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1 Introduction

The popularity of the Standard Model of particle physics rests upon its enormous success

in explaining weak interaction phenomena [1] in terms of weak gauge boson exchange, their

explicit discovery by the UA1 and UA2 experiments [2, 3], and more recently the historic

discovery of the Higgs boson [4, 5]. However, there is a number of experimental indications

showing that the Standard Model must be extended. Within these experimental hints we

can name two: on the one hand, the neutrino oscillations, a phenomenon that is intimately

connected to neutrino masses, and on the other, the existence of a large component of Dark

Matter in the Universe.

The discovery that neutrino flavours change when these particles propagate, honoured

with the Nobel prize in 2015, has been confirmed in a number of independent experiments

and constitutes a landmark in particle physics [6–11]. By now neutrino oscillation mea-

surements have reached the precision era with the neutrino mixing angles and their square

mass differences well determined [12].

Nevertheless, the good knowledge of the neutrino oscillation stays short of unveiling the

underlying mechanism responsible for neutrino mass generation [13]. The simplest operator

capable of inducing Majorana neutrino mass terms is the d = 5 Weinberg operator [14],

which can be realised in a variety of ways in terms of heavy messenger exchange in the

framework of the seesaw mechanism and its low-scale variants [15–24].
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On the other hand, the standard model of cosmology indicates that most of the Uni-

verse is made up of dark stuff. In particular Dark Matter constitutes most of the total

mass in the Universe, and its existence is strongly indicated by a variety of observations

on smaller scales. These suggest that galaxies and galaxy clusters in the Universe as a

whole contain far more matter than what is directly observable. Indeed, about 85% of the

matter of the Universe is made of a type that cannot be observed via its electromagnetic

coupling [25]. This is the Dark Matter problem whose ultimate physics interpretation, just

like neutrino oscillations, remains a challenge.

In an attempt to understand both phenomena, it has been suggested by Ma that the

smallness of neutrino mass may have its roots on the stability of Dark Matter [26], two of

the major drawbacks of the Standard Model that require new particle physics. Indeed the

scotogenic model is based on the validity of a Z2 parity symmetry which plays a double

role, namely stabilising the Z2-odd Dark Matter particle on the one hand, and ensuring

the radiative origin of neutrino mass on the other. This provides a very simple setting

containing a Dark Matter candidate and generating a naturally suppressed neutrino mass

at one-loop level. One of the ingredients of Ma’s model is a new scalar doublet charged

under the Z2 symmetry, similar to the inert doublet model [27]. In addition, fermion singlets

are added. In both cases, future prospects in Dark Matter direct detection experiments

are challenging [28].

Moreover, it has been shown that the simplest scheme suffers from a potentially se-

vere problem, namely that loop effects [29, 30] may drive the mass parameter of the inert

scalar present in the model towards negative values [31]. This behaviour would lead to the

spontaneous breaking of the Z2 symmetry required for consistency at low energies and has

thus been called the parity problem: without the Z2 parity, the model would lose its Dark

Matter candidate, and the neutrino mass would no longer come from a one-loop radiative

seesaw mechanism. Here we show how this problem is naturally avoided in a simple exten-

sion of Ma’s idea, the singlet-triplet scotogenic model proposed in [32], partly with the aim

of achieving good prospects for direct Dark Matter detection in the scotogenic scenario.

The aim of the present work is to study the Z2 problem of the scotogenic models within

the singlet-triplet extension. We analyse in detail how the extra ingredients of the model

open up the possibility of naturally preserving the Z2 symmetry, since the inclusion of

scalar triplets neutral under the Z2 will change the running of the couplings in the scalar

sector. Mimicking the basic features of the supersymmetry-based WIMP scenario in a

simpler and realistic way, our model can ensure an adequate production of Dark Matter in

the early Universe as well as sizeable Dark Matter tree-level detection rates through the

nuclear recoil method. As mentioned, apart from stabilising the lightest particle odd under

the Z2 symmetry, this provides a way to realise the Weinberg operator radiatively, giving

thus a way to explain both phenomena by means of simple Standard Model extensions

potentially accessible at the LHC.

