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Abstract

This work presents a Propositional Dynamic Logic (πDL) in which the programs are described in a language
based on the π-Calculus without replication. Our goal is to build a dynamic logic that is suitable for the
description and verification of properties of communicating concurrent systems, in a similar way as PDL
is used for the sequential case. We build a simple Kripke semantics for this logic, provide a complete
axiomatization for it and show that it has the finite model property.
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1 Introduction

Propositional Dynamic Logic (PDL) [7] plays an important role in formal specifica-
tion and reasoning about sequential programs and systems. PDL is a multi-modal
logic with one modality 〈P 〉 for each program P . The logic has a set of basic
programs and a set of operators (sequential composition, iteration and nondeter-
ministic choice) that can be used to build more complex programs from simpler
ones. A Kripke semantics can be provided, with a frame F = (W, RP ), where W

is a non-empty set of possible program states and, for each program P , RP is a
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binary relation on W such that (s, t) ∈ RP if and only if there is a computation of
P starting in s and terminating in t.

The π-Calculus is a well known process algebra, proposed by Milner, Parrow
and Walker [11], for the specification of communicating concurrent systems. It is
an extension of Milner’s CCS [10] that is able to describe not only non-determinism
and concurrency, but also mobility of processes. It models the concurrency and
interaction between processes through individual acts of communication. A pair
of processes can communicate through a common channel and each act of commu-
nication consists of a message (which, in the π-Calculus, is also a channel name)
being sent at one end of the channel and immediately being received at the other.
A π-Calculus specification is a description of the behaviour expected from a system,
based on the communication events that may occur. As in PDL, the π-Calculus
has a set of operators (action prefix, parallel composition, nondeterministic choice
and restriction on acts of communication) that are used to inductively build process
specifications from a set of basic actions.

This work presents a Propositional Dynamic Logic (πDL 4 ) in which the pro-
grams are described in a language based on the π-Calculus without replication.
There are, in the literature, some other logics that make use of CCS or the π-
Calculus. However, they use these process algebras as a language for the descrip-
tion of frames and models, while using standard modal logics for the description of
properties (see, for example, [12] and [6]). The logic that we develop in the present
work uses the π-Calculus in a distinct way. Its operators and constructions are
added to a basic modal logic in order to create a dynamic logic where it is simple to
describe and verify properties of communicating, concurrent, non-deterministic and
mobile programs and systems, in a similar way as PDL is used for the sequential
case. As such, this logic is an extension of the logics from our previous works [3]
and [2], which develop propositional dynamic logics based on CCS.

It should be emphasized that the contribution of this work is on the field of
dynamic logics and not on the field of process algebras. From process algebras, we
just borrow a set of operators that are suitable for the description of communication
and concurrency. We use these operators because they have a well-established
theory behind them and we can use many of its concepts and results to help us
build our logic.

Our logic is related to Concurrent PDL (CPDL) [15] and Channel-CPDL [14],
but has advantages over both. The former can only describe properties of concurrent
systems with no communication between the components and while the latter is able
to describe interesting properties of communicating concurrent systems, it does not
have a simple Kripke semantics (in fact, “a formal definition of the semantics of
channel-CPDL is rather complicated” [14]) and its satisfiability problem can be
proved undecidable (Π1

1-hard), which also implies that it does not have a complete
axiomatization. On the other hand, due to the use of the π-Calculus mechanisms of
communication and concurrency, our logic has a simple Kripke semantics, the finite

4 The pun here comes from the fact that the name of the letter π in Greek and the name of the letter P
in English are pronounced exactly the same way.
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model property, a straightforward axiomatization and can also deal with mobility.
Our logic can also be seen as an extension of PDL with Interleaving (iPDL) [9].
In iPDL, the parallel operator that is present in the logic is similar to the parallel
operator of the π-Calculus, but it only allows interleaving of the actions in parallel
programs, while the parallel operator of the π-Calculus (in conjunction with the
restriction operator) also allows communication, synchronization and mobility.

The rest of this paper is organized as follows. In Section 2, we introduce the
necessary background concepts: Propositional Dynamic Logic and the π-Calculus.
Our logic (πDL), together with a couple of simple examples of its application and
a complete axiomatic system, is presented in Section 3. Finally, in Section 4, we
state our final remarks. We omit some of the proofs in the text, when they follow
directly from previously stated results.

2 Background

This section presents two important subjects. First, we make a brief review of the
syntax and semantics of PDL. Second, we present the π-Calculus together with
some useful concepts, properties and results from its theory. We do not assume a
familiarity with the π-Calculus, since process algebras are by no means a universally
studied topic among (modal) logicians. We introduce here all that is necessary for
our presentation in the next sections, trying to make this work as self-contained as
possible.

2.1 Propositional Dynamic Logic

In this section, we present the syntax and semantics of PDL. For a more detailed
account, [4] can be consulted.

Definition 2.1 The PDL language consists of a set Φ of countably many proposi-
tion symbols, a set P of countably many basic programs, the boolean operators ¬
and ∧, the program constructors ;, ∪ and ∗ and a modality 〈P 〉 for every program
P . The formulas are defined as follows:

ϕ ::= p | � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈P 〉ϕ, with P ::= a | P1;P2 | P1 ∪ P2 | P ∗,

where p ∈ Φ and a ∈ P.

