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We examined the effects of conditioned medium from olfactory ensheathing glia (OEGCM) on the differ-
entiation of oligodendrocytes in mixed cultures of early postnatal hippocampi. Differentiation was judged
from the numerical density (ND) of cells immunoreactive to 2030 cyclic nucleotide 30phosphodiesterase
(CNPase) and O4 antibodies. NDs increased according to inverted-U dose–response curves, particularly
for CNPase+ cells (9-fold at optimal dilution) and these changes were blocked by inhibitors of ERK1,
p38-MAPK, and PI3K. Our results raise the possibility that OEG secreted factor(s) may counteract demy-
elination induced by trauma, neurodegenerative diseases, and advanced age, and should stimulate novel
methods to deliver these factors and/or potentiating chemicals.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Olfactory axons may regenerate after sectioning of the fila
olfactoria or within the olfactory fiber layer of the olfactory bulb
[1,2]. Numerous studies on the potential of the olfactory ensheath-
ing glia (OEG) for the promotion of axonal growth and/or myelina-
tion have been reported [3,4]. Although studies have provided
evidence for and against the ability of the OEG themselves to mye-
linate central axons [5–9], few attempts have been made to test
OEG as promoters of the differentiation and eventual myelination
of oligodendroglial progenitor cells (OPC) (but see [10] for negative
results).

The signaling pathways regulating OEG-neuronal and OEG-glial
interactions are virtually unknown. This may be partially due to
our poor understanding of OEG neurotrophins and other
extracellular signals required for survival of neurons and/or
oligodendrocytes [11,12]. Primary OEG are known to produce sev-
eral trophic factors [13, 14, reviewed in 15], but only nerve growth
factor (NGF), neurotrophin-4/5 (NT4/5) and neuregulin are
considered to be secreted [13,16]. There is also some uncertainty
regarding brain-derived neurotrophic factor (BDNF), which is
thought to be produced in very small amounts [13,14] but seems
to contribute significantly to axonal regeneration of cultured adult
CNS neurons [17] and to be involved in OEG-enhanced axon regen-
eration, even on an unfavorable substrate such as myelin [18].

BDNF has also been described as involved in myelination by a
direct action on oligodendrocytes [19]. Indeed, BDNF and its recep-
tor, tropomyosin-related kinase B (TrkB), trigger several
well-defined signaling cascades, including the Extracellular
Signal-Regulated Kinase 1 (ERK1/MEK1) and the phosphatidylino-
sitol-3 kinase (PI3K) [20,21]. There is also considerable work on
p38 mitogen-activated protein kinases (p38MAPK) regulation of
oligodendrocyte differentiation under the influence of insulin-like
growth factor (IGF-1), or fibroblast growth factor 2 (FGF-2), but
not BDNF [22,23].

In this study, we used a medium conditioned by cultured adult
OEG (OEGCM) at different dilutions to investigate whether there is
a monotonous (increasing or decreasing) change in the numerical
density (ND) of cultured perinatal hippocampal cells expressing
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either of two markers of oligodendroglial differentiation: (a) 20-30

cyclic nucleotide 30-phosphodiesterase, a protein mediating pro-
cess outgrowth in OPCs [24,25], and (b) O4 antibody, a marker of
gangliosides appearing at the pro-oligodendroblast stage as well
as of the late-appearing glycolipids sulfatide and seminolipid
[26,27]. To study signaling by OEG soluble factors, we used inhib-
itors for the ERK1, p38MAPK and PI3K signaling pathways.
2. Material and methods

2.1. Animals

Animal care was according with recommendations of the
Sociedade Brasileira de Neurobiologia e Comportamento (Brazilian
Society for Neurobiology and Behavior), and was approved by the
Committee for the Use of Experimental Animals of our institution
(CEUA IBCCF Protocol number 020).
2.2. Isolated cultures of olfactory ensheathing cells

