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Abstract

Background: Chow and Liu showed that the maximum likelihood tree for multivariate discrete distributions may
be found using a maximum weight spanning tree algorithm, for example Kruskal’s algorithm. The efficiency of the
algorithm makes it tractable for high-dimensional problems.

Results: We extend Chow and Liu’s approach in two ways: first, to find the forest optimizing a penalized likelihood
criterion, for example AIC or BIC, and second, to handle data with both discrete and Gaussian variables. We apply
the approach to three datasets: two from gene expression studies and the third from a genetics of gene
expression study. The minimal BIC forest supplements a conventional analysis of differential expression by
providing a tentative network for the differentially expressed genes. In the genetics of gene expression context the
method identifies a network approximating the joint distribution of the DNA markers and the gene expression
levels.

Conclusions: The approach is generally useful as a preliminary step towards understanding the overall
dependence structure of high-dimensional discrete and/or continuous data. Trees and forests are unrealistically
simple models for biological systems, but can provide useful insights. Uses include the following: identification of
distinct connected components, which can be analysed separately (dimension reduction); identification of
neighbourhoods for more detailed analyses; as initial models for search algorithms with a larger search space, for
example decomposable models or Bayesian networks; and identification of interesting features, such as hub nodes.

Background
Recent years have seen intense interest in representing
complex biological systems as networks, and a new
research discipline, network biology, has arisen. In parti-
cular, Markov networks and Bayesian networks have
been applied in many domains [1-3]. The former are
based on undirected graphs, and the latter on DAGs
(directed acyclic graphs). A key challenge in deriving
such networks from the high-dimensional data typical of
the genomics era is computational efficiency: model
selection algorithms that perform well for small or mod-
erate dimensions may be intractable for high dimen-
sions. The approach of Chow and Liu [4], which
predates much of the development of probabilistic gra-
phical models, is particularly efficient, being quadratic in
the number of variables.

The Chow-Liu algorithm
Suppose that we have a dataset with N observations of p
discrete random variables X = (Xv)v�Δ. We call the possi-
ble values a discrete variable may take its levels, and
label these 1,...|Xv|, so that |Xv| is the number of levels
of Xv. We write a generic observation (or cell) as x =
(x1,..., xp), and the set of possible cells as c. We assume
that the observations are independent and are interested
in modelling the probabilities p(x) = Pr(X = x) for x � c.
Suppose also that the cell probabilities factorize

according to a tree, that is, a connected acyclic graph,
written  = (X, E) where X is the vertex set and E the
set of edges. That is to say, the cell probabilities can be
written p(x) = ∏e�Ege(x) for functions ge(x) that only
depend on the variables in e. So when e = (Xu, Xv), ge(x)
is a function of xu and xv only. Chow and Liu [4]
showed that the cell probabilities take the form
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where dv is the degree of v, that is, the number of
edges incident to v. Hence up to a constant the maxi-
mized log-likelihood is ∑(u, v)�EIu, v, where Iu, v is given
by
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n(xu, xv) being the number of observations with Xu =

xu and Xv = xv. The quantity Iu, v is called the mutual
information. It follows that if we use the Iu, v as edge
weights on the complete graph with vertex set X, and
apply a maximum spanning tree algorithm, we obtain
the maximum likelihood tree.
In statistical terms, Iu, v is one half of the usual likeli-

hood ratio test statistic for marginal independence of Xu

and Xv, that is G2 = -2 ln Q = 2Iu, v, calculated using
the table of counts {n(xu, xv)} formed by cross-tabulating
Xu and Xv. Under marginal independence G2 has an
asymptotic ( )k

2 distribution, where k = (|Xu| - 1)(|Xv| -
1). The degrees of freedom k is the number of additional
free parameters required under the alternative hypoth-
esis, compared with the null hypothesis.
A very similar exposition can be given for multivariate

Gaussian data: here the sample mutual information is

I Nu v u v, ,ln( )/ ,  1 22

where ˆ ,u v is the sample correlation between Xu and
Xv. As before the likelihood ratio test statistic G2 = -2 ln
Q = 2Iu, v. Under marginal independence G2 has a ( )1

2

distribution.
Algorithms to find the maximum weight spanning tree

of a arbitrary undirected connected graph  with posi-
tive edge weights have been studied thoroughly. The fol-
lowing simple and efficient algorithm is due to Kruskal
[5]. Starting with the null graph, repeat this step: among
the edges not yet chosen, add the edge with the largest
weight that does not form a cycle with the ones already
chosen. When p - 1 edges have been added, the maxi-
mum weight spanning tree of  has been found. The
algorithm can be implemented to run in O(p2 ln p)
time.
As mentioned above,  is here taken to be the com-

plete graph on X with edge weights given by {Iu, v}u, v�X.