In all the logics that appear in this paper, we use the standard abbreviations
⊥ ≡ ¬�, ϕ ∨ φ ≡ ¬(¬ϕ ∧ ¬φ), ϕ → φ ≡ ¬(ϕ ∧ ¬φ) and [P ]ϕ ≡ ¬〈P 〉¬ϕ.

Definition 2.2 A frame for PDL is a tuple F = (W, {Ra}a∈P) where W is a non-
empty set of states and Ra is a binary relation for each basic program a. Besides
that, we inductively build binary relations RP , for each non-basic program P , using
the rules RP1;P2 = RP1 ◦RP2 , RP1∪P2 = RP1∪RP2 and RP ∗ = R∗

P , where R∗
P denotes

the reflexive transitive closure of RP .

Definition 2.3 A model for PDL is a pair M = (F ,V), where F is a PDL frame
and V is a valuation function V : Φ → 2W .
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Definition 2.4 Let M = (F ,V) be a model. The semantical notion of satisfaction
of a formula ϕ in a model M at a state w, notation M, w � ϕ, is defined in PDL
in the standard way for modal logics [4] for the atomic formulas and the boolean
operators. The following rule takes care of the modalities: M, w � 〈P 〉ϕ iff there
is w′ ∈ W such that wRP w′ and M, w′ � ϕ.

2.2 The π-Calculus

The π-Calculus is a well known process algebra, proposed by Milner, Parrow and
Walker [11], for the specification of communicating concurrent systems. It is an
extension of Milner’s CCS [10] that is able to describe not only non-determinism
and concurrency, but also mobility of processes. A π-Calculus specification is a
description of the behaviour expected from a system, based on the communication
events that may occur. For a broad introduction to the π-Calculus, [13] can be
consulted.

In the π-Calculus, a pair of processes can communicate through a common chan-
nel and each act of communication consists of a message (which, in the π-Calculus,
is also a channel name) being sent at one end of the channel and immediately being
received at the other.

Let N = {a, b, c, . . .} be a set of names. Each channel in a π-Calculus specifi-
cation is labelled by a name. The labels of the channels are also used to describe
the communication actions (sending and receiving messages) performed by the pro-
cesses, as is shown below. Besides these communication actions, the π-Calculus
has only one other action: the silent action, denoted by τ , used to represent any
internal action performed by any of the processes that does not involve an act of
communication (e.g.: a memory update).

Definition 2.5 In our presentation of the π-Calculus, process specifications can be
built using the following operations:

P ::= 0 | END | α.P | P1; P2 | P1 + P2 | P1|P2 | P ∗ | (νa)P,

with
α ::= a(x) | a〈x〉 | a〈νx〉 | τ,

where a, x ∈ N .

Usually, the π-Calculus is presented with a replication operator (!), that denotes
the ability of a process to generate multiple copies of itself, or with constants,
that may be used to describe recursion. In [2], in the context of CCS, we present
a dynamic logic that uses processes with constants. However, in order to keep
the finite model property and a complete axiomatization, we had to restrict the
interaction between constants and the | operator in order to prevent potentially
self-replicating processes. Besides that, with constants, the axiomatization and the
theory behind its completeness proof became considerably more complex. On the
other hand, the issue of whether it is possible to keep the finite model property and
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a complete axiomatization in the presence of replication remains open and we defer
it to a future work, as explained in Section 4.

Thus, at the present time, we restrict ourselves to the language without constants
and the replication operator. However, as is also shown in [2], it is much simpler
to deal with iteration (which is a restricted form of recursion) in the logic than
with recursion in its more general form and the resulting axiomatization is more
elegant. So, in order to express iterative behaviours, we add to our presentation of
the π-Calculus the PDL-inspired operators ∗ and ;.

As it is explained in details in [2], the somewhat loose definition of the null
process 0 in the π-Calculus, which fails to differentiate between a deadlock and a
successful termination (unlike other process algebras, as ACP [8] for instance, in
which the deadlocked process and the terminated process are different), can get
in the way of a fully compositional semantics for a dynamic logic based on the π-
Calculus. To solve this, we introduce an extra action, with a special meaning: the
ending action, denoted by END . All other actions are called running actions. A
process can only successfully finish after performing the action END and it always
successfully finishes after performing such action. If a process cannot perform any
running action and cannot successfully finish, it is called a deadlocked process.

0 is the null process. It is a deadlocked process, since it is incapable of performing
any running action and of successfully finishing. END is a process that is incapable
of performing any running action, but it is capable of successfully finishing. The
prefix operator (.) denotes that the process will first perform the running action
α and then behave as P . The sequential composition operator (;) denotes that
the process will first behave as P1 and if and when P1 successfully terminates, it
will proceed behaving as P2. The nondeterministic choice operator (+) denotes
that the process will make a nondeterministic choice to behave as either P1 or
P2. The parallel composition operator (|) denotes that the processes P1 and P2

may proceed independently or may communicate through a common channel. The
iteration operator (*) denotes that the process P is capable of being iterated zero
or more times. Finally, the restriction operator (νa) denotes that the channel a is
only accessible inside P (the scope of a is P ).

