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Abstract 

According to Auslander. a Noetherian ring R is called rl-Gorenstein for II 2 1 if in a minimal 
injective resolution 0 + RR + E,, + E, + ‘.. + E,, +, ___, the flat dimension of each E, is at 
most i for i = 0. I. _. . II - 1. We prove that for an rl-Gorenstein ring R of self-injective 
dimension II. the last term E, in a minimal injective resolution of x R has essential socle. 

We also prove that the I-Gorenstein property is inherited by a maximal quotient ring, and as 
a related result, we characterize a Noetherian ring of dominant dimension at least 2. 

0. Introduction 

A Noetherian ring R is called an n-Gorenstein ring if, in a minimal injective 

resolution 0 + RR + E,, +El + ... +E,+....,flatdimensionofE,isatmostifor 

each i (0 I i < II - 1). and further R is called an Auslunder ring if R is n-Gorenstein for 

all 17 2 1. The important thing is that the notion of an n-Gorenstein ring is left-right 

symmetric [S. Auslander’s Theorem 3.71. Moreover, Auslander raised a conjecture, 

which says that an Auslander Artinian algebra has finite self-injective dimension. 

Related to this conjecture, a ring R is said to have self-i~?jectice dimnsion n if both of 

K R and RR have injective dimension II and a Noetherian ring R is called a Gorenstein 

ring if R has finite self-injective dimension. It is shown in Zaks [25] that, for 

a Noetherian ring R, if the injective dimensions of RR and R, are finite, then they 

coincide. 
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In the first part of this paper, wc will derive a module theoretical property from 

a homological property on minimal injective resolutions of Gorenstein rings and 

n-Gorenstein rings. Main results are concerned with the last term in a minimal 

injective resolution for a Gorenstein ring. We will show that, for an n-Gorenstein ring 

of self-injective dimension II. the last term has essential socle. In Fuller and Iwanaga 

[IO]. it is proved that the last term has nonzero socle in this situation. Moreover we 

will show that, for a Noetherian ring of a finite global dimension and a fully bounded 

Noetherian ring of finite self-injective dimension. the last terms have nonzero socles. 

In the second part, we will consider a maximal quotient ring and show that the 

1-Gorenstein property is inherited by maximal quotient rings. 

Throughout this paper. we fix a minimal injective resolution for .R as above and 

similarly denote a minimal injective resolution for RR by 0 + R, -+ Eb --t E; -+ ... --f 

E:, + . . . . For a module A4, pd(M), id(M) and fd(M) denote the projective, injective 

and flat dimension of M. respectively. 

I. Minimal injective resolution 

As we mentioned in the introduction. the notion of n-Gorenstein rings is left-right 

symmetric and further Auslandcr characterizes them by the so-called Auslander 

condition [S]. As we use it in our argument, we write down the result [9]. 

Theorem (Auslander). The $~llo~ving are ecpit~alent for a Noetherian ring R and cm 

integer n 2 1: 

(1) fd(Ei) I i for any i (0 I i < tt): 

(2) fd(Ei) I i,for any i (0 < i < n); 

(3) For any ,finitely getwratcd right R-module Xx and ar2y ,j (1 <,j I n), \ve haw 

Extk(M,R) = 0 ifRM is LI submodule qf Extk(X, R) and ifi <j; 

(4) The dual qf(3). 

In the commutative case, Gorenstein rings have beautiful properties as described by 

Bass [2]. If R is a commutative Noctherian ring of self-injective dimension n, then 

Krull dimension of R is t7 and fd(E,) = i for all i (0 I i < n). Moreover an injective 

indecomposable module E = E(R!P)with P E Spec(R) embeds in Ei if and only if 

ht(P) = i. Hence, in particular, the last term E,, has essential socle. However, in the 

noncommutative case, there is a Noctherian ring of self-injective dimension n with 

fd(Ei) = n for all i. Thus it is reasonable to study the property of the last term E, for 

a Noetherian ring of self-injective dimension n. We will actually discuss the following 

question. 

Question. Let R be a Noetherian riq of se!f-injectirc dimension n. Is the socle, Soc(E,), 

of E, nonzero and moreocer is Soc(E,,) es.senGal in E,,? 