In practice the task of calculating these p(p - 1)/2 edge
weights dominates the time usage, so the complexity of
the Chow-Liu algorithm may be taken to be O(p2).
Methods to improve computational efficiency have been
described [6,7].
Chow and Liu’s approach has been extended to more

general classes of graphs than trees: to thin junction
trees [8]; to polytrees [9]; to bounded tree-width net-
works [10], and to mixtures of trees [11]. The approach
has also been extended to tree-based models for Gaus-
sian processes [12] and discrete-valued time series [13].
The consistency of the algorithm has been shown [14].

Results and Discussion
Extension to minimal AIC/BIC forests
A disadvantage with selecting a tree based on maximum
likelihood is that it will always include the maximum
number of edges, irrespective of whether the data sup-
port this or not. It is desirable to take account of the
number of model parameters in some fashion. In the
machine learning literature it is customary to penalize
the likelihood using the minimum description length
principle [15], whereas in the statistical literature the
use of information criteria is well-established, particu-
larly AIC (the Akaike information criterion [16]) and
BIC (the Bayesian information criterion [17]). The for-
mer is defined as -2 ln L + 2r, where L is the maximized
likelihood under the model and r is the number of para-
meters in the model, and the latter as -2 ln L + ln(N)r.
Discussions of the relative merits of these criteria are
available [18] and need not be repeated here.
First, suppose that Kruskal’s algorithm is applied using

penalized mutual information quantities Iu v
AIC
, = Iu, v -

ku, v or Iu v
BIC
, = Iu, v - ln(N)ku, v/2, where ku, v is the

degrees of freedom associated with Iu, v, as described
above. Then it is easily seen that the tree with the mini-
mum AIC or BIC is obtained. Note that for Gaussian
data this will be identical to the maximum likelihood
tree, since all edges have the same degrees of freedom.
For discrete data with varying numbers of levels, the
maximum likelihood tree and the minimal AIC/BIC tree
will generally differ.
Second, given a graph  = (V, E) with both positive

and negative edge weights, consider the problem of find-
ing the maximum weight forest, that is, the acyclic sub-
graph on vertex set V with maximum weight. Let 
be the graph derived from  by omitting all edges
with negative weights. For any forest with vertex set V,
removing all edges with negative weights would increase
the total weight and not introduce any cycles. It follows
that we can construct the maximum weight forest by
finding the maximum weight spanning tree for each
connected component of  . We can do this simply by
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applying Kruskal’s algorithm to  : it is not necessary
to find the connected components explicitly.
So it is easy to find the minimal AIC or BIC forest by

using penalized mutual information quantities as
weights. This approach is attractive with high-dimen-
sional data, since if the selected forest does consist of
multiple connected components these may then be ana-
lyzed separately – allowing a dimension reduction. We
show below that the connected components of the mini-
mal AIC/BIC forest are also connected components of
the minimal AIC/BIC decomposable model, providing
further justification for this procedure.
That using penalized likelihood with the Chow-Liu

algorithm leads to forests rather than trees appears to
be known in the machine learning literature [19]; also,
[20] finds the Bayesian MAP tree/forest in a similar
way, but we have found no published references in the
computational biology or statistics research literatures.
We believe that it is a useful method that deserves to be
far more widely known.
A numerical illustration
Here we compare application of the algorithms to some
simulated data involving three discrete random vari-
ables, Xa, Xb and Xc with 2, 5, and 5 levels respectively,
and whose joint distribution is given by

Pr( , , ) Pr( )Pr( | )Pr( | )x x x x x x x xa b c a b a c a

where Pr(xa) = (0.5, 0.5)’,
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Note that Xa and Xb are strongly associated but there
is weak or no association between Xa and Xc.
Figure 1 shows the corresponding independence graphs:

in case (i), 1 , and in case (ii), 2 . A random dataset with
500 observations was drawn from each of the joint distri-
butions and the algorithms applied. This was repeated
1000 times. The results are shown in Table 1.

In case (i), the ML tree algorithm incorrectly identifies
3 about 17% of time; otherwise it correctly identifies
1 . Penalizing with AIC or BIC increases the success
frequencies to almost 100%. In case (ii) the true model
2 is a forest rather than a tree, so the ML tree algo-
rithm cannot select it. Note that it almost always selects
3 : since 2Ib, c~ ( )16