The action a(x), called input action, denotes that the process receives a name
through the channel labelled by a and the name x marks, in P , the places where the
received name should be put. The actions a〈x〉, called free output action, and a〈νx〉,
called bound output action, both denote that the process sends the name x through
the channel labelled by a. The difference between the two is that, in a〈νx〉, x is a
restricted name, with this action working as an abbreviation for (νx)a〈x〉. Finally,
τ denotes the silent action. We define the bound output action as a primitive action
because, as is shown below, under certain circumstances, the only form of restriction
that is needed is the one provided by bounded outputs.

We say that the actions a(x) and a〈νx〉 and the restriction (νx) bind the name
x, calling them binders. We say that a name is bound in P if it occurs inside the
scope of an action or a restriction that binds it. Otherwise, we say that a name
is free in P. We denote by f(P ) the set of free names in P and by b(P ) the set

M.R.F. Benevides, L.M. Schechter / Electronic Notes in Theoretical Computer Science 262 (2010) 49–64 53



of bound names in P . Similarly, we denote by f(α) and b(α) the free and bound
names in an action α. In the actions a(x), a〈x〉 and a〈νx〉, a is called the subject,
denoted by s(α), where α is the action, and x is called the object, denoted by o(α).
The τ action has neither subject nor object.

Definition 2.6 We say that a relation ∼= between processes is a congruence if it is
an equivalence relation and it is preserved by all π-Calculus operators, that is, if
P ∼= Q, then α.P ∼= α.Q, P + R ∼= Q + R and so on.

Definition 2.7 A syntactic substitution of a bound name by a fresh name (a name
that does not occur in the process specification) in its binder and in every occurrence
of the name in the scope of this binder is called an alpha-conversion.

Definition 2.8 Structural congruence, denoted by ≡, is a relation between pro-
cesses defined by the following set of axioms and rules:

(i) It is a congruence;

(ii) It is closed under alpha-conver-
sion;

(iii) Commutativity of + and |;

(iv) If a �= x, (νx)a〈x〉.P ≡ a〈νx〉.P ;

(v) (νx)(νy)P ≡ (νy)(νx)P ;

(vi) If x �∈ f(P ), (νx)P ≡ P .

Definition 2.9 We say that a process P is clean if no name appears both free
and bound in P and no name is bound by more than one binder. We say that a
process is unrestricted if it has no occurrences of the ν operator. We say that a
clean process is in ν-prefix form if it has the form (νx1) . . . (νxn)P , n ≥ 0, where
P is unrestricted. Finally, we say that a clean process is in ν-standard form if the
only occurrences of the ν operator are inside bound output prefixes.

We write P
α→ P ′ to express that the process P can perform the action α

and after that behave as P ′. We write P
END→ √

to express that the process P can
perform the action END and successfully finish. In Table 1, we present the semantics
for the operators of the π-Calculus based on this notation. This semantics is called
late semantics. For more details on this and other semantics, [13] can be consulted.

P ′≡P,P
α→Q,Q≡Q′

P ′ α→Q′ α.P
α→ P END END→ √

P ∗ END→ √

P
α→P ′

P ;Q
α→P ′;Q

P
END→ √

,Q
α→Q′

P ;Q
α→Q′

P
α→P ′

P+Q
α→P ′

P
α→P ′,b(α)∩f(Q)=∅

P |Q α→P ′|Q
P

a(x)→ P ′,Q
a〈u〉→ Q′

P |Q τ→P ′{u/x}|Q′
P

a(x)→ P ′,Q
a〈νu〉→ Q′

P |Q τ→(νu)(P ′{u/x}|Q′)
P

α→P ′

P ∗ α→P ′;P ∗
P

α→P ′,x�∈α

(νx)P
α→(νx)P ′

P
END→ √

,Q
END→ √

P ;Q
END→ √

P
END→ √

P+Q
END→ √

Q
END→ √

P+Q
END→ √

P
END→ √

,Q
END→ √

P |QEND→ √

P
END→ √

(νx)P
END→ √

Table 1
Transition Relations of the π-Calculus

From Table 1, we can see that we have a clear distinction between deadlock and
termination. A specification of the form α.0 denotes that a process performs the
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action α and then deadlocks, while a specification of the form α.END denotes that
a process performs the action α and then successfully terminates.

Definition 2.10 Let P be the set of all possible process specifications. A late
bisimulation is a symmetric binary relation Z ⊆ P × P such that

(i) If (P,Q) ∈ Z and P
α→ P ′, where b(α) is fresh in P and Q, then

(a) If α = a(x), then there is Q′ ∈ P such that Q
α→ Q′ and for all u ∈ N ,

(P ′{u/x}, Q′{u/x}) ∈ Z;
(b) If α is not an input action, then there is Q′ ∈ P such that Q

α→ Q′ and
(P ′, Q′) ∈ Z;

(ii) If (P,Q) ∈ Z and P
END→ √

, then Q
END→ √

.

The reason why the only running actions that need to be considered are the ones
that satisfy the freshness condition above is explained in details in [13].

Definition 2.11 Two process specifications P and Q are late bisimilar (or simply
bisimilar), denoted by P

.∼ Q, if there is a late bisimulation Z such that (P,Q) ∈ Z.
In the π-Calculus, bisimilarity is an equivalence relation but is not a congruence.

Theorem 2.12 If P ≡ Q, then P
.∼ Q.