The first result shows that an n-Gorenstein ring of self-injective dimension n is an 

Auslander ring and direct summands in the last term in a minimal injective resolution 

are homogeneous with respect to projective and flat dimension. 

Proposition 1. Let R he a Noetherian ring qf self’injectice dimension n. Then \ve have 

the following. 

(1) Extg(X. R) # 0,for an!’ nonzero subrnodule X of E,. and so pd(X) = n or xl. 

(2) For any,finitelJ, generated nonzero submodule U oj’Enr there exist a simple right 

Rmodule SR and_iinitelJs generuted .&mod&s VI. V, of E(S) .satisLving 

Tor:(E(SL U). Torf(E(S),E(U)) # 0 

at1d 

Tor:(V1, U), Torf(T/z. E(U)) # 0. 

Thus fd(E(S)) = fd(E(U)) = n. 

(3) pd(E) = fd(E) = II .fo~ LEII)’ nonzero direct sunmand E in E,,. 

Proof. (1) In the exact sequence 

o + K,_~ +E,_, +E, -+O with E(K,,-,) = En-,. 

X c E, z E,_,,IK,,_~ implies 

0 # Ext;(X,K,_,) 2 Ext”x(X,R). 

Hence pd(X) 2 n, that is pd(X) = n or yc: by 113, Theorem 21. 

Proofs of (2) and (3). Taking X = E as a nonzero direct summand of E, in (l), we 

have pd(E) 2 n and so pd(E) = u by [13, Theorem 21. 

For the remaining part of the proof, without loss of generality, E may be assumed 

indecomposable and then of the form E = E(U) for a finitely generated submodule 

U of E. 

For any finitely generated submodule U of E,, we have from (1) 

0 # Ext;(U,K,_,) g Ext”R(U,R). 

Now let 

WR = @ US,) 
It.1 

be the direct sum of injective hulls of all non-isomorphic simple right R-modules SA 

(i E il). Then WR is an injective cogenerator and hence we see 

0 # Hom,(Ext$(U, R)R. W,) z Tor$(W, U) g @ TorR(E(S,), U) 
le I 



by [6, Ch. VI, Proposition 5.31. Thus there is a simple right R-module SK such that 

Torf(E(S). U) # 0 and then fd(E(S) = II by [13, Proposition 11. Since Tor:(E(S),-) is 

left exact, we get an embedding 

0 # Tor:(E(S), U)ctTorf(E(S), E(U)) 

and so fd(E(U)) = n again by 113. Proposition I]. Next write 

where V, are finitely generated submodules of E(S). Then, since Tor-functor com- 

mutes with direct limits. there exists a finitely generated submodule V, of E(S) with 

Tor:( V,, U) # 0. Similarly, we have Torf(Vz. E(C:)) # 0 for some finitely generated 

submodule T/2 of E(S). 0 

In view of the proof of Proposition I (1). we have the following theorem, which is 

more general than our previous result in [14]. 

Theorem 2. Let R he N rimg u.itll id( ,( R) = II 2 1. Then E. md E, hate IJO isomorphic 

direct sumntrnds. 

Proof. Let E # 0 be an indecomposable direct summand in E0 and assume E is 

isomorphic to a direct summand in E,,. Then E = E(U) for some finitely generated 

submodule Cl of E and in this cast, I/ = U r-R # 0. In the exact sequence 

Ext;(R, R) + Ext;( I/. R) --f Ext;+‘(R!b’, R) 

which is induced from 0 + 1/ + R + R/V + 0 (exact), we see Extk(R, R) = 0 = 

Exti+ ‘(R/V’, R) from II 2 1 and id( K R) = II. Hence we have Exti(T/, R) = 0. On the 

other hand, 0 # I/ G E 4 E,, implies Exti( 1/. R) # 0 by the same argument as the 

proof of Proposition l(1). and this is a contradiction. 0 

To prove a main result. we need two facts. The first one indicates that, for an 

n-Gorenstein ring R of self-injectivc dimension II. the last term in a minimal injective 

resolution of RR involves a property diKerent from the other terms. 