2 and 2Ia, c ~ ( )4
2 , the former is

almost always greater than the latter. Penalizing using
AIC and BIC increases the success frequencies to 90%
and 100%, respectively. For insight into the relative per-
formance of AIC and BIC in this example, see [18].
Extension to mixed discrete and Gaussian data
The second extension we consider is to data with both
discrete and Gaussian variables. Our approach uses the
class of undirected mixed graphical models [21-23].
Consider a data set with N observations of p discrete
random variables X = (X1,... Xp), and q continuous ran-
dom variables Y = (Y1,... Yq). The models are based on
the conditional Gaussian distribution, that is to say, the
conditional distribution of Y given X = x is multivariate
Gaussian with mean, and possibly also variance, depend-
ing on x. Models in which the variance depends on x
are termed heterogenous, otherwise, they are called
homogeneous.
Tree (or forest) dependence models can be defined as

mixed graphical models whose independence graphs are
trees (or forests). But since their likelihood functions do
not in general factorize according to (2) the theory does
not carry through directly. To obtain the analogous fac-
torization, we restrict attention to those models that
have explicit maximum likelihood estimates, the so-
called strongly decomposable models [21,22,24]. These
are easily characterized. A mixed graphical model is
strongly decomposable if and only if it is triangulated
(that is, contains no chordless cycles of length greater or
equal to four) and contains no forbidden paths [22]. See
Figure 2.

Figure 1 Graphs connected with the simulations. Data were simulated from 1 , in case (i), and from 2 , in case (ii). The third graph 3 is
sometimes selected by the algorithms.

Table 1 Simulation Results

Case (i) Case (ii)
Algorithm 1 2 3 1 2 3
ML tree 826 0 174 5 0 995

min AIC forest 1000 0 0 94 897 9

min BIC forest 995 5 0 0 1000 0
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A forbidden path is a path between two non-adjacent
discrete vertices passing through continuous vertices.
Since trees and forests are acyclic, they are triangulated,
and since they contain at most one path between any
two vertices, we can simplify the criterion as follows: A
tree or forest dependence model is strongly decomposa-
ble if and only if it contains no path between discrete
vertices passing through continuous vertices. We call
such a tree (or forest) an SD-tree (or SD-forest). In an
SD-tree the discrete vertices induce a connected
subgraph.
To apply the algorithm we need to derive the mutual

information between a discrete variable Xu and a contin-
uous variable Yv. The marginal model is a simple
ANOVA model (section 4.1.7 of [21]). Let s0 = ∑k(y

(k) -
y )2/N, and write the sample cell counts, means and var-

iances as { , , } ...| |n y si i i i Xu1 . In the homogeneous case,

the mutual information is Iu, v = N ln(s0/s)/2, where

s n s Ni ii Xu
  /

,...| |1 . There are k = |Xu| - 1 degrees of

freedom. In the heterogeneous case, the mutual infor-

mation is Iu, v = N ln(s0)/2 - n si ii X s
ln( ) /

,...| |
2

1 , with

k = 2(|Xu| - 1) degrees of freedom. The expressions
given here assume that all parameters are estimable:
when this is not so, they need to be modified slightly,
but we omit the details.
We also need to modify Kruskal’s algorithm. As before

an undirected graph  with positive weights is given.
Starting with the null graph, we repeatedly add the edge
with the largest weight that does not form a cycle or a
forbidden path. It is shown below that this returns the
maximum weight SD-forest.
About the forbidden path restriction
We describe here a perspective on the forbidden path
restriction that gives useful insight. Graphical models
encode sets of conditional independence relations, and if
two graphical models encode the same set of conditional
independence relations they are termed Markov

equivalent [25,26]. For example, each graph in Figure 3
represents the conditional independence of Xa and Xc

given Xb. Sample data from the joint distribution of Xa,
Xb and Xc supply information on which conditional
independence relations hold and which do not, but can-
not distinguish between the four graphs. To do this
would require intervention in the system, for example
by perturbing Xa to see whether the distribution of Xb is
altered. For this reason algorithms to identify Bayesian
networks from sample data [27,28] can only do this up
to Markov equivalence.
The DAGs that are Markov equivalent to a given tree

comprise a Markov equivalence class. As illustrated in
Figure 4, they are easily found. Labelling a node (Xr,
say) as a root and orienting all edges away from the
root, induces a single-parent DAG, that is, one in which
all nodes have at most one parent. Any node can be
chosen as root. Under such a DAG, the joint distribu-
tion factorizes into

p x x x pa xr u u

u r

( ) Pr( ) Pr( | ( )),



where pa(xu) denotes the parents (here, parent) of xu
in the DAG. Models corresponding to the DAG are
constructed by specifying a marginal distribution Pr(xr)
and a series of conditional models for Pr(xu|pa(xu)).
First consider the pure case, that is, when all vari-

ables are either discrete or continuous. In the discrete
case, we can construct a model for the DAG by speci-
fying a multinomial distribution for Xr and arrays of
transition probabilities for the conditional models. In
the continuous case, Xr is Gaussian and the conditional
models are simple linear regressions. When Xu and Xv

are both discrete or both continuous, the mutual infor-
mation Iu, v is symmetric, and is consistent with the
conditional models for both Pr(xv|xu) and Pr(xu|xv). It
follows that a DAG model in the Markov equivalence
class is essentially a reparametrization of the tree
model, and so has the same maximized likelihood and