It should be noticed that while 0 is the neutral element for the + operator, that
is, P + 0 .∼ P , END is the neutral element for the | operator, as P |END .∼ P 5 .

We now present a few particular bisimilarities that are going to be useful in the
axiomatization of our logic. We start with the Expansion Law.

Theorem 2.13 (Expansion Law [13]) Let P = P1 | P2, where P is clean and
unrestricted and | does not occur in P1 and P2. Then

P
.∼

∑

P1
α→P ′

1

α.(P ′
1 | P2) +

∑

P2
β→P ′

2

β.(P1 | P ′
2) +

∑

R∈Aτ

τ.R + EP ,

where Aτ = {(P ′
1{u/x} | P ′

2) : P1
a(x)→ P ′

1 and P2
a〈u〉→ P ′

2, for some a ∈ N} ∪
{(P ′

1 | P ′
2{u/x}) : P1

a〈u〉→ P ′
1 and P2

a(x)→ P ′
2, for some a ∈ N} and EP = END, if

P1
END→ √

and P2
END→ √

or EP = 0, otherwise. We denote the right side of this
bisimilarity by Exp(P ).

Definition 2.14 ν-bisimilarity, denoted by P
ν∼ Q, is a relation between processes

defined by the following set of axioms and rules, where x �∈ α denotes that x is
neither the subject nor the object of the action α:

(i) If P ≡ Q, then P
ν∼ Q;

(ii) (νx)0 ν∼ 0;

(iii) (νx)END ν∼ END ;

(iv) If x �∈ α, (νx)α.P
ν∼ α.(νx)P ;

(v) If x = s(α), (νx)α.P
ν∼ 0;

(vi) (νx)(P ; Q) ν∼ (νx)P ; (νx)Q;

5 Notice that, according to table 1, P |0 can never successfully finish, so P |0 � .∼ P in general.
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(vii) (νx)(P + Q) ν∼ (νx)P + (νx)Q;

(viii) If x � ∈ f(P ), P |(νx)Q ν∼ (νx)

(P |Q);

(ix) (νx)P ∗ ν∼ ((νx)P )∗.

It follows from Table 1 and Definition 2.11 that items (ii)-(ix) are indeed bisimi-
larities. Hence, the relation of ν-bisimilarity is a subset of the relation of bisimilarity.
ν-bisimilarity is a convenient relation because it has a simple axiomatization and it
is sufficient for all our needs in this work.

Theorem 2.15 Every process is structurally congruent to a clean process. Every
clean process is ν-bisimilar to a process in ν-prefix form. Finally, every clean process
with no occurrences of the | operator is ν-bisimilar to a process in ν-standard form.

3 πDL

In this section, we define a Propositional Dynamic Logic (πDL) in which the pro-
grams are built in a language based on the π-Calculus without replication (Defini-
tion 2.5). First, we introduce the key concept of finite possible runs of a process.
We then proceed to describe, using this concept, the syntax and semantics of πDL
and provide a couple of simple examples of its application. Finally, we present an
axiomatization for πDL and prove its soundness and completeness.

3.1 Action Sequences and Possible Runs

Here, we introduce the concept of finite possible runs of a process.

Definition 3.1 We use the notation −→α to denote a potentially infinite sequence
of actions α1.α2. . · · · .αn(. · · · ) (the empty sequence is denoted by −→ε ). The empty
sequence follows the rule −→α .−→ε = −→ε .−→α = −→α , for all −→α . We denote the i-th term of
the sequence −→α by (−→α )i.

Definition 3.2 For a finite sequence of actions −→α , we write P
−→α⇒ P ′ to express that

the process P may perform the sequence −→α and after that behave as P ′. Besides

that, we write P
−→α⇒ √

to express that the process P may successfully finish after
performing the sequence −→α .

We can define notions of alpha-conversion of bound names in a sequence of
actions and of a clean sequence of actions, in analogy with Definitions 2.7 and 2.9.
We can also extend our notation and write b(−→γ ) and f(−→γ ) for the sets of bound and
free names in the sequence −→γ . If a sequence of actions −→γ can be alpha-converted

to a sequence −→σ , we write −→γ ≡α
−→σ . It is not difficult to see that, if P

−→γ⇒ √
, then

P
−→σ⇒ √

, where −→γ ≡α
−→σ and −→σ is clean. Let S(P ) be the set of all such −→σ . Then,

it is also not difficult to see that, if we establish the convention that −→σ ≡α
−→σ , ≡α

is an equivalence relation for the elements of the set S(P ).

Definition 3.3 We define the set of finite possible runs of a process P , denoted by−→Rf (P ), as the quotient set
−→Rf (P ) = S(P )/ ≡α. If −→γ ∈ S(P ), then [−→γ ] ∈ −→Rf (P )

denotes its equivalence class.
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We want to define a semantics for our logic that only takes into account the finite
possible runs of the processes, i.e., situations in which the processes successfully
finish. So, we present some useful results about finite possible runs.

Definition 3.4 Let −→α and −→σ be two sequences of actions and let P and Q be
two process specifications. If b(−→α ) is fresh in Q and b(−→σ ) is fresh in P , we write
(−→α ,−→σ ) � (P,Q).