Proposition 3. Let R he LI Noetheritrrl ring. Then, R is n-Gorenstein ~j’and only if for L~J 

finitely generated right (rrsp. k/i) R-rnodulc X urd crr~y ,j I n, KV huve HomR(M. Ei) 

= 0 (resp. HomK(M, Ei) = 0) pocitld that M is (I .suhnzodulr c?f‘Extk(X, R) and i < j. 

Proof. Assume R is n-Gorenstein. Let X be a finitely generated right R-module and 

,j I II. Then fd(Ei) I i for any i < 11 implies 

0 = TorT(X.Ei) z Hom,(ExtA(X,R), Ei) if i <,j 
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Next, for any submodule M of Exti(X,R), we have an exact sequence 

0 = Hom,(Exti(X, R), Ei) + Hom,(M. E,) --f 0 

since Ei is injective, and consequently we obtain HomR(M, E;) = 0. 

To prove the sufficiency, let X be any finitely generated right R-module and i -e 17. 

Then we have 

0 = Hom,(ExtF ‘(X, R), E;) 2 TorF+ ,(X, Ei). 

Hence we see fd(Ei) I i for any i < n. 0 

The next proposition is crucial for the proof of our main result. 

Proposition 4. Let R he an n-Gorenstein ring of self-injectice dimension n. Then 

Ext$(M, R) is un Artinian right R-module for al2y.finitely generated left R-module M. 

Proof. First we claim that. for submodules X c Y of Ext”,(M, R), we get 

Hom,(Y/X, ES) = 0 = Extk( Y/X, R) for any j < n. 

In fact, from 0 -+ X + Y --f Y/X + 0 (exact), we have an exact sequence 

0 -+ Hom,(Y/X, ES) + HomK( Y. ES) = 0 (by Proposition 3) 

and so the first equality follows. For the second equality. again 0 +X + Y + 

Y/X + 0 (exact) induces exact sequences 

0 -+ Horn,,, Y/X, R) + Horn,,, Y, R), 

Exti- ‘(X. R) + Exti(Y/X, R) + Exti(Y, R) for j 2 1. 

Now by the Auslander condition, HomR(Y, R) = 0 and Exti-‘(X,R) = 0 = 

Extk(Y, R) if 1 I j < n. Hence the second equality follows as well. 

From now on, we denote Ext”,(N, R) by N” for an R-module N. If 0 + X + Y + 

Z + 0 is an exact sequence with Y c Ext”,(M, R), 0 + Z’ + Y’ + X’ + 0 is also 

exact by the n-Gorenstein property. Let 

AC1 = Ext”,(M,R) 2 Al 2 A2 2 ... 

be a descending chain of submodules of Ext;((M, R)R. Then from the exact sequence 

0 + (AO/Ai)’ --f A: -+ A: + 0 (for any i 2 1) 

and the commutative diagram 



we can regard naturally each (Ao:Ai)’ as a submodule of Ai and we have the 

following ascending chain of submodules of A:: 

(A,/A,)’ g (Ao/A2)’ c ... E A;. (*) 

Since A0 = Extk(M,R)R is finitely generated, so is Ai and thus it is Noetherian as 

a left R-module. Consequently the ascending chain (*) terminates at some step 

m (say) and then from the exact sequence 0 + A,,,/A,+, + Ao/A,+l + A,/A, -0. 

we have 

(A,/A,)’ 4 (ASIA,,,+ ,I$ - (A,IA,,+ dp - 0 (exact). 

Hence we get (A,IA,,+ 1 )’ = 0, that is, Exti(A,,/A,,,+ 1, R) = 0. On the one hand, the 

exact sequence 

0 + A,+ 1 -+ A,, + A,,/A,,+, + 0 with A,,,, .4,,,+ I G Ext”,(M, RI 

and id (RR) = n imply 

Ex~$4&Ln+ 13 R)=O forVj#n. 