Figure 2 Three undirected graphs. Graph (i) is triangulated, that is, contains no chordless cycles of length four or greater. Graph (ii) is not
triangulated, since it contains a chordless cycle of length four. Graph (iii) contains both discrete nodes (dots) and continuous nodes (circles). It is
triangulated and contains a forbidden path.
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penalized likelihood scores. So in the pure case the
algorithm identifies a Markov equivalence class of
DAGs, just like other Bayesian network selection algo-
rithms. Note that the search space is restricted to sin-
gle-parent DAGs.
In the mixed case, however, the mutual information

between a discrete Xu and a continuous Xv is asym-
metric, and corresponds to an ANOVA-type conditional
model for Pr(xv|xu) but not for Pr(xu|xv). So a DAG
model in the Markov equivalence class is a reparametri-
zation of the tree model only if the DAG contains no
edges pointing from continuous to discrete nodes. If the
tree has a forbidden path, no such DAG will exist: see
for example Figure 2(iii). If the tree has no forbidden
paths, then a DAG generated in the above way will have
this property if and only if its root is discrete. So in the
mixed case the algorithm identifies a subset of a Markov
equivalence class of DAGs, those generated using dis-
crete roots. That only a subset is identified is due to a
limitation of the model apparatus, not to any evidence
in the data. The limitation is unproblematic provided
that the discrete variables are prior to the continuous
variables.
All this has two broad implications. The first is that,

when interpreted causally, the tree and forest models
allow at most one determinant of each variable. The
second is that the approach implicitly assumes that dis-
crete variables are prior to continuous ones.

A marginality property
In some cases the global optimality of the selected
model holds under marginalization. The following result
is shown below in the methods section. Suppose that 
is the maximum likelihood tree (or minimal AIC or BIC
forest) for a variable set V and let the connected compo-
nents of  be C1,... Ck, say. Then A (the marginal
subgraph induced by A ⊆ V) is the maximum likelihood
tree (respectively, minimal AIC or BIC forest) for the
variable set A provided that A Ci is connected, for
each component Ci.
For example, consider a genetics of gene expression

study involving a set of discrete DNA markers Δ and a
set of continuous gene expression variables Γ. A central
tenet is that DNA can affect gene expression but not
vice versa. Suppose that the minimal AIC/BIC forest for
V = (Δ, Γ) is  . The forbidden path restriction implies
that for each connected component Ci of  , Ci

is
connected. Hence  is the minimal AIC/BIC forest for
the discrete data alone. It follows that  can be
regarded as a chain graph model [22] with two blocks,
Δ and Γ, with Δ prior to Γ, consistent with the tenet.
Some applications of the algorithm
We show the results of applying the algorithm to three
datasets.
Study of leucine-responsive protein (Lrp) in E. coli
The first dataset stems from a previously reported gene
expression study [29]. The stated purpose of this was to

Figure 3 Markov equivalence. The first three graphs are DAGs, the fourth is undirected. All four graphs represent the same conditional
independence relation: that Xa and Xc are conditionally independent given Xb. They are called Markov equivalent.

Figure 4 A tree and a rooted tree. Specifying a root generates a single-parent DAG.
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identify the network of genes that are differentially regu-
lated by the global E. coli transcription factor, leucine-
responsive regulatory protein (Lrp), during steady state
growth in a glucose supplemented minimal salts med-
ium. Lrp has been reported to affect the expression of
approximately 236 genes [30]. Gene expression in two
E. coli bacteria strains, labelled lrp+ and lrp-, were com-
pared using eight Affymetrix ecoli chips. The lrp+ strain
is the control or wild type, and the lrp- strain is the
experimental type, with the Lrp gene knocked-out. Four
chips were hybridized with RNA from the lrp+ strain,
and four chips with RNA from the lrp- strain. The raw
data were preprocessed using standard methods and the
algorithm applied to the derived data. The dataset had
N = 8 observations and 7313 variables, comprising 7312
continuous variables (the log-transformed gene expres-
sion values) and one discrete variable, strain.
Our implementation of the algorithm (see below) took

about 2 minutes on a laptop running Windows XP to
find the minimal BIC forest. This is too large to display
here, so instead we examine an interesting subgraph.
Figure 5 shows the radius eight neighbourhood of