Definition 3.5 Let T =
−→Rf (P ) and U =

−→Rf (Q) and let �(−→α ) =
−→
λ , where −→α =−→

λ .END . We can define the following operations on the sets T and U :

• T ◦ U = {[�(−→α ).
−→
β ] : [−→α ] ∈ T, [

−→
β ] ∈ U and (−→α ,

−→
β ) � (P,Q)};

• T ∪ U = {[−→α ] : [−→α ] ∈ T or [−→α ] ∈ U};
• R0 = {[−→ε ]}, Rn = R ◦ Rn−1(n ≥ 1) and R∗ =

⋃
n∈N

Rn.

Lemma 3.6 If P
.∼ Q and b(−→α ) is fresh in P and Q, then P

−→α⇒ √
iff Q

−→α⇒ √
.

Proof. We prove this by induction on the length n of −→α . If n = 0, then −→α = −→ε
and neither P nor Q may successfully finish without executing any action. If n = 1,

then −→α = END . Then, P
−→α⇒ √ ⇔ P

END→ √
. By the hypothesis that P

.∼ Q,

P
END→ √ ⇔ Q

END→ √
. Finally, Q

END→ √ ⇔ Q
−→α⇒ √

.
Suppose that the theorem is true for all n < k. Let −→α be a sequence of length

k. Let α be the first action of the sequence and let
−→
β be a sequence of length k− 1

such that −→α = α.
−→
β . Then, P

−→α⇒ √
if and only if there is a process P ′ such that

P
α→ P ′ and P ′

−→
β⇒ √

. But if P
α→ P ′ and P

.∼ Q, then there is a process Q′ such
that Q

α→ Q′ and P ′ .∼ Q′. Now,
−→
β is a sequence of length shorter than k, so by

the induction hypothesis, as P ′ .∼ Q′ and P ′
−→
β⇒ √

, then Q′
−→
β⇒ √

. This means that

Q
−→α⇒ √

, proving the theorem. �

Theorem 3.7 If P
.∼ Q, then

−→Rf (P ) =
−→Rf (Q).

Proof. Suppose that [−→α ] ∈ −→Rf (P ). Then, there is a clean sequence −→σ such that

[−→σ ] = [−→α ] (*) and b(−→σ ) is fresh in P and Q (**). By (*), P
−→σ⇒ √

. As P
.∼ Q,

this, together with (**) and Lemma 3.6, implies that Q
−→σ⇒ √

, which means that
[−→α ] = [−→σ ] ∈ −→Rf (Q). Thus,

−→Rf (P ) ⊆ −→Rf (Q). The proof that
−→Rf (Q) ⊆ −→Rf (P ) is

entirely analogous. �

We present some equalities between sets of finite possible runs that are useful
to the development of our axiomatization.

Theorem 3.8 The following set equalities are true:

(i)
−→Rf (0) = ∅;

(ii)
−→Rf (END) = {[END ]};

(iii)
−→Rf (α.P ) = {[α.END ]} ◦ −→Rf (P );

(iv)
−→Rf (P1;P2) =

−→Rf (P1) ◦ −→Rf (P2);
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(v)
−→Rf (P1 + P2) =

−→Rf (P1) ∪ −→Rf (P2); (vi)
−→Rf (P ∗) = (

−→Rf (P ))∗;

(vii)
−→Rf (P1|P2) =

⋃{−→Rf (−→α | −→β ) : [−→α ] ∈ −→Rf (P1) and [
−→
β ] ∈ −→Rf (P2)};

(viii) If
−→Rf (P ) =

−→Rf (Q), then
−→Rf ((νx)P ) =

−→Rf ((νx)Q);

(ix) If
−→Rf (P ) =

−→Rf (A) ◦ −→Rf (P ) ∪ −→Rf (B) and [END ] �∈ −→Rf (A), then
−→Rf (P ) =

(
−→Rf (A))∗ ◦ −→Rf (B).

Proof. The proof of the first eight items is straightforward from Table 1 and The-
orem 3.7. The ninth item is simply Arden’s Rule [1] applied in our context. This
application is sound, since the elements of

−→Rf (P ), for any P , are classes of finite
strings. �

3.2 Language and Semantics

In this section, we present the syntax and semantics of πDL.

Definition 3.9 The πDL language consists of a set Φ of countably many propo-
sition symbols, a set N of countably many names, the silent action τ , the ending
action END , the boolean connectives ¬ and ∧, the π-Calculus operators ., ;, +,
|, ∗ and ν, a pair of modalities 〈a〉 and 〈a〉, for each a ∈ N , and a modality 〈P 〉
for every process P , including the atomic processes 0 and END . The formulas are
defined as follows:

ϕ ::= p | � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ | 〈a〉ϕ | 〈P 〉ϕ,

where p ∈ Φ and P is built as in Definition 2.5.

Definition 3.10 A frame for πDL is a tuple F = (W, {Ra, Ra}a∈N , REND , Rτ )
where

• W is a non-empty set of states;
• Ra, Ra, for each a ∈ N , REND and Rτ are the basic binary relations, where

REND = {(w, w) : w ∈ W}.
Definition 3.11 A model for πDL is a pair M = (F ,V), where F is a πDL frame
and V is a valuation function V : Φ → 2W .

Definition 3.12 We define the core of an action α, denoted by c(α), in the follow-
ing way: c(a(x)) = a, c(a〈x〉) = c(a〈νx〉) = a and c(α) = α, if α = τ or α = END .