Therefore A,,/A, + 1 = 0 follows by Colby and Fuller [7, Theorem 21 and as a result, 

A0 = Exti(M,R) is Artinian as a right R-module. m 

As an application of Proposition 4, we have 

Corollary 5. Let R he an n-Gorenstrin rimq of’.sc!flirl,jectice dimension n and X a,finitelJ 

generated right R-module. Then Exti(X, R) embeds in Ez’fbr some t > 0. Moreover, if 

M is a nonzero submodule of Ext;,(X, R ). tkerl \c‘e kcrz~ Exti(M, R) # 0. 

Proof. By [12, Theorem 21. Y = Exti(X. R) is embedded in a direct product of copies 

of E,, @ ... @ E,. Since Horn,,, Y, E;) = 0 for any i < n from Proposition 3. Y embeds 

in a direct product of copies of E,. Now Y is a Noetherian and Artinian R-module by 

Proposition 4, i.e. M has a composition series of finite length. Thus the socle, Soc( Y), 

of Y is essential in Y and finitely generated. Therefore E(Soc( Y)) = E(Y) is embedded 

in a direct sum of finitely many copies of E,. 

Let M s Exti(X,R) WE!’ and .I4 # 0. Consider the exact sequence 

o+K,-, +E,-, +E, +O with E(K,- 1) = E,- 1, 

then the exact sequence 

0 + K”’ n 1 +E:L1 +Ef’+O, 

also satisfies E(Kf! 1) = El:‘, Hence there exists a nonsplit exact sequence 

0 --+ K”’ n 1 -+N+M+O, 
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for some submodule N of EEL 1. Consequently we have 

0 # Extk(n/r,K;L,) 2 Ext;(M,K,_r)(” z Ext;;(Af,R)“‘. 0 

Now we can prove our first main result. 

Theorem 6. Let R he an rvGorenstein ring of self-injectice dimension II and 

0 -tR +EO -+ . + E, + 0 u minimal injectioe resolution of K R. Then Soc(E,,) is 

essential in E,. 

Proof. Any injective indecomposable module E is of the form E = E(U) for some 

finitely generated submodule U of E. Let E be a nonzero direct summand in E,,. Then 

by Proposition l(2), there exists a finitely generated right R-module V with 

Torf( V, E(U)) # 0 and hence we have 

0 # Torf(V’, E(U)) 2 Hom,(Ext”,(V, R), E(U)) 

As a consequence, E = E(U) has a nonzero Artinian submodule by Proposition 4 and 

so a simple submodule S. Therefore we obtain E = E(S) since E is injective indecom- 

posable, and thus E, has essential socle. 0 

As a byproduct of Theorem 6, we have 

Corollary 7. Let R he an n-Gorenstein ring of selflinjectice dimension II und 

0 +R +E, + . . . + E, -+ 0 a minimal injectice resolution of R R. Then the ,fiAlo\t+ny 

statements hold. 

(1) E, is a direct sum qf injective indecomposahles of tkr.for.m E(S) bcitk S a simple /<ft 

module. 

(2) If E is injectice indecomposable ojflat dimension n, then E 2 E(S),for some simple 

module S qf projective dimension n or x’. 

(3) [f II 2 1, E0 @ ... @ E,_ 1 and E, kace no isomorpkic direct summands in com- 

mon. 

Proof. (1) immediately follows from Theorem 6. 

(2) Hoshino (oral communication) proves that if E is injective indecomposable of 

flat dimension n, E appears as a direct summand of E,. Thus E 2 E(S) for some simple 

left module S. Here, pd(S) = n or cc by Proposition l(1). 

(3) follows from Proposition l(3). 0 

Besides the case of Theorem 6, we have another two types of Noetherian rings of 

finite self-injective dimension such that the last terms in minimal injective resolutions 

have nonzero socles. Recall that a ring is bounded if any essential onesided ideal 

contains a nonzero twosided ideal and that a ring R is,fully bounded if every prime 

factor ring RIP by a prime ideal P is bounded. 
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Proposition 8. Let R be one qf the jtillowing rings: 

(1) a Noetherian ring of global dimension n, 

(2) a fully bounded Noetheriun ring of self-injective dimension n. 

Then the last term E, in a minimal injective resolution of RR has nonzero socle. 