strain, that is to say the subgraph of vertices whose path
length from strain is less than or equal to 8. There are
three variables adjacent to strain. The short arm links to
the knockout gene itself via an intergenic region (IG)
tRNA gene. This arm just reflects the marked downre-
gulation of Lrp in the knockout strain. The other two
arms suggest that Lrp targets just two genes, serA and
gltD. It is instructive to compare Figure 4 with a con-
ventional analysis of differential expression using the
limma library [31]. If a false discovery rate of 0.2 is
used, 40 genes are flagged as possibly differentially regu-
lated. Although the two analysis approaches are very dif-
ferent – limma is based on gene-by-gene hypothesis
testing, and is concerned with the operating characteris-
tics of this, while the present approach is based on
approximating the joint distribution of the entire vari-
able set – the results are broadly consistent. Of the 40
genes identified by the limma analysis, 35 have a path
length less or equal to 8 to strain in the minimum BIC
forest, and so appear in Figure 5. The remaining 5
genes, however, are very distant from strain, with path
lengths ranging from 59 to 81. This could suggest that
their apparent regulation by Lrp is spurious.
The regulatory system of E. coli has been well-studied,

and it is interesting to note that other studies confirm
that serA and gltD are targets of Lrp [30,32]. Indeed,
Lrp has many targets: 138 Lrp-binding sites have been
identified [30], so it is certainly not true that Lrp only
targets serA and gltD. We have not been able to find
other reports that the five distant genes – ndk, pnt,
ptsG, nupG and atpG – should be directly or indirectly
regulated by Lrp.

The minimal BIC forest provides a provisional causal
model for the effect of Lrp, and in this sense more
directly addresses the stated goal of the study than a
conventional analysis of differential expression. How-
ever, given the small number of observations in the
study, it is clear that the network identification and any
interpretations based on this are highly uncertain.
Gene expression profiling in breast cancer patients
The second dataset comes from another gene expression
study [33], whose purpose was to compare the gene
expression profiles in tumours taken from two groups of
breast cancer patient, those with and those without a
mutation in the p53 tumour suppression gene. A dataset
containing a subset of the study data is supplied along
with the R library gRbase. The dataset has N = 250
observations and 1001 variables, comprising 1000 con-
tinuous variables (the log-transformed gene expression
values) and the class variable. There are 58 cases (with a
p53 mutation) and 192 controls (without the mutation).
The gene expression variables were filtered from a larger
set, and all exhibit differential expression between the
two groups. They have been standardized to zero mean
and unit variance, but since the mixed graphical models
used here are location and scale invariant, this does not
affect the analysis.
The algorithm took about 18 seconds to find the

minimal BIC forest. Figure 6 shows the radius seven
neighbourhood of the class variable. The graph suggests
that the effect of the p53 mutation on the gene expres-
sion profile is mediated by its effect on the expression
of a gene with column number 108. This gene is
CDC20, a gene involved in cell division. To examine
this hypothesis more critically we could apply a richer
class of models to this neighbourhood of genes, but that
would take us outside the scope of this paper. Figure 6
also shows some apparent hub nodes, including 209
(GPR19), 329 (BUB1), 213 (CENPA), 554 (C10orf3) and
739 (CDCA5), that appear to play a key role in the sys-
tem. See table 2 of [33] for further information on p53 -
associated genes.
Genetics of gene expression using HapMap data
The third dataset comes from a large multinational pro-
ject to study human genetic variation, the HapMap pro-
ject http://www.hapmap.org/. The dataset concerns a
sample of 90 Utah residents with northern and western
European ancestry, the so-called CEU population, and
contains information on genetic variants and gene
expression values for this sample. The subjects are not
unrelated (they comprise parent-sibling trios), but the
analysis ignores this. The genetic variants are SNPs (sin-
gle nucleotide polymorphisms). Datasets containing both
genomic and gene expression data enable study of the
the genetic basis for differences in gene expression. This
dataset is supplied along with the R library GGtools.
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For illustrative purposes, the first 300 polymorphic
SNPs and 300 gene expression values are here used in
the analysis. If non-polymorphic SNPs were included,
they would appear as isolated vertices in the SD-forest,
but it is more efficient to exclude them beforehand. As
may be characteristic for SNP data, there are many ties
in the mutual information quantities, so there may be
multiple SD-forests with minimal BIC. The algorithm
took about 2 seconds to find the one shown in Figure 7
below.
The main component of the SD-forest consists of a

large connected block of SNPs, attached to most of the

gene expression nodes via SNP number 87 at the bot-
tom of the figure. There are also 30 or so gene expres-
sion nodes adjacent to the SNPs as singletons, and a
component of nine gene expression variables connected
to SNP number 54 in the centre of the graph. SNP
number 130 is possibly a gene expression hotspot and
there are several potential hub nodes among the gene
expression values.
The SD-forest does not allow study of the joint effect

of SNPs on gene expression values since, as we have
seen, in trees and forests variables may have most one
determinant. The minimal BIC forest obtained can be

Figure 5 The radius eight neighbourhood of strainin the minimal BIC forest for the E. coli data. The class variable strain is shown as a red
circle, and genes that are among the 40 top ranked in the limma analysis are shown as green circles.