The paper is organised as follows: we start in section 2 by reviewing the singlet-

triplet scotogenic model, where we also make a few simplifications compared to the original

reference. Our main results are presented in section 3, where we analyse the impact of the

parity problem on the triplet-extended version of the scotogenic model and show how it
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Standard Model Fermions Scalars

L e φ Σ N η Ω

Generations 3 3 1 1 1 1 1

SU(2)L 2 1 2 3 1 2 3

U(1)Y -1/2 -1 1/2 0 0 1/2 0

Z2 + + + − − − +

Table 1. Matter content and quantum numbers of the singlet-triplet scotogenic model.

can be naturally avoided in this extended setting. We finally conclude in section 4. The

full set of renormalisation group equations for the singlet-triplet scotogenic model, which

has been derived for the first time within this work, are listed in appendix A.

2 The model

Let us first review the singlet-triplet scotogenic model [32]. The model is based on the

standard gauge symmetry SU(3)c × SU(2)L ×U(1)Y, extended by a discrete Z2 parity.

In addition to the Standard Model leptons and quarks, both even under Z2, the model

contains two additional SU(2)L fermion fields: the singlet N and the triplet Σ, both having

vanishing hypercharge and being odd under Z2. The scalar sector of the model is extended

as well, with the inclusion of the doublet η, also odd under Z2, and the real triplet Ω, even

under Z2. The lepton and scalar sectors of the model, as well as the charge assignment

under SU(2)L, U(1)Y and Z2, are shown in table 1.

In this paper we will use the standard 2 × 2 matrix notation for the SU(2)L triplets,

which can (for vanishing hypercharge) be decomposed as

Σ =

(
Σ0
√

2
Σ+

Σ− −Σ0
√

2

)
, Ω =

(
Ω0
√

2
Ω+

Ω− −Ω0
√

2

)
. (2.1)

The most general SU(3)c × SU(2)L ×U(1)Y, Lorentz and Z2 invariant Yukawa La-

grangian is given by

− LY = Y αβ
e Lα φ eβ + Y α

N Lα η̃ N + Y α
Σ Lα η̃Σ + YΩ Σ ΩN + h.c. (2.2)

Here, gauge contractions are omitted for the sake of compactness, flavour indices α, β =

1, 2, 3 are indicated explicitly, and we denote η̃ = iσ2η
∗, as usual. The Σ and N fermions

are allowed to have Majorana mass terms,

− LM =
1

2
MΣ ΣcΣ +

1

2
MN N cN + h.c. (2.3)

Finally, the scalar potential of the model is given by

V = −m2
φφ
†φ+m2

ηη
†η +

λ1

2

(
φ†φ

)2
+
λ2

2

(
η†η
)2

+ λ3

(
φ†φ

)(
η†η
)

+λ4

(
φ†η
)(

η†φ
)

+
λ5

2

[(
φ†η
)2

+ h.c.

]
−
m2

Ω

2
Ω†Ω

+
λΩ

1

2

(
φ†φ

)(
Ω†Ω

)
+
λΩ

2

4
(Ω†Ω)2 +

λη

2

(
η†η
)(

Ω†Ω
)

+µ1 φ
†Ωφ+ µ2 η

†Ω η . (2.4)
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Before moving on to discussing theoretical constraints on the scalar potential, we note that

our notation for the Lagrangian in eqs. (2.2), (2.3), and (2.4) differs slightly from the one in

ref. [32] in two ways: (i) the scalar potential has been rewritten, removing some redundant

terms and renaming the remaining ones, and (ii) the normalisation of some couplings and

mass terms is different. Moreover, the triplets Σ and Ω also have a different normalisation,

as it is shown in the eq. (2.1).

2.1 Theoretical constraints

The couplings in the scalar potential in eq. (2.4) are subject to a number of constraints

originating solely from theoretical considerations to be outlined in this subsection. First,

we should ensure that the potential is bounded from below, as otherwise there is no stable

minimum around which a perturbative expansion is feasible. The second constraint origi-

nates from this expansion being perturbatively valid, i.e. that the scalar quartic couplings

in eq. (2.4) are . O(1).

In the Standard Model only a single condition is necessary and sufficient for the poten-

tial to be bounded from below, namely that the Higgs quartic coupling be positive, λ > 0.