Proof. (1) In this case, we know id(RR) = id( RR) = gl.dim R = n. Thus, for any 

cyclic nonzero submodule RC of E,, there exists an injective right R-module E’ with 

Torf(E’, C) # 0 by Proposition l(2). Now consider a class of left ideals 

F = {Z 1 Tort(E’, R/Z) # 01. 

Then 9 is nonempty and contains a maximal element L (say). Letting U = R/L, we 

may assume 

Torf(E’, R) # 0, 

Tor:(E’, U/V) = 0 for any nonzero submodule I/ c U 

Let {V, 1 ;I E A} be a family of all nonzero submodules of U and S = r)j.,,, V,. Then 

S = 0 or S is simple. Assume now S = 0. Since Torf(E’,-) is left exact from 

gl.dim R = n, the canonical embedding U +nit,, U/V, induces 

Torf(E’, U) c,Tor: (El, ,I,I, .,i). 

Therefore we get 

Tor:(E’, E u/V;.) f 0. 

Write E’ = 5 Li (each Li is finitely generated submodule of E’). Since R is Noether- 

ian and each Li is finitely generated, we have the following isomorphisms by Lenzing 

[17, Satz 21: 

On the one hand, Torf(-, U/V,) is left exact for every i from gl.dim R = n and so we 

have, for any i and 2, 

Torf(Li, U/V,) c+Torf(E’, U/V,) = 0. 

Consequently we have Torf(E’, n,,,, U/Vj,) = 0, as a contradiction. 

Therefore S is simple and the exact sequence 0 + S -+ U + U/S -+ 0 induces an 

exact sequence 

0 + Torf(E’,S) --f Torf(E’, U) --f Tor:(E’, U/S) 
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with Torf(E’, U) # 0 and Torf(E’, U/S) = 0. It Lurns out that 

0 # Torf(E’, S) z Hom,(Ext”,(S,R), E’) 

and so we get Extk(S,R) # 0, i.e. Soc(E,) # 0. 
(2) Let LJk be any finitely generated nonzero submodule of EA. Then, by Proposi- 

tion l(2), there exist a simple left R-module RS and a finitely generated submodule 

U of E(S) satisfying Torf(E(U’), U) # 0. Here, since R is fully bounded Noetherian, 

U is Artinian as a left R-module by Jategaonkar [15, Corollary 3.61. Thus 

0 # Torf(E(U’), U) 2 HomR(Ext$(U, R), E(U’)) 

implies 

0 # Ext”,( U, R) r Ext;( U, K, _ i), 

where 0 + K,_, + En_, -+ E, + 0 (exact) and E(K,_ i) = En_ 1. Now we have an 

exact sequence 

Hom,(U,E,) --f Exti(U,K,_i) + Exth(U,E,_,) = 0 

and hence we see HomR(U, E,) # 0. It turns out that E, has an Artinian submodule 

and in particular, we have Soc(E,) # 0. 0 

Example. Among noncommutative examples of n-Gorenstein rings, we can see by 

applying Theorem 6 that the last term in a minimal injective resolution of a ring has 

essential socle in the following cases: 

(1) A Weyl algebra 

d,(K) = K [ x1 )...) x.,$ )...) & 
cx, ‘I n 

over an algebraically closed field K of characteristic zero is an Auslander ring of 

global dimension n [23]. 

(2) Let G be a finite subgroup of CL,,(@) without pseudo-reflection. Then the 

natural G-action on X,!‘,(C) gives rise to the G-invariant sub-ring, which is an 

Auslander ring of finite self-injective dimension but of infinite global dimension [IS]. 

(3) A ring of differential operators 

K I x . Y L 2 1, .,‘lI,. >. 

CXl ’ dx, I 
of a formal power series ring over a field K of characteristic zero is an Auslander ring 

of global dimension 2n [3]. 

(4) Malliavin [19] also discusses the last term for an enveloping algebra of a solv- 

able Lie algebra (cf. Theorems 3.4 and 3.6 in [19]). 

Concerning the homological aspects on Gorenstein rings with Auslander condition, 

we refer Bjiirk’s survey [4]. 