Edwards et al. BMC Bioinformatics 2010, 11:18
http://www.biomedcentral.com/1471-2105/11/18

Page 7 of 13



regarded as a special case of a chain graph model with
two blocks, with the SNP data in the first block and
transcript abundance data in the second block, as men-
tioned above. This framework would be well-suited for
further analysis of the data, allowing study of the joint
action of SNPs on gene expression values.

Discussion
Deriving networks from high-dimensional data is a key
challenge in many disciplines, and many different
approaches have been proposed: for example, using

approximation techniques [34] or low-order conditional
independence tests [35,36]. One broad approach is to
consider restricted classes of graphs, for example trian-
gulated graphs [37], interval graphs [38] and others
mentioned above, for which faster algorithms can be
applied. The Chow-Liu algorithm falls into this class. Its
utility is due to its remarkable computational efficiency,
which reflects the simplicity of the graphs used. At the
other end of the spectrum, it has been shown that
selecting general Bayesian networks by maximizing a
score function is NP-hard [39].

Figure 6 The radius seven neighbourhood of the class variable in the minimal BIC forest for the breast cancer data. The class variable is
shown as a black circle.
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In this paper we have described some simple exten-
sions to Chow and Liu’s method that enable forests with
minimal AIC or BIC to be found, and allow datasets
with both discrete and Gaussian variables to be handled.
In the previous section we demonstrated that useful
insights into various high-dimensional datasets may be
obtained by this method.
Trees and forests are too simple to be realistic models

of complex biological systems. Nevertheless we believe
that they can give a preliminary understanding of the
overall dependence structure, and can be put to a num-
ber of practical uses.
Firstly, we can use the selected model as a start model

in a search algorithm based on richer, but more compu-
tationally demanding, model classes. Since trees are

triangulated, the class of (strongly) decomposable mod-
els is a natural choice for high-dimensional data. As
described above, trees and forests represent Markov
equivalence classes of DAGs, so the minimal AIC/BIC
forest can also be used as start model in Bayesian net-
work search procedures.
Secondly, we can regard properties of the selected

model as proxies for corresponding properties of the
true, underlying network. Properties that can be used in
this way include connectivity, path length and degree.
Provided we can assume that the data are generated by
a joint undirected model, we can model the connected
components of the selected forest separately. This may
allow substantial dimension reduction. It is natural to
use the selected forest to identify neighborhoods of

Figure 7 The minimal BIC forest for the HapMap data. There are five connected components: the main component has 594 nodes, there is
one with three nodes and there are three isolated nodes.

Edwards et al. BMC Bioinformatics 2010, 11:18
http://www.biomedcentral.com/1471-2105/11/18

Page 9 of 13



interesting variables for more detailed analysis: in effect,
this uses path length in the forest as a proxy for mini-
mum path length in the unknown true network. Simi-
larly, we can identify interesting features such as hub
nodes – nodes of high degree – that may play a special
role in the true network.
Recently there has been interest in network motifs –

patterns of interconnections between small numbers of
nodes that occur significantly more often than could be
expected by chance [40]. For a review of motif discovery
algorithms, see [41]. Many of these motifs, such as the
feed-forward or bi-parallel motifs, will not appear in
trees due to the single-parent restriction discussed
above. For this reason trees and forests appear to be too
restrictive for motif discovery.
As pointed out by a referee, there are some similarities

between the Chow-Liu algorithm and the ARACNE
algorithm [42]. Like the Chow-Liu algorithm, this algo-
rithm initially computes the mutual information quanti-
ties Iu, v for all node pairs (although ARACNE uses the
Gaussian kernel method of [43]). It forms an initial
graph 0 by including all edges for which the Iu , v

exceeds a given threshold. The data-processing inequal-
ity states that if Xu and Xw are conditionally indepen-
dent given Xv, then Iu, w < min(Iu, v, Iv, w). This is used
to prune all complete triplets in 0 , that is, all triplets
Xu, Xv, Xw with all three edges present in 0 , by remov-
ing the edge with the least mutual information. Since
the condition given in the data-processing inequality is
sufficient but not necessary, that the inequality holds
does not imply that the condition is true, and the
authors acknowledge that the process may incorrectly
remove edges.
Nevertheless the heuristic is reported to perform well

when the true graph is a tree or is tree-like [42].
Although mixed graphical models have been studied