We now define the semantical notion of satisfaction for πDL as follows:

Definition 3.13 Let M = (F ,V) be a model. The notion of satisfaction of a
formula ϕ in a model M at a state w, notation M, w � ϕ, can be inductively
defined as follows:

• M, w � p iff w ∈ V(p);
• M, w � � always;
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• M, w � ¬ϕ iff M, w �� ϕ;
• M, w � ϕ1 ∧ ϕ2 iff M, w � ϕ1 and M, w � ϕ2;
• M, w � 〈κ〉ϕ iff there is w′ ∈ W such that wRκw′ and M, w′ � ϕ, where κ = a

or κ = a, for some a ∈ N , or κ = τ ;
• M, w � 〈P 〉ϕ iff there is a finite path (v0, v1, . . . , vn), n ≥ 1, such that v0 = w,
M, vn � ϕ and there is −→α such that [−→α ] ∈ −→Rf (P ), the length of −→α is n and
(vi−1, vi) ∈ Rκ if and only if c((−→α )i) = κ, for 1 ≤ i ≤ n. We say that such −→α
matches the path (v0, . . . , vn).

If M, w � ϕ for every state w, we say that ϕ is globally satisfied in the model
M, notation M � ϕ. If ϕ is globally satisfied in all models M of a frame F , we
say that ϕ is valid in F , notation F � ϕ. Finally, if ϕ is valid in all frames, we say
that ϕ is valid, notation � ϕ. Two formulas ϕ and ψ are semantically equivalent if
� ϕ ↔ ψ.

Theorem 3.14
−→Rf (P ) =

−→Rf (Q) if and only if � 〈P 〉p ↔ 〈Q〉p.

Proof. (⇒) Suppose that
−→Rf (P ) =

−→Rf (Q), but �� 〈P 〉p ↔ 〈Q〉p. Then, we may
assume, without loss of generality, that there is a model M and a state v0 in this
model such that M, v0 � 〈P 〉p (*), but M, v0 �� 〈Q〉p (**). By Definition 3.13, (*)
implies that there is a path (v0, v1, . . . , vn), n ≥ 1, in M such that M, vn � p (***)
and there is a sequence −→α , such that [−→α ] ∈ −→Rf (P ), that matches this path. But
as

−→Rf (P ) =
−→Rf (Q), then [−→α ] ∈ −→Rf (Q). This and (***) imply, by Definition 3.13,

that M, v0 � 〈Q〉p, contradicting (**).
(⇐) Suppose that � 〈P 〉p ↔ 〈Q〉p (*), but

−→Rf (P ) �= −→Rf (Q). Then, we may
assume, without loss of generality, that there is a clean sequence −→α such that
[−→α ] ∈ −→Rf (P ), but [−→α ] �∈ −→Rf (Q). Let us build a frame F that consists solely of a
path (v0, . . . , vn), n ≥ 1, such that Ra = {(vi−1, vi) : 1 ≤ i ≤ n and c((−→α )i) = a}.
Let M = (F ,V), such that vn ∈ V(p) and vi �∈ V(p), 0 ≤ i < n. Then, we have
a path (v0, . . . , vn) such that M, vn � p and −→α matches this path. By Definition
3.13, M, v0 � 〈P 〉p. However, [−→α ] �∈ −→Rf (Q), so (v0, . . . , vn) is not matched by any
sequence in

−→Rf (Q). Besides that, there is no other path (v0, . . . , vm), m ≥ 1, in M
such that M, vm � p. Thus, by Definition 3.13, M, v0 �� 〈Q〉p, which contradicts
(*). �

Corollary 3.15 If P
.∼ Q, then � 〈P 〉p ↔ 〈Q〉p.

3.3 Examples

In this section, we present two simple examples of applications of πDL.

Example 3.16 Let M be a Kripke model representing the behaviour of a local
network in a business office. Suppose that, in this network, there are three com-
puters and two printers, managed by a common server. For a restricted analysis
of M with respect only to the printing protocols, we may assume that all that the
employees of the office do at the computers is to print documents.
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Let s1 be the communication channel between the computers and the server
and s2 be the communication channel between the server and the printers. Then,
Ci = (νci)s1〈ci〉.ci(p).p〈d〉.END describes a program that sends a document that
can be retrieved through channel d to be printed, S = (s1(n).s2(p).n〈p〉 .END)∗

describes a program that controls the server and distributes the printers following
requests from the computers and Pj = (νpj)s2〈pj〉.pj(d).τ.END describes a program
that controls the printer and prints the document (the act of printing is represented
by τ) that can be retrieved through channel d.

We may want to verify if M allows for any computer to print a sequence of
any number of documents at any time, no matter what state M is presently in. If
we assume that each computer cannot simultaneously request the printing of more
than one document, this is equivalent to checking whether the formula 〈C∗

1 | C∗
2 |

C∗
3 | S | P ∗

1 | P ∗
2 〉� is globally satisfied in M. We may also want to verify that the

actions of one computer do not affect the actions of the others. For this, we could
check, for instance, if 〈Ci〉� ↔ [(Cj | Ck)∗]〈Ci〉�, i �= j �= k, is globally satisfied in
M.

