have effects on MRR. Singh et al. [4] have concluded that pulse on-time and current have significant
effect on the multiple response characteristics. Gao et al. [5] have used artificial neural network (ANN) to
represent the relationship between material removal rate (MRR) and input parameters, and genetic algorithm (GA)
is used to optimize parameters. George et al. [6] have shown that pulse current is the most significant machining
parameter on MRR followed by gap voltage and pulse on time. Pradhan and Biswas [7] have used response surface
methodology (RSM) to investigate the effect of four controllable input variables viz. discharge current, pulse
duration, pulse off time and applied voltage on surface roughness and the results show that surface roughness is
directly proportional to linear effect of pulse current and pulse on time. Patel et al. [8] have studied the surface
integrity and material removal mechanisms associated with EDM of Al,O; ceramic composite and shown that
surface roughness increases with discharge current and pulse-on time.

The present study deals with the optimization of multiple responses: centre line average roughness (R,), root
mean square roughness (R,), skewness (Ry), kurtosis (Ry,), mean line peak spacing (R,y) and MRR in EDM of
EN31 tool steel. Experiments are conducted based on Ly; orthogonal array of Taguchi design for four process
parameters (factors) viz. discharge current, pulse on time, pulse off time and voltage with three levels for each
factor. To optimize the multi-responses problem, weighted principal component analysis (WPCA) is applied for
the current study. Finally, a confirmation test is carried out to validate the result. Also, surface morphology is
investigated for the material before and after the test using SEM images.

2. Weighted principal component (WPC) method

Su and Tong [9] and Antony [10] have proposed a new method called principal component analysis (PCA) to
optimize the multi-response problem. They have used a PCA method to transform the normalized multi-response
value into uncorrelated linear combinations. After obtaining the linear combinations, the principal components can
be formed. In the application of PCA method, this selected component is regarded as an index in order to
conveniently optimize the multi-response problem and to gain the best combination of factors/levels. However,
there are still two shortcomings in the PCA method. First, when more than one principal component is selected
whose Eigen value is greater than 1, the required trade-off for a feasible solution is unknown; and second, the
multi-response performance index cannot replace the multi-response solution when the chosen principle
component can only be explained by total variation. In order to overcome these two main shortcomings in the PCA
method, the present study deals with weighted principal components (WPC) method. In this WPC method, all
components are taken into consideration in order to completely explain variation in all responses. The WPC
method uses the explained variation as the weight to combine all principal components in order to form a multi-
response performance index (MPI). Then, the best combination of factors/levels will easily be obtained.

The WPC method for multi-response optimization can be described in the following steps:

Step 1: Computation of loss function

Based on the objective of the study, the Taguchi loss function can be categorized in to three types:
Lower-the-better (LB),

Ly==2 v M
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Higher-the-better (HB),

1 1
L,',‘ = 2 2 (2)
nk=1y
ijk
Nominal-the-best (NB),
2
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n represents the number of repeated experiments, Yy 18 the experimental value of j” response variable in 7"

. th, . 3 «th s ath
trial at £"'test and L{./. is the computed quality loss for j response in " trial.

Step 2: Computation of the signal-to-noise (S/N) ratio for each response
The S/N ratio can be calculated using Equation (4).The quality loss ( L )of. /™ response corresponding to i trial

can be taken according to the objective of the experiment using Equation (1) or (2) or (3),
a,; =—10log,,L, 4)

Step 3: Transformation of the S/N ratio values for each response into (0, 1) interval:

The S/N ratio values is transformed into scaled S/N ratio using Equation (5)

min
a,—a’
Y;_ =7 J (5)
y max _ amm
J J
Where, Y, = scaled SN  ratio value for ™ response at " trial.
min __ . max __
al" =min{a, a,,....a, fanda]" =max{a, ay,...a,,
Step 4: Pearson’s correlation coefficient:
The correlation coefficient between two response variables is calculated by the following equation
Cov(©,.0,)
Xk
py=—>tt ©)
Op X0
Where, p ik is the correlation coefficient between response variables j and k
Cov (Q/ O, )is the covariance of response variables j and k.
Oy and 0, are the standard deviation of response variables j and k respectively.
J b
The correlation is checked by testing the following hypothesis:
There will be no correlation between the responses, ifpjk =(); and the correlation exists ifpjk #0.
Step 5: Principal component calculation
The principal components for each trial is computed as follows
i_ ] =
zy=a,Y, +a,Y ,+... +a,pr,(l =1,2...,9) 7

Where, Z| (I =1,2,....,q) is q principal components corresponding to a trial i.
Step 6: Computation of the multi-response performance index (MPI) corresponding to each trial.

The multi-response performance index (MPI) is essentially the weighted sum of all the principal components.
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The MPI value for i trial, therefore, can be computed using the following equation:

q

MPI' ="W,Z, ®)
I=1
where, W; is the proportion of overall variance of the response explained by 1™ principal component, Z, is the

computed value of I" principal component corresponding to i trial and Z W, = 1. It may be noted that since all
the principal components are independent of each other, the additive model is appropriate here. A large value of
MPI will imply better quality.

3. Experimental details
3.1. Machine used

The experiments are performed on CNC EDM (EMT 43, Electronica) machine. Electrolytic Copper (25mm X
25 mm, 99.9% Purity) is used as electrode and EDM Oil is used as electrolyte. The polarity of electrode is kept
positive.
3.2. Work-piece material

EN31tool steel (22 mm X 22 mm X 15 mm size) is taken as work piece having following chemical
composition: C- 1.07%; Mn- 0.57%; Si- 0.32%; P- 0.04%; S- 0.03%; Cr- 1.13% and Fe- 96.84%. Other properties

are given in Table 1.

Table 1. Mechanical properties of EN 31 tool steel

Thermal Conductivity (w/mk) 46.6

Density (gm/cc) 7.81
Electrical Resistivity (ohm-cm ) 0.0000218

Specific heat capacity (j/gm-c) 0.475

3.3. Design of experiment (DOE)

DOE technique is a very powerful tool for the modelling and analysis of the influence of process variables on
the response variables. The response variable is an unknown function of the process variables, which are known as
design factors. There are a large number of factors that can be considered for control of EDM process. However,
the review of the literature shows that the following four parameters are the most widespread among the
researchers to control MRR and surface roughness: pulse on time (A), pulse off time (B), current (C) and voltage
(D).These four factors are considered as main design factors along with their interactions in this study. Table 2
shows the design factors along with their levels. Three levels, having equal spacing, within the operating range of
the parameters are selected for each of the factors. By selecting three levels, the curvature or non-linearity effects
can be studied. On the basis of Taguchi method [11], an orthogonal array (OA) is employed to reduce the number
of experiments for determining the optimal machining parameters. An OA provides the shortest possible matrix of
combinations in which all the parameters are varied to consider their direct effect as well as interactions
simultaneously. In the present investigation, an L,; OA, which has 27 rows corresponding to the number of tests
[26 degrees of freedom (DOFs)] with 13 columns at three levels, is chosen. To check the DOFs in the experimental
design, for the three-level test, the four main factors take 8 [3 x (3 — 1)] DOFs. The DOF for three second- order
interactions (A x B, A xC, BxC) is 12 [3 x (3 —1) x (3 — 1)] and the total DOFs required is 20. As per the Taguchi
method, the total DOF's of selected OA must be greater than or equal to the total DOF's required for the experiment
and hence the L,; OA has been selected. Table 3 shows the OA with design factors and their interactions assigned.
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Table 2.Design factors and their levels

Design factors Unit Notation 1 Levelzs 3
Pulse on time (T,,) us A 200 300 400
Pulse off time s B 1800 1700 1600
(Tor)
Dischar(gi:)Current Amp c 3 12 16
Voltage (V) Volt D 40 60 80

3.4. Response variables

The response variables considered in the present study are surface roughness characteristics (R,, Rq, Ry, Ry,
Rym) and metal removal rate (MRR).