Adding a second Higgs doublet complicates the situation: simple algebraic relations that

ensure the boundedness cannot be found unless further symmetry assumptions are made,

e.g. an additional Z2 parity under which the two doublets have different quantum numbers,

cf. refs. [33, 34].

Given that, in the present model, we have two scalar doublets and a triplet, finding

analytic criteria for the boundedness from below of the potential is rather involved. As

was noted before, the most general scalar potential allowed by the symmetries of the model

contains redundant terms that have been removed in eq. (2.4) by appropriate redefinitions

of the couplings λΩ
1 , λ

Ω
2 , λ

η. Consequently, the scalar potential is a function of the real and

positive field bilinears

h2
1 ≡ φ†φ, h2

2 ≡ η†η, h2
3 ≡ tr

[
Ω†Ω

]
. (2.5)

In addition, the mixed bilinear h2
12 = η†φ can be parametrised as h2

12 = |h1||h2|ρeiφ, with

|ρ| < 1 by virtue of the Cauchy-Schwarz inequality, 0 ≤
∣∣η†φ∣∣ ≤ |η||φ|.

Thus, one can write the condition of boundedness from below as

V4 =
(
h1

1, h
2
2, h

2
3

)
V4

 h2
1

h2
2

h2
3

 ≥ 0, (2.6)

in which the matrix of quartic couplings V4 is given by

V4 =
1

2

 λ1 λ3 + ρ2 (λ4 − |λ5|) 1
2λ

Ω
1

λ3 + ρ2 (λ4 − |λ5|) λ2
1
2λ

η

1
2λ

Ω
1

1
2λ

η 1
2λ

Ω
2

 . (2.7)

In this expression, the phases φ and arg(λ5) have been chosen such that the term propor-

tional to λ5 is minimal.1

1This term is given by 1
2

(
λ5h

4
12 + λ5

∗h4
12
∗)

= h2
1h

2
2ρ

2|λ5| cos(2φ+ arg(λ5)) ≥ −h2
1h

2
2ρ

2|λ5|.
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The condition xTV4x ≥ 0 for xi = h2
i ≥ 0 is known as co-positivity of the matrix V4,

which has been well described in ref. [35]. Using the approach outlined in this reference,

necessary and sufficient conditions for the scalar potential (2.4) to be bounded from below

can be obtained. In the case where λ4 + |λ5| ≥ 0, we can set ρ2 = 0 – the minimum of the

potential as a function of ρ2 – and in the opposite case, where λ4 + |λ5| < 0, we may fix

ρ2 = 1. This yields the conditions:

λ1 ≥ 0, λ2 ≥ 0, λΩ
2 ≥ 0, (2.8a)

λ3 +
√
λ1λ2 ≥ 0, λ345 +

√
λ1λ2 ≥ 0, (2.8b)

λΩ
1 +

√
2λ1λΩ

2 ≥ 0, λη +
√

2λ2λΩ
2 ≥ 0, (2.8c)

where we have used λ345 ≡ λ3 + λ4 − |λ5|. Finally, we have one more condition:√
2λ1λ2λΩ

2 + λ3

√
2λΩ

2 + λΩ
1

√
λ2 + λη

√
λ1+√(

λ3 +
√
λ1λ2

)(
λΩ

1 +
√

2λ1λΩ
2

)(
λη +

√
2λ2λΩ

2

)
≥ 0,

(2.8d)

where — as in eq. (2.8b) — we should replace λ3 7→ λ345 in case that λ4 + |λ5| < 0.

Finally, note that considering field configurations of components of φ, η, or Ω will

yield equivalent or redundant expressions to eqs. (2.8), because the h2
1,2,3 are all SU(2)L

invariant, as pointed out in ref. [35].2

2.2 Symmetry breaking

We will assume the following symmetry breaking pattern:

〈φ0〉 =
vφ√

2
, 〈Ω0〉 = vΩ , 〈η0〉 = 0 , (2.9)

with vφ, vΩ 6= 0. These vacuum expectation values (VEVs) are restricted by the tadpole

equations

tφ = −m2
φ vφ +

1

2
λ1v

3
φ +

1

2
λΩ

1 vφv
2
Ω −

1√
2
vφvΩ µ1 = 0 , (2.10)

tΩ = −m2
Ω vΩ + λΩ

2 v
3
Ω +

1

2
λΩ

1 v
2
φvΩ −

1

2
√

2
v2
φ µ1 = 0 , (2.11)

obtained from the scalar potential in eq. (2.4), i.e. ti ≡ ∂V
∂vi

is the tadpole of vi. Given the

non-trivial φ and Ω charges under SU(2)L, the vφ and vΩ VEVs contribute to the W and