In the latter part of this section, we consider an Artinian n-Gorenstein ring R and 

study the second term El of a minimal injective resolution of RR. In this case, the first 

term E0 is projective. (Such a ring has been called a QF-3 ring.) Thus any indecompos- 

able summand of E0 is isomorphic to a left ideal of R (cf. [S]). We are interested in 

El and characterize a minimal projective resolution of El. 

Let R be an Artinian n-Gorenstcin ring with IZ 2 2 and 

0 + P’(E,) --f P”(E,) -+ E, --t 0 

a minimal projective resolution for El. It is well known that a projective cover of an 

injective module is injective and so P”(E, ) is projectiveeinjective. However all projec- 

tive+injective indecomposables do not necessarily appear as a direct summand of 

PO(E,). Direct summands of P”(E, ) and P’(E,) can be characterized as follows. 

Proposition 9. Let R he au Artirliun n-Goremfein ring kvith n 2 2, 0 + RR + 

E. + E I + .. a minimul ir!jectire resolutior~ and 

0 + P’(E,) + PO(El) + E, -+ 0 (*) 

u mirCma1 projectice resolution ,fbr E,. Then \ve hare the foliowiny. 

(1) A projective indec~onlposahlc~ lqfi module P is a direct summand of P’(E,) if aud 

only $id(P) = 1. 

In particular, E, is projec,tive if and only if’ there exists no prqjectiae module of 

injeCtice dimension one. 

(2) A projectire-ii~jectil,~~ irldecor,lposrrhlc kfi module Q is u direct summand of PO(E,) 

{/‘and only if’either of the ,fiJlolviq holds: 

(i) Sot(Q) c Soc(P).for some projwtive ir~rlrc~onlposahle P of’iqjectice dimension one, 

(ii) Sot(Q) s Soc(E(P)/P),fiw somc~ projective irzdecor?zpo.sahl~~ P. 

(3) For alz)’ prqjectice module P. there exists a projective module Q of injectice 

dimension one such that E’(P) z E’(Q) in Mod(R), the prqjectitjely stable category. 

Here E’(P) standsjbr an injectice Ml of E(P).IP. 

Proof. (1) First of all, from pd(E1) I 1, E, is projective if and only if there is no 

projective module of injective dimension one. So we may assume pd(E1) = 1. 

Since (*) is also an injective resolution of P’(E,), we see id(P’(E,)) I 1 and hence 

any indecomposable direct summand of P’(E,) has injective dimension at most one. 

However P’(E,) is small in PO(E1) and so no direct summand of P’(E,) is injective, 

that is, every direct summand of P’(E,) has injective dimension one. 

Conversely, let P be projective indecomposable of injective dimension one. Then 

E(P)/P is injective and E(P)/P is isomorphic to a direct summand of El. Now the 

exact sequence 0 + P + E(P) + E(P),‘P + 0 is a minimal projective resolution of 

E(P)/P by Tachikawa [24, (8.1) Lemma]. Hence E(P) isomorphic to a direct sum- 

mand of PO(El) and so P appears as a direct summand of P’(E,). 

(2) Let E, = E @ G such that G is projective-injective and pd(E) = 1, and assume 

there is no projective direct summand in E. Then P”(E1) = P’(E) @ G and we have 



71 

two short exact sequences 

o- P’(E,) - P”(E,) ~E]------,O 

II II !I 
o- P’(E) - 

11 
P”(E)@G~EOG-O. 

<, 

where 

is a minimal projective resolution of E. Thus we can write as 

P’(E,) = @ p, 
is.1 

with id(P,) = 1 by (1). Then we have 

P”(E) = E(P’(E)) = E(P’(E,)) 2 @ E(P,), 
is 1 

that is, 

P”(E,) g @ E(P,) @ G. 
ia ! 

Only +I Let Q be an indecomposable summand of P”(E,). 

(i) If Q is a direct summand of @is,, E(P,), then we have SOC(Q) s SOC(Pi) for some 

Pi. 
(ii) If Q is a direct summand of G, then Q is a projectiveeinjective direct summand 

of E,. Now E(,/R is a direct sum of modules of the form E( P).IP with P projective 

indecomposables and further it is an essential submodule of El. Thus Sot(Q) is 

monomorphic to Soc(E(P)/P) for some projective indecomposable P. 