3.5. Measurement of responses

Roughness measurement is done using a stylus-type profilometer, Talysurf (Taylor Hobson, Surtronic 3+). The
profilometer is set to a cut-off length of 0.8 mm, Gaussian filter and traverse speed Imm/second with 8 mm
evaluation length. Roughness measurements, on the work pieces are repeated five times and average of five

measurements of surface roughness parameter values is recorded in the transverse direction.

Table 3. L27 Orthogonal Array with design factors and interactions assigned

Column numbers

6 7 8 0 11
(AxC) (AxC) (BxCQ) BxC)

S
)
w

Trialno 1(A) 2(B) 5(0)

3 4
(AxB) (AxB)

1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 2 2 3 3 3
5 1 2 2 2 2 2 2 3 3 3 1 1 1
6 1 2 2 2 3 3 3 1 1 1 2 2 2
7 1 3 3 3 1 1 1 3 3 3 2 2 2
8 1 3 3 3 2 2 2 1 1 1 3 3 3
9 1 3 3 3 3 3 3 2 2 2 1 1 1
10 2 1 2 3 1 2 3 1 2 3 1 2 3
11 2 1 2 3 2 3 1 2 31 2 3 1
12 2 1 2 3 3 1 2 3 1 2 3 1 2
13 2 2 3 1 1 2 3 2 31 3 1 2
14 2 2 3 1 2 3 1 3 1 2 1 2 3
15 2 2 3 1 3 1 2 1 2 3 2 3 1
16 2 3 1 2 1 2 3 3 1 2 2 3 1
17 2 3 1 2 2 3 1 1 2 3 3 1 2
18 2 3 1 2 3 1 2 2 31 1 2 3
19 3 1 3 2 1 3 2 1 3 2 1 3 2
20 3 1 3 2 2 1 3 2 1 3 2 1 3
21 3 1 3 2 3 2 1 3 2 1 3 2 1
22 3 2 1 3 1 3 2 2 13 3 2 1
23 3 2 1 3 2 1 3 3 2 1 1 3 2
24 3 2 1 3 3 2 1 1 3 2 2 1 3
25 3 3 2 1 1 3 2 3 2 1 2 1 3
26 3 3 2 1 2 1 3 1 32 3 2 1
27 3 3 2 1 3 2 1 2 1 3 1 3 2
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The measured profile is digitized and processed through the dedicated advanced surface finish analysis software
Talyprofile for evaluation of the roughness parameters. MRR is expressed as the ratio of weight difference of the
work piece before and after machining to the machining time and in the present study it is measured by weight loss
of the material and expressed by gm/min. Table 4 shows the experimental results.

Table 4. Experimental results for roughness parameters and MRR

Exp. Nos. Ropum Ryum Ry Ry Rgnmm MRR gm/min
1 09.51 11.54 0.49 3.58 0.21 0.14187
2 11.57 14.10 0.38 3.962 0.22 0.19778
3 11.98 14.38 0.31 2.862 0.24 0.21207
4 09.07 11.04 0.41 3.34 0.19 0.15370
5 10.63 12.96 0.25 3.112 0.22 0.20833
6 12.04 14.46 0.31 3.108 0.25 0.38095
7 09.24 11.26 0.38 3.002 0.20 0.15353
8 11.02 13.44 0.45 3.426 0.24 0.38889
9 1131 13.50 0.39 3.586 0.22 0.40667
10 09.62 11.72 0.34 3.494 0.22 0.10370
11 12.22 14.58 0.26 3.036 0.24 0.16250
12 11.97 14.49 0.32 3.81 0.24 0.29305
13 10.77 12.94 0.30 3.24 0.18 0.12273
14 11.96 14.48 0.11 3.282 0.23 0.31759
15 11.71 14.06 0.21 2.958 0.22 0.32667
16 11.14 13.52 0.28 3.084 0.22 0.22578
17 10.43 12.72 0.30 3.894 0.25 0.31000
18 12.30 14.78 0.15 3.05 0.25 0.34167
19 10.39 12.52 0.19 3.846 0.22 0.08880