Z masses,

m2
W =

1

4
g2
(
v2
φ + 4 v2

Ω

)
, (2.12)

m2
Z =

1

4

(
g2 + g′2

)
v2
φ . (2.13)

2Such an approach could be useful in a case where more “unphysical” parameters such as ρ appear in

the matrix V4, as e.g. a parameter that describes the interdependence of the (in this setting redundant)

operators tr
[(

Ω†Ω
)2]

and tr
[(

Ω†Ω
)]2

, cf. ref. [36]. However, in the present situation such interdependences

are absent.
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We estimate that vΩ cannot be larger than 4.5 GeV@3σ [1] in order to be compatible with

electroweak precision tests, in particular those coming from the measurement of the ρ

parameter.

Let us now comment on the scalar spectrum of the model. In the basis Re
(
φ0 , Ω0

)
the mass matrix for the Z2-even and CP-even neutral scalars is given by

M2
S =

(
−m2

φ + 3
2λ1v

2
φ + 1

2λ
Ω
1 v

2
Ω −

1√
2
vΩ µ1 λΩ

1 vφvΩ − 1√
2
vφ µ1

λΩ
1 vφvΩ − 1√

2
vφ µ1 −m2

Ω + 1
2λ

Ω
1 v

2
φ + 3λΩ

2 v
2
Ω

)
. (2.14)

The lightest of the S mass eigenstates, S1 ≡ h, is identified with the 125 GeV state recently

discovered at the LHC [4, 5]. Regarding the Z2-even charged scalars, their mass matrix in

the basis (φ± , Ω±) can be written as

M2
H± =

(
−m2

φ+ 1
2λ1v

2
φ+ 1

2λ
Ω
1 v

2
Ω+ 1√

2
vΩµ1+ 1

4g
2v2
φξW±

1√
2
vφµ1− 1

2g
2vφvΩξW±

1√
2
vφµ1− 1

2g
2vφvΩξW± −m2

Ω+ 1
2λ

Ω
1 v

2
φ+λΩ

2 v
2
Ω+g2v2

ΩξW±

)
.

(2.15)

Finally, we comment on the Z2-odd scalars η0,± states. First, we decompose the neutral

η0 field in terms of its CP-even and CP-odd components as

η0 =
1√
2

(
ηR + i ηI

)
. (2.16)

Due to the conservation of the Z2 symmetry, the ηR,I,± fields do not mix with the rest of

scalars. Their masses are given by

m2
ηR = m2

η +
1

2
(λ3 + λ4 + λ5) v2

φ +
1

2
ληv2

Ω −
1√
2
vΩ µ2 , (2.17)

m2
ηI = m2

η +
1

2
(λ3 + λ4 − λ5) v2

φ +
1

2
ληv2

Ω −
1√
2
vΩ µ2 , (2.18)

m2
η± = m2

η +
1

2
λ3v

2
φ +

1

2
ληv2

Ω +
1√
2
vΩ µ2 . (2.19)

We note that the mass difference m2
ηR
−m2

ηI
= λ5 v

2
φ is controlled by the λ5 coupling and

vanishes for λ5 = 0. In this limit lepton number is recovered making the neutrinos massless,

as shown below.

Finally, we emphasise that the vacuum in eq. (2.9) preserves the Z2 scotogenic parity.

This implies the existence of a stable neutral particle which can play the role of the Dark

Matter of the Universe.

2.3 Neutrino masses

The Z2-odd fields Σ0 and N get mixed by the Yukawa coupling YΩ and the triplet VEV,

vΩ. In the basis
(
Σ0, N

)
, their 2× 2 Majorana mass matrix takes the form

Mχ =

(
MΣ YΩvΩ

YΩvΩ MN

)
. (2.20)

– 6 –
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ν ν

φ0 φ0

η0 η0

χ χc

Figure 1. 1-loop neutrino mass in the singlet-triplet scotogenic model. Here η0 ≡
(
ηR, ηI

)
and

χ ≡ (χ1, χ2).