Example 3.17 The parallel composition operator (|) has a dual role in the π-
Calculus. It represents both interleaving and synchronization of processes. In van
Benthem’s paradigm of games-as-processes [16], this could be used to represent
simultaneous games, where each player chooses his actions unaware of what are the
actions taken by the other player. We consider a concrete example. Let M be a
game board and the proposition symbols wi, i = 1, 2, denote that player i wins if the
game reaches a state where wi is satisfied. Let {a, b, c} be the possible actions for
player 1 and {d, e, f} the possible actions for player 2. Each player has to perform
a sequence of three actions, completely unaware of which actions the other player
performed or even how many of the three actions the other player performed so
far. This means that the two sequences are interleaved in an arbitrary order. Then,
M, w � 〈a.b.b.END + a.b.c.END | d.d.d.END〉w1 means that if the game starts in
w, there is an interleaved sequence of a, b, b and d, d, d or a, b, c and d, d, d that leads
to a victory of player 1. On the other hand, M, w � [a.b.b.END | d.d.d.END ]w1

means that, if the game starts in w, no matter in what order the six actions take
place, if player 1 plays a, b, b and player 2 plays d, d, d, player 1 is guaranteed to
win. This can also be generalized to games with more than two players.

The | operator can also represent synchronization of processes. This allows us
to model richer games, where we can get “rounds” of blind, simultaneous games
separated by some exchange of information between the players. For instance, in
the game described above, suppose now that the two players may select their actions
from the same set {a, b, c}. To differentiate between the sequences of actions of each
player, each sequence starts with pi, i = 1, 2. Besides that, each player will now
perform the three actions in the following way: a player performs two actions, then
informs the other player of one of them and performs the final action. Then we can
express properties of this game using formulas of our logic, in an analogous way
to the paragraph above. For instance, M, w � [(νx)(νy)(p1.b.b.x〈b〉.y(w).w.END |
p2.a.b.x(z).y〈a〉.b.END + p2.a.b.x(z).y〈b〉.b.END)]w1 means that if the game starts
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in w, no matter in what order the four initial and the two final actions take place, if
player 2 starts with a, b and finishes with b, then player 1 can always win by playing
b, b and then finishing with the action informed by player 2.

This interplay between interleaving and synchronization can then be used to
describe a fairly large group of games. A recent paper [17] also works with this
idea that concurrency operators can be used to model simultaneous games. The
authors use CPDL [15] as a stepping stone to build a concurrent dynamic game
logic. However, since CPDL does not admit communication, their logic also has that
limitation. As the generalization from CPDL to channel-CPDL has as drawbacks
the loss of decidability and the loss of a complete axiomatization, our logic may
be better suited for the generalization of the logic presented in [17] to deal with
simultaneous games with communication, as we briefly illustrated.

3.4 Axiomatic System

We consider the following set of axioms and rules, where p and q are proposition
symbols and ϕ and ψ are formulas.

(PL) Enough propositional logic tau-
tologies

(K) � [P ](p → q) → ([P ]p → [P ]q)

(Du) � [P ]p ↔ ¬〈P 〉¬p

(0) � ¬〈0〉p
(END) � 〈END〉p ↔ p

(Pr) � 〈α.P 〉p ↔ 〈c(α)〉〈P 〉p

(SC) � 〈P1; P2〉p ↔ 〈P1〉〈P2〉p
(NC) � 〈P1 + P2〉p ↔ 〈P1〉p ∨ 〈P2〉p
(Rec) � 〈P ∗〉p ↔ p ∨ 〈P 〉〈P ∗〉p
(FP) � p ∧ [P ∗](p → [P ]p) → [P ∗]p

(MP) If � ϕ and � ϕ → ψ, then � ψ

(Gen) If � ϕ, then � [P ]ϕ

(νBi) If P
ν∼ Q, then � 〈P 〉p ↔ 〈Q〉p

(Sub) If � ϕ, then � ϕσ, where σ uniformly substitutes proposition symbols by
arbitrary formulas

(PCSub) If � 〈P 〉p ↔ 〈Q〉p, then � 〈P |R〉p ↔ 〈Q|R〉p
(RSub) If � 〈P 〉p ↔ 〈Q〉p, then � 〈(νx)P 〉p ↔ 〈(νx)Q〉p
(Exp) If the Expansion Law can be applied to P , then � 〈P 〉p ↔ 〈Exp(P )〉p
(Ard) If � 〈P 〉p ↔ 〈A;P + B〉p and A

END
�→ √

, then � 〈P 〉p ↔ 〈A∗;B〉p
The axioms (PL), (K) and (Du) and the rules (MP), (Gen) and (Sub) are

standard in the modal logic literature. The soundness of the other axioms and rules
follows directly from the set equalities in Theorem 3.8 (with the help of Theorem
3.14), Theorem 2.13, Corollary 3.15 and Definition 3.10.

Definition 3.18 We define the following relation between processes: P ↔ Q iff
� 〈P 〉p ↔ 〈Q〉p.

Theorem 3.19 ↔ is a congruence.

Definition 3.20 Let Ωk = {P1, . . . , Pk} be a set of processes such that Pi �≡ Pj , if
i �= j. Let E(Ωk) = {E1, . . . , Ek} such that Ei = (Pi, Ti), Pi ↔ Ti, Ti =

∑
j Ai

j ;Q
i
j
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and, for all (i, j), Ai
j has no occurrence of |. We say that E(Ωk) is closed if, for all

(i, j), Qi
j ∈ Ωk.