20 11.38 13.52 0.01 3.348 0.24 0.23985
21 12.54 15.08 0.08 3.062 0.24 0.26538
22 10.75 13.07 0.20 3.406 0.24 0.17778
23 12.36 14.92 0.19 3.07 0.24 0.25909
24 12.68 15.32 0.20 3.66 0.26 0.29063
25 09.272 11.20 0.21 3.346 0.21 0.17536
26 11.74 14.02 0.14 3212 0.24 0.25278
27 13.14 15.86 0.14 3.116 0.25 0.51667

4. Result and discussion

As a first step, the experimental results (Table 4) for surface roughness parameters and MRR have been
normalized within the range of 0 to 1. For all surface roughness parameters, lower-the-better (LB) criterion and for
material removal rate (MRR) higher-the-better (HB) criterion have been selected. Normalized experimental data

are shown in Table 5.

The Pearson’s correlation coefficient between individual responses has been computed using Equation (6).

Table 6 represents Pearson’s correlation coefficients. It has been observed that all the responses are correlated.

Now, weighted principal component analysis (WPCA) has been employed to find the explained variation as a

result of these six responses and the eigenvector of each principal component. The results are shown in Table 7.

7! =—0429xY, +0.513xY,+0.512x Y, —0.243xY,, —0.149x Y , +0.455x Y,
Z,=0.163xY,~0.018xY, —0.047x Y, ~0.380xY,, ~0.870x Y, —0.260x Y,

7! =—0.256 XY, +0.078xY,, +0.101x Y, +0.863x Y., —0.398x Y, —0.112x Y,
7, =—0.735xY, —0.444xY,, —0.440x Y, —0.146 Y, —0.097x ¥, + 0.190x Y,,
7 =0426xY,—0.188xY,—0.171xY,+0.166 xY,, —0.225x Y . +0.821x Y,

)

(10)
an
(12)

(13)
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Z;=0.003xY,-0.705xY,,+0.708xY,,; =0.023xY,, —0.008 xY,; —0.014 x Y, (14)

where, Y, Y., Y., ¥, Y, ;andY,; are the scaled S/N ratio values of MRR and surface roughness respectively, for it

trial.

Table 5. Scaled S/N ratio of multiple responses
Scaled S/N ratio
Exp. Nos.
R, R, Ry R R MRR

1 0.87055 0.87819 0.00001 0.31174 0.58658 0.26604
2 0.34352 0.32486 0.06923 0.00000 0.44005 0.45471
3 0.24917 0.27055 0.11944 1.00000 0.17571 0.49432
4 0.99999 1.00001 0.04959 0.52510 0.79079 031154
5 0.57100 0.55769 0.16743 0.74250 0.39691 0.48423
6 0.23570 0.25523 0.12159 0.74646 0.14093 0.82696
7 0.94991 0.94602 0.06883 0.85316 0.63813 0.31092
8 0.47486 0.45726 0.02050 0.44694 0.23770 0.83867
9 0.40434 0.44495 0.05877 0.30659 0.40167 0.86405
10 0.84123 0.83544 0.09914 0.38651 0.48882 0.08809
11 0.19570 0.23241 0.16158 0.81853 0.18667 0.34314
12 0.25188 0.24989 0.10986 0.12029 0.23322 0.67800
13 0.53573 0.56196 0.12645 0.61857 1.00000 0.18373
14 0.25368 0.25142 0.38945 0.57897 0.27832 0.72366
15 0.31063 0.33271 0.21518 0.89855 0.46433 0.73966
16 0.44517 0.44087 0.14512 0.77029 0.42079 0.52984
17 0.62220 0.60932 0.12575 0.05323 0.06009 0.70992
18 0.17810 0.19478 0.29728 0.80438 0.06218 0.76515
19 0.63412 0.65308 0.23332 0.09137 0.45216 0.00000
20 0.38770 0.44087 1.00001 0.51775 0.18887 0.56424
21 0.12600 0.13929 0.45058 0.79231 0.25117 0.62168
22 0.54175 0.53435 0.22572 0.46494 0.24218 0.39417
23 0.16498 0.16875 0.23464 0.78428 0.22429 0.60805
24 0.09607 0.09568 0.22896 0.24379 0.00000 0.67327
25 0.94001 0.96078 0.22200 0.51959 0.62256 0.38640
26 0.30373 0.34057 0.32043 0.64526 0.24667 0.59404
27 0.00000 0.00001 0.32866 0.73855 0.03921 1.00000