The mass eigenstates χ1,2 are obtained after rotating to the mass basis via the 2 × 2

orthogonal matrix V (α),(
χ1

χ2

)
=

(
cosα sinα

− sinα cosα

) (
Σ0

N

)
= V (α)

(
Σ0

N

)
, (2.21)

such that

tan(2α) =
2YΩvΩ

MΣ −MN
. (2.22)

The singlet-triplet scotogenic model generates neutrino masses at the 1-loop level, as

shown in figure 1. We emphasise that this figure actually includes four 1-loop diagrams,

since η0 ≡
(
ηR, ηI

)
and χ ≡ (χ1, χ2). The resulting neutrino mass matrix can be written as3

(Mν)αβ =
2∑

σ=1

(
ihασ√

2

)(
−ihβσ√

2

)[
I
(
M2
χσ ,m

2
ηR

)
− I

(
M2
χσ ,m

2
ηI

)]

=
2∑

σ=1

hασ hβσMχσ

2 (4π)2

m
2
ηR

ln

(
M2
χσ

m2
ηR

)
M2
χσ −m2

ηR
−
m2
ηI

ln

(
M2
χσ

m2
ηI

)
M2
χσ −m2

ηI

 , (2.23)

where h is a 3× 2 matrix defined as

h =


Y 1

Σ√
2
Y 1
N

Y 2
Σ√
2
Y 2
N

Y 3
Σ√
2
Y 3
N

 · V T (α) , (2.24)

and I(m2
1,m

2
2) is a Passarino-Veltman function evaluated in the limit of zero external

momentum. We note that m2
ηR

= m2
ηI

leads to vanishing neutrino masses due to an exact

cancellation between the ηR and ηI loops. This was indeed expected, since the special

3We include a factor of 1/2 that was missing in [32].
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µ [GeV]

0

0.2

0.4

0.6

0.8

1.0

1.2 λ1

λ2

λΩ
2

min(λ3 ,λ345) +
√
λ1λ2

λΩ
1 +

√
2λ1λΩ

2

λη +
√

2λ1λ
Ω
2

Eq. (8d)

104 106 108 1010 1012 1014 1016

µ [GeV]

0

100

200

300

400

m
R

[G
eV

]

µ
2 =

100
G

eV

µ2 =1000 GeV

µ2 =1000 GeV

λ
η

=
−

0.2

λ
η

=
+

0.2

λη =−0.2

λη = ±0.2

(MΣ , MN ) =(1.5, 1.0) TeV

(MΣ , MN ) =(1.5, 1.0) TeV

(MΣ , MN ) =(1.5, 5.0) TeV

Figure 2. Running of the combinations of scalar quartic couplings relevant for the potential to be

bounded from below (left panel) and of lightest inert scalar mass mR (right panel). Vertical dashed

lines are particle thresholds.

limit m2
ηR

= m2
ηI

is equivalent to λ5 = 0, in which case one can define a conserved lepton

number. As a consequence of this, the choice λ5 � 1 becomes natural in the sense of ’t

Hooft [37], since the limit λ5 → 0 enhances the symmetry of the model.

3 Numerical analysis

We now discuss the running of the model parameters numerically, where we closely follow

the approach of ref. [31]. The reader is referred to this reference concerning the techni-

cal details.

First, we would like to direct the readers attention to figure 2, where the running of

the conditions (2.8) (left panel) and the lightest inert scalar mass parameter (right panel)

is shown. The different colours in the right panel correspond to different values of fermion

masses as indicated in the plot, where a scalar triplet mass parameter m2
Ω = −(900 GeV)2

has been chosen. Here, a negative m2
Ω is required by virtue of the tadpole equation (2.11):

since we must have vΩ � vφ, either λΩ
1,2 need to be very large, making the setting non-

perturbative, or m2
Ω and/or µ1 must be negative to solve the tadpole equation. However,

applying the tadpole equations to the charged scalar mass matrix, we find that the physical

charged Higgs mass m2
H± ∼

µ1

vΩ
, and thus µ1 > 0 is required. Consequently, we need m2

Ω < 0

to realise large triplet masses. In addition, we have verified that the conditions (2.8) are

never violated for the examples shown. As an illustration, the left panel of figure 2 shows

the running of the bounded-from-below conditions, see eqs. (2.8), for one of the settings in

the right panel (solid green line).