J/I In case of(i). Q is a direct summand of E(P). Here E(P) is a direct summand of 

P”(E,), since 0 + P + E(P) + E(P)/P + 0 is a minimal projective resolution of 

E(P),IP and E(P)!P is a direct summand of E,. In case of (ii). Q is isomorphic to 

a direct summand of E(E(P)/ P). which is a direct summand of Er. Thus Q is a direct 

summand of P”(EI). 

(3) Since D = E’(P) is a direct summand of El, we have the following commutative 

diagram 

o- P’(E,) - P”(E,) eE,-O 

i I I 
0 - I” (II) - f”‘(D) ) 11 - 0 

II T I 
O- P’(D)- E”(P’(D))- Er(P’(D))- 0 



where the upper two rows are minimal projective resolutions and the bottom row is 

a minimal injective resolution. Now since R is especially a QF-3 ring, P’(D) is 

projectiveeinjective and hence E”(P’(D)) is a direct summand of P’(D). Further 

P’(D) has injective dimension one by (1). Let P”(D) = E’(P’(D)) @ G. Then G is 

projective-injective and we have E’(P) z E’(P’(D)) z G. 0 

Examples for Proposition 9. We give examples for understanding Proposition 9. 

(1) Let R be an algebra over a field given by the quiver 

with relations ;‘x = Sfl. i:;! = r:6 = XX = /I’>: = 0. Then R is a 1-Gorenstein of self- 

injective dimension one. Corresponding to the vertices 1, 2,3 and 4, ri are primitive 

idempotents and Si are simple left R-modules for i = 1,2,3,4. Rel and Re, are 

projective-injective, and Soc(Re,) z S, and Soc(Re,) 2 S1. Projective indecom- 

posables of injective dimension one are Rc2 and Re,. S, embeds in Re, but S1 is 

neither the case(i) nor (ii) in Proposition 9(2). Hence P”(El) is a direct sum of copies of 

Re,, and P’(E,) is a direct sum of copies of Rez and Re3. 

(2) Let R be an algebra over a fkld given by the quiver 

with relations S/I = cy, ,lii = tic = 211 = ;@ = 0. Then R is an Auslander ring of 

global dimension 5. The primitive idempotents e; and simple left modules Si are the 

same as in (1). Re,, Re, and Re, are projectiveeinjective and Re, is the only one 

projective indecomposable of injective dimension one. In the isomorphisms 

Soc(Re,) 2 Sg, Soc(Re,) 2 S1 and Soc(Re,) z S3, 

we see S5 qRe3, S1 LtE(Re,)/Rrz and S3 ctE(Re,)/Re4. Therefore all projec- 

tive-injective indecomposables appear in P”(El) as direct summands. 
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(3) Let R be an algebra over a field given by the quiver 

with relations z?- = ;fir = ;‘S = 0 and /j8z = dyfl. Then R is 2Gorenstein but not 

3-Gorenstein, and R has infinite self-injective dimension. Let Si be a simple left module 

corresponding to a vertex i (i = 1,2,3), Pi = P”(Si) a projective cover and Ii = EO(Si) 

an injective hull of Si, respectively. Then we have 

PI g I2 are projectiveeinjective 

id(P,) = 1, id(P,) = x, 

pdUl) = 1, pd(Z,) = z,. 

The minimal injective resolution of RR is 

0 + RR + I:“) + II @(I, @ II) + II @ I3 + ... , 

and II = E’(P,) and I, @II = E’(P,). Hence E’(P,) z E’(PJ in the projectively 

stable category Mod(R). 

2. Maximal quotient ring of a 1-Gorenstein ring 

In 1221, a ring R is called left QF-3 if there is a (unique) minimal faithful left 

R-module, and it is shown that any intermediate ring between a left QF-3 ring and its 

maximal quotient ring is also left QF-3. In [lo], it is shown that, for a serial 

2-Gorenstein ring R, intermediate rings in the maximal quotient ring of R are also 

2-Gorenstein. If a ring is Artinian, the notions of QF-3 rings and 1-Gorenstein rings 

coincide. Thus it is reasonable to consider the similar problem for (non-Artinian) 

I-Gorenstein rings. We should recall that the left and right maximal quotient rings of 

a 1-Gorenstein ring are coincident [20, Proposition 21. 