Table 6. Correlation among response variables

SL Correlation between Pearson correlation

No. responses coefficient Comment
1 R, and Ry 0.998 Both are correlated
2 R,and Ry -0.342 Both are correlated
3 R, and Ry, -0.241 Both are correlated
4 R.and Ry, 0.713 Both are correlated
5 R, and MRR -0.653 Both are correlated
6 RgandRy -0.313 Both are correlated
7 RjandRy, -0.224 Both are correlated
8 ReandRgm 0.722 Both are correlated
9 Ryand MRR -0.661 Both are correlated
10 RgandRy, 0.163 Both are correlated
11 Ry and Ry, -0.333 Both are correlated
12 Ry and MRR 0.173 Both are correlated
13 RandRg, -0.025 Both are correlated
14 Ry, and MRR 0.165 Both are correlated
15 Rym and MRR -0.646 Both are correlated
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Table 7. Eigen values, eigen vectors, accountability proportion (AP) and cumulative accountability proportion (CAP) computed

MRR R, R, Ry Ry Rom

Eigen values 3.4103 1.0154 0.8489 0.4338 0.2899 0.0015
-0.4296 0.5131 0.5125 -0.2436 -0.1496 0.4558

0.1635 -0.0186 -0.0471 -0.3800 -0.8708 -0.2609

-0.2566 0.0784 0.1011 0.8638 -0.3985 -0.1129

Eigenvector -0.7357 -0.4441 -0.4404 -0.1469 -0.0979 0.1909
0.4261 -0.1888 -0.1710 0.1669 -0.2257 0.8215

0.0038 -0.7053 0.7083 -0.0233 -0.0081 -0.0141

AP 0.5684 0.1692 0.1415 0.0723 0.0483 0.0003
CAP 0.5684 0.7376 0.8791 0.9514 0.9998 1.0000

Table 8. Calculated MPI values

Exp.No. A B C D MPI

1 1 1 1 1 0.427555

2 1 1 1 1 0.147943

3 1 1 1 1 -0.279400
4 1 2 2 2 0.461362
5 1 2 2 2 0.011406
6 1 2 2 2 -0.312960
7 1 3 3 3 0.293921

8 1 3 3 3 -0.077790
9 1 3 3 3 -0.025140
10 2 1 2 3 0.403918
11 2 1 2 3 -0.204940
12 2 1 2 3 -0.051270
13 2 2 3 1 0.282868
14 2 2 3 1 -0.216000
15 2 2 3 1 -0.221520
16 2 3 1 2 -0.064850
17 2 3 1 2 0.103381

18 2 3 1 2 -0.378010
19 3 1 3 2 0.398737
20 3 1 3 2 -0.141610
21 3 1 3 2 -0.326130
22 3 2 1 3 0.064793
23 3 2 1 3 -0.290970
24 3 2 1 3 -0.236550
25 3 3 2 1 0.359291

26 3 3 2 1 -0.165700
27 3 3 2 1 -0.529440

The weighted sum of the principal components, i.e. multi-response performance index (MPI) corresponding to a
trial 1, is then calculated using Equation (8):