Theorem 3.21 Let P = P1 | P2, where P is clean and unrestricted. Then there is
P such that P ↔ P and P has no occurrence of the | operator.

Proof. The proof is by induction on the number n of occurrences of the | operator
in P . If n = 0, then P = P and there is nothing to be done.

If n = 1 then the Expansion Law can be applied to P , so we can use (Exp) to
build pairs (Pi, Ti) that satisfy Definition 3.20. Let P1 = P and Ωk be the smallest
set such that P1 ∈ Ωk and E(Ωk) is closed. Such a set always exists, as otherwise
there would be an infinite set of processes {Ai : i ∈ N} such that Ai �≡ Aj , if i �= j,
and P

α0→ A0
α1→ A1 . . ., which, by a careful inspection of Table 1, cannot happen.

Take the pair Ek. If there is no Qk
j = Pk (*), then we can substitute in the

processes Ti, 1 ≤ i < k, all the occurrences of Pk by Tk. Otherwise, we can use
(Ard) to substitute the pair (Pk, Tk) by a pair (Pk, T

′
k) where (*) holds and then

proceed as in the previous case. We then continue this process with the pair Ek−1

and so on, until we finally get a pair (P1, T
′
1) such that no process in Ωk occurs

in T ′
1. By the use of (Exp) to build the initial pairs and the fact that neither

(Ard) nor the substitution process introduce new | operators, we have P = T ′
1.

This method, based on the solution of a “system of equations”, was inspired by
Brzozowski’s algebraic method to obtain the regular expression that describes the
language accepted by a finite automaton [5].

Suppose that the theorem is true for all n < k. Let P have k occurrences of |.
As P = P1|P2, we can obtain P as P1|P2. �

Two formulas φ and ψ are equi-consistent if � φ ↔ ψ. By soundness, if φ and
ψ are equi-consistent, then they are also semantically equivalent.

Theorem 3.22 (Completeness) Every consistent formula is satisfiable in a finite
πDL model.

Proof. Let ϕ be a consistent formula and let P(ϕ) be the set of processes that
appear in ϕ. For all P ∈ P(ϕ), we can use (νBi), (RSub), (MP) and Theorems
2.15, 3.19 and 3.21 to get a sequence P ↔ P ′ ↔ P ′′ ↔ P ′′′, where P ′ is clean and
in ν-prefix form, P ′′ is also without any occurrence of the | operator and P ′′′ is
like P ′′ but is instead in ν-standard form. We can then obtain an equi-consistent
formula ϕ′ = ϕ[P ′′′/P, P ∈ P(ϕ)] in which the only π-Calculus operators that
appear are ., ;, + and ∗. All of these operators and its correspondent axioms are
analogous to the operators and axioms in standard PDL. Thus, we can follow the
completeness proof of standard PDL (the PDL axioms and its completeness proof
are presented in details in [4]), treating the actions as basic PDL programs, to show
that ϕ′ is satisfiable in a finite model. As ϕ and ϕ′ are equi-consistent, they are
also semantically equivalent, which means that ϕ is also satisfied in that same finite
model. �
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4 Final Remarks and Future Work

In this work, we present a Propositional Dynamic Logic for communicating con-
current systems (πDL) in which the programs are described in a language based
on the π-Calculus without replication. From the point of view of dynamic logics,
this logic represents an improvement on the current scenario, as previous dynamic
logics could not effectively deal with both concurrency and communication. CPDL
[15] dealt with concurrency, but there was no possibility of communication between
the components of a concurrent system. Channel-CPDL [14] models concurrency
and communication but it has a “rather complicated” [14] semantics, is undecidable
and lacks a complete axiomatization. On the other hand, we are able to provide
a simple Kripke semantics for our logic, based on the idea of finite possible runs
of processes, build a complete axiomatization for it and show that it has the finite
model property.

We also provide a method, in a language with iteration (∗) and sequential com-
position (;) operators, to rewrite any process specification to a form without the
parallel composition operator (|) while preserving the set of finite possible runs of
the process. This method is based on Brzozowski’s algorithm to find the regular
expression that corresponds to a finite automaton [5]. We feel that this is an inter-
esting and original application of Brzozowski’s idea and that it provides an elegant
proof to a key result to the completeness of our axiomatization.

It should also be noticed that, while the | operator can be written out of the
specifications, in practice it can be very hard to describe a complex concurrent
behaviour without it from the start. Besides that, even though both specifications,
with and without |, may be equivalent, the one with | will be more succinct.

It would be interesting to study the complexities of the satisfiability and model-
checking problems for this logic and the ones in [3] and [2]. It would also be inter-
esting to develop an automatic model-checker for these logics, which would involve
an efficient algorithmic method to deal with the expansion of parallel processes. We
would also like to analyze the issue of self-replicating processes, which was left out
of the present work. We would like to study what would change in the logic with
the addition of the π-Calculus replication operator (!).

Finally, we would also like to study in more detail the possible connections
between our logic and the ideas presented in [17] and analyze how to use our logic
as a tool for the description of simultaneous games with communication.
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