It can be concluded from figure 2 that the situation is similar to the simplest scotogenic

model in the sense that, once the heavy fermions become dynamic (i.e., above the renor-

malisation scale µ ≥ MΣ/N ), the RGEs of the inert mass mR contain large and negative

terms that may eventually drive m2
R to negative values and induce Z2 breaking, cf. the last

two terms in eq. (A.24):

βm2
η
∼ −3ληm2

Ω + 3µ2
2 + 2

(
m2
η − 2|MN |2

)(
YNY

∗
N

)
+ 3
(
m2
η − 2|MΣ|2

)(
YΣY

∗
Σ

)
. (3.1)
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Figure 3. Parameter scan of the model for different ranges of λη.

Exactly that behaviour is the reflection of the parity problem in the singlet-triplet sco-

togenic model. However, there is a substantial difference with respect to the simplest

scotogenic scenario, namely the presence of a scalar triplet field Ω which can counteract

this effect. The interplay of fermion and scalar masses is manifest in the RGE (A.24),

where in addition to the (generically negative) fermionic contributions, there are other

contributions such as βm2
η
∼ −3ληm2

Ω. Depending on the sign of this contribution the

breaking of Z2 can occur at higher scales or can be evaded all together. This behaviour

can be clearly observed for the green curves in figure 2, but the effect is limited if λη is

restricted to magnitudes in the perturbative regime. More importantly, the dimensionful

triple scalar couplings µ1,2 yield potentially large and positive contributions to eq. (3.1).

The relevant term for the running of the inert scalar masses reads βm2
η
∼ +3µ2

2. For a

sufficiently large µ2, this contribution can outweigh that of the fermions N and Σ, such

that the scheme can remain consistent up to very high scales, as illustrated by the red

curve in figure 2. Note that even though we have increased µ2 significantly, the effect on

the physical mass is negligible. This is due to the fact that µ2 enters the relation for the

physical masses (2.17)–(2.19) multiplied by vΩ, which is forced to be very small. Finally, if

the fermionic contributions dominate, as for the blue curve with MN = 5 TeV, the scalar

contributions are practically irrelevant.

In order to better understand the impact of the running effects on the parameter space,

we show in figure 3 a parameter scan of the model in the mηR-mη± plane. To this end, we

have chosen to fix the following parameters:

MΣ = 1.5 TeV, MN = 2.0 TeV, λ2 = 0.2, λ5 = 10−9, YΩ = 0.3, (3.2)

while mφ, λ1, and µ1 are fixed by the tadpole equations for vΩ = 0.5 GeV, and the re-

quirement of finding a 125 GeV CP-even scalar in the spectrum, which is identified with

the Higgs boson. The Yukawa couplings YN and YΣ are chosen according to an adapted

Casas-Ibarra-parametrisation [38] for one massless generation of neutrinos. The remaining

– 9 –
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Figure 4. Parameter scan of the model for µ2 = 100 GeV and µ2 = 1 TeV.

parameters are varied in the following ranges generating a total of 50 000 points:

(100 GeV)2 ≤ m2
η ≤ (1500 GeV)2, −(1500 GeV)2 ≤ m2

Ω ≤ −(500 GeV)2,

−1 ≤ λ3, λ4, λ
Ω
1 ≤ 1, 0 ≤ λΩ

2 ≤ 1, 0 ≤ µ2 ≤ 100 GeV.

For this set of parameters, the resulting Yukawa couplings are of the order of ∼ 10−1.

The range of λη has been chosen differently for the left and right panels of figure 3, as

given above each figure. We terminate the running at a scale Λ = 1016 GeV, motivated by

theories of grand unification. However, this is a merely practical choice and just as good

as any other high scale, since no gauge coupling unification is required in this model. Any

parameter point that runs up to this scale is considered valid and marked as a green point.

Parameter combinations violating the bounded from below conditions (2.8) or perturba-

tivity are excluded from the plot. The remaining points indicate the breaking of Z2 and

the corresponding scale at which the breaking occurs is displayed with a colour scale.