MPI' =0.5684% Z} +0.1692x Z\ +0.1415x Z} +0.0723x Z' +0.0483x Z. +0.003x Z:  (15)

The computed MPI values corresponding to 27 trials are listed in the last column of Table 8. Table 9
summarizes the level average on MPI, i.e. average MPI values corresponding to different levels of the control
factors. For example, the level average on MPI for factor A at level 1 is calculated taking the average of the MPI
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values corresponding to level 1 of factor A. Larger value of MPI implies better quality. Consequently, the optimal
condition for the factors A, B, C and D can be set as AIB1C1D2.

Table 9. Level average on MPI

Factor Level 1 Level 2 Level 3
A 0.0719 -0.0385 -0.0964
B 0.0416 -0.0508 -0.0538
C 0.2919 -0.0927 -0.2623
D -0.0216 0.068 -0.0309
Table 10. ANOVA on MPI
Source Degree of Sum of Mean F-ratio Contribution
freedom squares Square (%)
A 2 0.13155 0.06578 1.98 6.314713
B 2 0.05302 0.02651 0.8 2.545086
C 2 1.45163 0.72582 21.88% 69.6817
D 2 0.12861 0.0643 1.94 6.173586
A*B 4 0.01762 0.00441 0.13 0.845802
A*C 4 0.04689 0.01172 0.35 2.250832
B*C 4 0.05489 0.01372 0.41 2.634851
Error 6 0.19901 0.03317 9.552954
Total 26 2.08323 100

*Significant at 95% confidence level (Fos26=5.14)

Analysis of variance (ANOVA) is carried out to find out the significant effects of design parameters on the
MPI. Table 10 shows the result of ANOVA test. From the ANOVA table, it is observed that the parameter C
(discharge current) is the most significant factor for controlling the multiple responses, which is approximately

70% significant.

5. Confirmation test

After the optimal level of process parameters has been found, a verification test needs to be carried out in order
to check the accuracy of the analysis. Table 11 shows the comparison of the initial S/N ratio with the actual S/N
ratio using the optimal parameters. The increase in the S/N ratio from the initial process parameters to the optimal
process parameters is 1.6554 dB. In other words, the experimental results confirm the prior design and analysis for
optimizing the machining parameters.

Table 11. Results of confirmation test

Initial parameter combination

Optimal parameter combination

level A2B2C2D2 A1BICID2
Experimental

R, 10.496 9.514

R, 13.26 11.54

R 0.4096 0.4952

R 3.628 3.280

Rom 213 195

MRR 0.2479 0.2519

S/N ratio -44.4509 -42.7955

Improvement of S/N ratio = 1.6554 dB
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6. Surface morphology analysis

Scanning electron microscopy (SEM) (JEOL, JSM-6360) images are used to investigate the surface
morphology (Fig.1). Before machining, the work piece surface has no globular spot. After machining, the surface
becomes rougher and the machined surface contains plenty of globules which are unevenly distributed. This is
because at high temperature gradient produced due to the thermal energy in the work-piece surface, erosion occurs
from the surface and the debris particles remain attached to the work-piece surface.

a

Fig. 1. SEM images (a) before machining and (b) after machining
7. Conclusion

In this study, the multiple responses (surface roughness parameters and MRR) are efficiently optimized using
the weighted principal component analysis (WPCA) along with Taguchi design in EDM of EN31 tool steel. The
optimum parameter combination is obtained as AIB1C1D2 (the lowest levels of pulse on time, pulse off time and
discharge current and mid-level of voltage) by considering the maximum MPI level average. ANOVA result shows
that the discharge current is the most influencing parameter that significantly affects the roughness and MRR
characteristics at a confidence level of 95%. The confirmation test ensures the improvement of S/N ratio (1.6554
dB) from the initial to optimal condition. From this study, it can be concluded that the proposed methodology can
be treated as a very effective and powerful approach to tackle multiple response problems in industrial
experiments.
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