for some time [21-23], their adoption by the machine
learning community seems to have been limited. As illu-
strated above, some natural application areas include
comparative microarray studies, to model the effect of
an intervention or class variable on gene expression, and
genetics of gene expression studies, involving both dis-
crete DNA markers (SNPs) and continuous responses
(gene expression values). In both cases the discrete vari-
ables are clearly prior to the continuous variables. The
conditional Gaussian assumption is a distributional
assumption that is not necessarily fulfilled for all contin-
uous variables; but log-transformed gene expression
values have been found to be approximately Gaussian,
and this assumption provides the basis for conventional
analyses of differential expression.
An attractive aspect of the algorithm is that it allows

different measures of mutual information to be used –
for example, measures based on specific genetic models.

However, we consider it a key advantage of the models
described here that they are embedded in a broader
class of models for more general dependence structures,
which provides an inferential framework for systematic
model diagnostics and development.

Conclusion
The approach is generally useful as a preliminary step
towards understanding the overall dependence structure
of high-dimensional discrete and/or continuous data.
Trees and forests are unrealistically simple models for
biological systems, but can nevertheless provide useful
insights. In microarray studies the method supplements
lists of differentially regulated genes, by suggesting a
possible network of interrelationsships between these.
Other uses include the following: identification of dis-
tinct connected components, which can be analysed
separately (dimension reduction); identification of neigh-
bourhoods for more detailed analyses; as initial models
for search algorithms with a larger search space, for
example decomposable models or Bayesian networks;
and identification of interesting features, such as hub
nodes.

Methods
Modifying Kruskal’s algorithm to find the maximum
weight spanning SD-forest
We take as given an undirected graph  = (V, E )
with positive edge weights, whose vertices are marked as
either discrete and or continuous. We assume that the
weights are distinct so that there is a unique spanning
SD-forest with maximum weight. We consider the fol-
lowing modification of Kruskal’s algorithm.
Starting with the null graph, repeatedly add the edge

with the largest weight that does not form a cycle or a
forbidden path. We claim that this finds the maximum
weight SD-forest.
To prove this, let T = (V, ET) be the maximum weight

spanning SD-forest, and let the edges chosen by the
algorithm be a1 ... ak. Let Ai = (V, Ei) be the SD-forest
consisting of edges a1 ... ai, so that Ei = ∪1≤j≤i{aj}. Sup-
pose that T ≠ Ak. Then either or both of (i) Ek ⊈ ET and
(ii) ET ⊈ Ek must hold.
Suppose that (i) holds, and let ai be the first edge of

Ak which is not in ET. The addition of ai to T must
result in a cycle or a forbidden path. Let ai = (u, v) and
let the connected components (trees) of T containing u
and v be Su and Sv.
Suppose first that Su ≠ Sv. Addition of an edge

between distinct components cannot create a cycle, but
may create a forbidden path. Addition of an edge
between discrete vertices cannot create a forbidden
path, so one or both of u and v must be continuous.
Suppose that u is discrete and v is continuous. Then (V,
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ET ∪ ai) contains a unique forbidden path of the form u,
v, v1 ... vm, w for some m ≥ 0 where v1 ... vm are contin-
uous and w is discrete. It is unique because the exis-
tence of two such paths would imply the existence in Sv
of a cycle (if the paths have the same w) or a forbidden
path (if they have different w’s). Since Ai is an SD-forest
at least one edge in this path, say e, must be absent
from Ai. Then (V, Ei-1 ∪ e) is a SD-forest since it is con-
tained in T. So the weight of e must be less than that of
ai. Consider (V, ET\e). The removal of e from Sv results
in two subtrees, the one with v containing continuous
vertices only. Hence (V, ET ∪ ai\e) is an SD-forest. But
the weight of (V, ET ∪ ai\e) is greater than that of T,
contradicting the definition of T. The proof when both
u and v are continuous is similar.
Suppose now that Su = Sv. Then (V, ET ∪ ai) contains

exactly one cycle, and may also contain a forbidden
path. The cycle must contain ai and also some edge e
which is not in Ak. Then (V, ET ∪ ai\e) is a forest. Sup-
pose that (V, ET ∪ ai) contains no forbidden path. Then
(V, ET ∪ ai\e) is an SD-forest. Since (V, Ei-1 ∪ e) is con-
tained in T, it is an SD-forest, so the weight of e is less
than that of ai. But then the weight of (V, ET ∪ ai\e) is
greater than that of T, contradicting the definition of T.
Suppose now that (V, ET ∪ ai) contains a forbidden