Quite generally, we see from figure 3 that the Z2 breaking scale rises with the inert

masses, as expected. However, due to the large parameter space, the variation of the

breaking scale for a given combination of masses is sizeable. Most notably, we see that, if

λη > 0, we are able to find many viable settings for almost all values of the masses mηR

and mη± . In contrast, restricting λη to negative values no viable setting is found. The

reason for this is that the breaking scale of Z2 is now generally lowered by the scalar triplet

contribution to the running of m2
η, as highlighted in figure 2.

Similarly, glancing at figure 4 where we keep µ2 fixed and vary −1 ≤ λη ≤ 1 at the input

scale, one observes that the impact of very large µ2 is as anticipated. For µ2 = 100 GeV

(left panel), Z2 breaking occurs for most of the points with inert scalar masses . 500 GeV.

However, for µ2 = 1 TeV most of the points turn out to be valid, even for such low scalar

masses.4 Simultaneously, the overall scalar mass scale is unchanged due to µ2 entering the

physical masses suppressed by the small triplet VEV.

4The choice µ2 = 1 TeV is in fact quite natural, given that the RGE (A.22) contains the fermion masses

MΣ/N . We also note that large trilinear couplings are known to destabilize the scalar potential due to

their negative contributions to loop induced quartic scalar couplings. However, using the results of [39] we

estimate that µ2 = 1 TeV is a safe choice given the mass scales typically considered in our paper.
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In conclusion, the coupling λη in combination with the mass scale of the scalar triplet,

and the dimensionful scalar coupling µ2 may counteract the typical fermionic corrections

to the inert scalar masses. Thus, they are the crucial ingredients that can naturally save

the model from running into inconsistencies due to the breaking of the parity symmetry

and provide a motivation for the presence of additional bosonic degrees of freedom in

scotogenic-type models.

4 Summary and discussion

In this paper we have re-visited the scotogenic scenario, as it provides a common approach

to the Dark Matter and neutrino mass generation problems, in which the same symmetry

that stabilises Dark Matter also ensures the radiative seesaw origin of neutrino mass. We

have carefully considered the behaviour of the required Z2 symmetry. In contrast to the

simplest scenario, we have shown how the spontaneous breaking of Z2 can be naturally

avoided in the singlet-triplet extension of the simplest model, up to fairly large energy

scales, thanks to the presence of scalar triplets neutral under the Z2 which affect the

evolution of the couplings in the scalar sector.

The singlet-triplet scotogenic model has a rich phenomenology and can be tested in

several experimental fronts. For instance, scenarios with light scotogenic states and sizable

Yukawa couplings lead to observable lepton flavor violating (LFV) processes in the next

round of experiments [40]. In this case, bounds from LFV searches set strong constraints,

to be added to those discussed in this paper. We note, however, that the LFV observ-

ables with the most stringent bounds, such as µ → eγ, can be suppressed with specific

parameter choices.

Finally, the scenario also offers good prospects for direct WIMP Dark Matter detection

in nuclear recoil experiments, in ways quite analogous to supersymmetric Dark Matter sta-

bilised by R-parity conservation. As shown in [32], the introduction of the Ω scalar triplet

not only lowers the required dark matter masses (as compared to the pure singlet or triplet

scotogenic models) due to the N − Σ0 mixing that enhances coannihilation processes, but

also allows for dark matter direct detection via tree-level scalar exchange. As a consequence

of this, the singlet-triplet scotogenic model produces direct detection cross-sections large

enough to be observed in future experiments such as XENON1T.

A Renormalisation group equations

The β function of the parameter c, βc, is defined by means of the renormalisation group

equation
dc

dt
= βc =

∑
n

1

(16π2)n
β(n)
c , (A.1)

where t = log µ, µ being the energy scale, and β
(n)
c is the n-loop β function. In this paper,

we used SARAH [41, 42] to compute the β functions of all parameters in Rξ gauge at the

1-loop level. We summarise our results here. Notice that we drop the superindex (1) for

the sake of clarity.
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A.1 Gauge couplings
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A.3 Yukawa couplings
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A.4 Fermion mass terms
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A.5 Trilinear scalar couplings
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A.6 Scalar mass terms
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