Proposition 10. Let R be a I-Gorerzstein ring. Then the ma.~inzal quotient ring Q is 

semiprimary und E( aQ) = E(Qa) is projective. 

Proof. First recall E(,R) = E(QQ). We will show that any finitely generated sub- 

module of E(aQ) is torsionless. Let ,X = Q-x1 + ... + Qx, be a finitely generated 

submodule of E(12Q) and consider an R-submodule RY = Rx1 + ... + Rx,. Then, 

since E( RR) is flat, there exists an R-monomorphism f’: Y + R(” C_ Qtt’ for some t 2 0 

by [16. Theorem 11. On the other hand, each QXi/Rxi is torsion (under Lambek 
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Now there is an epimorphism 

l@ (Q.uilRsi) - &Q-Y;+ Y):Y- x/Y 
i:l 

and hence KX/ Y is torsion. Therefore ,I’ may be extended to an R-homomorphism 

y : X 4 Qtt’ and then ~1 is actually a Q-monomorphism. 

In order to show that E( aQ) is flat as a Q-module, we use Lazard’s result [6]. That 

is, we prove that, for any finitely generated left Q-module M and any Q-homomor- 

phism u of M to E(QQ), ~1 factors through a free Q-module. Let u factor as u =,ip with 

p: M --t Im(tl) and .i: Im(u) =E(,Q). As we saw above, Im(zr) is torsionless and so 

embeds in a finitely generated free Q-module F, since Q is semiprimary by 121, 

Theorem 21. Then this embedding is extended to a Q-homomorphism of F to E(aQ). 

Consequently u factors through a finitely generated free module F. 0 

Proposition 10 cannot be generalized to general n-Gorenstein rings for II 2 2 as is 

mentioned in [lo]. 

A ring R is said to have ~O/JI~MII/ rlir~~rr~.sio~~ > II if in a minimal injective resolution 

of KR, all E; for 0 I i I II ~ 1 are flat (Definition by Hoshino [l 11). A Noetherian ring 

with dominant dimension 2 II is. of course. n-Gorenstein. On the other hand, Ringel 

and Tachikawa [22. (2.1) Theorem] characterized a ring with dominant dimension 

2 2 as an endomorphism ring of a generator-cogenerator. Now we have another 

characterization for such rings. 

Proposition 11. The ,follm~ing NW eqLrica/rnt .fkw (I Noetheriun ring R: 

(1) R has dominant dimension 2 2; 

(2) R is 1-Gorensteirz and is its O\VH m~.~irml quotient ring; 

(3) R is an Artinian 2-Gorrnstein rirly ard t/we i.3 no injectice left module ofprqjectice 

dimension one. 

Proof. First of all, we recall the fact that R is its own maximal left quotient ring if and 

only if Eo/R is embedded in a direct product of copies of EO. 

(1) *(3): It follows by [14. Proposition 71 that R is Artinian. Assume that there 

exists an injective indecomposable left module E of projective dimension one. Then 

the torsion submodule t(E) is nonzero. For, if t(E) = 0, E embeds in a direct product 

of copies of E,, which is projective. Thus E is projective, a contradiction. Let 

0 --f PI + PO -+ E + 0 be a minimal projective resolution for E and take a pull back 
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diagram of two maps t(E) ctE and PO + E: 

Then the monomorphism PI + L is an essential extension. Hence, in the commutative 

diagram 

il ! a 

o- P, - E(P,)-E(P,).:P,-0. 

x is manic and so is fi. Thus we have the following embedding 

Therefore E(t(E)) = E since t(E) # 0, and E is embedded in @ E, However @ El is 
I I 

projective and this is a contradiction. 

(3) a(2): By the assumption, E, is projective and hence R is its own 

quotient ring. 

maximal left 

(2) * (1) follows from the fact we mentioned in the beginning of the proof. 0 
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