path, and let ai = (u, v). Suppose that u is discrete and v
continuous. Then (V, ET ∪ ai) contains a unique forbid-
den path of the form u, v, v1 ... vm, w for some m ≥ 0
where v1 ... vm are continuous and w is discrete. Let w,
w1 ... wn, u for some n ≥ 0 be the unique path in Su
between w and u. Since Su is an SD-tree w1 ... wm are
discrete. Then the unique cycle in (V, ET ∪ ai) takes the
form u, v, v1 ... vm, w, w1 ... wn, u. Since Ai is an SD-for-
est at least one edge in the path u, v, v1 ... vm, w, say e,
must be absent from Ai. Removal of e from (V, ET ∪ ai)
breaks the cycle and the forbidden path, so (V, ET ∪ ai
\e) is an SD-forest. As before the weight of e is less than
that of ai, so the weight of (V, ET ∪ ai\e) is greater than
that of T, contradicting the definition of T. The proof
when both u and v are continuous is similar.
Hence Ek ⊆ ET.
Suppose now that (ii) holds. But any edge e � ET\Ek

would give rise to a cycle or a forbidden path if added
to Ek. Since Ek ⊆ ET this implies that T contains a cycle
or forbidden path, contradicting its definition. It follows
that ET ⊆ Ek and hence T = Ak as required.
Two theoretical properties of minimal AIC or BIC forests
In this section we prove the two theoretical properties
of the selected models discussed above.
Firstly, suppose that we apply the algorithm to find

the minimal AIC or BIC forest, say  . Then the con-
nected components of  are identical to the connected
components of the minimal AIC/BIC strongly decompo-
sable model. To see this, consider the connected

components (that is, trees) of  . Then any inter-com-
ponent edge either corresponds to a negative penalized
mutual information or would generate a forbidden path
(since adding such an edge cannot form a cycle).
Suppose that we construct a global model  * by

using the strongly decomposable model with minimal
AIC/BIC for each connected component of  . It fol-
lows from decomposition properties of undirected gra-
phical models [22] that adding an inter-component
edge to  * would result in the same change in AIC/
BIC as when added to  . Furthermore, if adding such
an edge to  would generate a forbidden path it
would do the same when added to  *. So  * is, at
least locally, a minimal AIC/BIC strongly decomposa-
ble model.
Secondly, in some cases the global optimality of the

selected model holds under marginalization. That is to
say, if  is the maximum likelihood tree (or minimal
AIC or BIC forest) for a variable set V, then for some
variable subsets A ⊆ V, the induced marginal subgraph
of  on A, written A , is the maximum likelihood tree
(respectively, minimal AIC or BIC forest) for the vari-
able set A. It is useful to characterize precisely the sets
A for which this property holds in general.
Suppose initially that  is connected, that is, a tree.

We claim that the property holds precisely for those
sets A for which A is connected. Write A = (A, EA)
and consider application of the algorithm to A, that is,
to the subset of the (possibly penalized) mutual informa-
tion quantities that pertain to A. Suppose that this gen-
erates the graph ℋ = (A, E*). We need to show that
when the algorithm is applied to V, the inclusion of an
edge between vertices in A cannot create a cycle or for-
bidden path involving edges not in A. If this occurs dur-
ing the course of the algorithm, it will also occur when
added to  , so it is sufficient to consider  . If A is
connected then precisely one vertex in each connected
component of V A\ is adjacent to precisely one vertex
of A . So clearly the addition of an edge in A cannot
create a cycle with edges not in A. Suppose it creates a
forbidden path involving vertices not in A. This must
link two discrete variables, say u and v, in distinct con-
nected components of V A\ . Since  is an SD-tree, all
vertices in the unique path between the two vertices in
 must be discrete. This path must include the two
vertices, say w and x, that are adjacent to a vertex in the
connected components. If inclusion of an edge in A cre-
ates a forbidden path between u and v, then this must
pass through w and x. But then the forbidden path lies
in A, contrary to assumption. It follows that   A .
Conversely, if A is not connected but  is, the inclu-
sion of inter-component edges may give rise to cycles
when the algorithm is applied to V but not when it is
applied to A. Hence in general ℋ and A will differ.

Edwards et al. BMC Bioinformatics 2010, 11:18
http://www.biomedcentral.com/1471-2105/11/18

Page 11 of 13



When the minimal AIC or BIC variants of the algo-
rithm are used,  may be a forest. Let the connected
components of  be C1,... Ck, say. Using a similar logic
we obtain that A is the minimal AIC (or BIC) forest
for the variable set A provided that A Ci is connected,
for each i.

Availability
The analyses were performed using the R library
gRapHD which we have made available to the R com-
munity via the CRAN repository (de Abreu GCG,
Labouriau R, Edwards D: High-dimensional Graphical
Model Search with gRapHD R package, submitted to J.
Stat. Software).
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