OECs were collected and purified following our modification of
a protocol previously described by [28]. Briefly, the olfactory nerve
layer was removed and dissociated with a solution of 0.01% ethyl-
ene diamine tetraacetic acid (EDTA; Invitrogen, USA) [29,30]. After
the removal of fibroblasts, astrocytes and oligodendrocytes by
adhesion as in [28], the cells were plated onto laminin-coated
(40 lg/mL, Sigma) 24-well cell plates in complete DMEM/F12 med-
Fig. 1. OEG conditioned medium (OEGCM) increases the ND of CNPase-positive oligodend
maintained in NB27; (B) treatment with 1:5 OEGCM; (C) culture in DMEM/F12; (D) qua
nuclei stained with DAPI (all figures). Observe the inverted-U dose–response pattern, with
test (treatment vs. culture in NB27), �p < 0.05. ND = numerical density. Scale bar = 50 lm
ium. The cells were maintained in 5% CO2 at 37 �C, and the medium
was changed every second day. After the cell culture had reached
about 75% confluence (three weeks), the conditioned medium
(OEGCM) was collected, filtered through a 0.2 mm membrane pore,
aliquoted and stored at �70 �C until use.

2.3. Hippocampus mixed cell cultures

Hippocampus cell cultures were prepared following modifica-
tions of a protocol previously described by [31]. Briefly, four 0 to
2-day-old (postnatal; P0–P2) Wistar rats were decapitated, their
brains removed and the hippocampus dissected. Dissociated fil-
tered cells were plated on poly-L-lysine-coated (PLL, 100 lg/ml)
glass coverslips at a final density of 104 cells/coverslip. The cells
were maintained in complete NB27 – Neurobasal medium A (Life
Technologies) containing 2% B27 supplement (Life Biotechnology),
termed (NB27, positive control) plus 2 mM L-glutamine, penicillin
(50 mg/ml) and streptomycin (50 U/ml), or under either of the fol-
lowing conditions: DMEM/F12 + 10% FBS only (negative control) or
NB27 containing OEGCM dilutions (1:1; 1:3; 1:5; 1:10, and 1:20),
in a 5% CO2 atmosphere at 37 �C for 72 h. After this period, the cul-
tures were fixed with 4% PF, washed with PBS, and stored in this
solution at 4 �C until processing for immunofluorescence.

2.4. Inhibition of survival signaling pathways in hippocampal cells

Once the optimal dilution of OEGCM (1:5) for maintenance of
hippocampal cells was established, three well-known inhibitors
roglia in early postnatal hippocampal cultures, after 3 days of treatment. (A) Culture
ntification in all groups. Secondary antibody labeled with Alexa 594 (also in Fig. 2),

maximal mean response (9� baseline) at 1:5 OEGCM. One-way ANOVA, Bonferroni
.
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of signaling pathways related to cell survival were tested. These
inhibitors (Cell Signaling, USA) were: LY294002, inhibitor of
PI3K; SB203580, inhibitor of p38MAPK; and PD98059, inhibitor
of ERK1, used at either 10 or 50 lM final concentrations. The
cultures were maintained in 5% CO2 at 37 �C for 48 h and fixed with
4% PF, washed with PBS and stored in this solution at 4 �C until
processing for immunofluorescence.
2.5. Immunocytochemistry

Fixed cells on coverslips were processed for anti-CNPase
(monoclonal mouse IgG, 1/100 ascitic fluid, Sigma–Aldrich,
cat#C5922) according to [32], whereas for O4 (monoclonal mouse
IgM, hybridoma, kindly donated by Dr. Adan Aguirre, SUNY – Stony
Brook) we followed [33]. After that, the coverslips were washed
with PBS/Triton or PBS and incubated with appropriate species-
or subclass-specific secondary antibodies conjugated to Alexa Fluor
488 or 546 (1:500, Life Technologies) for 2 h at room temperature.
Coverslips were mounted on glass slides with n-propyl gallate
(Sigma–Aldrich).
2.6. Cell counts and statistical analysis

For cell counts, image mosaics containing 100 images/coverslip
(14.33 mm2 total area/coverslip), were obtained with an
epifluorescence microscope (AxioImager M2, Carl Zeiss) and digital
images were generated by AxioVision� Imaging software (Carl
Zeiss). The graphs show the ND, i.e., the mean number in 3 exper-
Fig. 2. OEGCM increases the ND of O4-positive oligodendroglia in cultures, as in Fig. 1. Cu
dose–response as in Fig. 1, but a less-marked mND increase (maximal mean response =
abbreviations as in Fig. 1. Scale bar = 50 lm.
iments of cells positive for a specific marker in 10 fields (about
1.4 mm2).

Data are expressed as mean ± standard error of the mean (SEM).
Statistical evaluation was performed by One-way ANOVA followed
by Bonferroni post-test for multiple comparisons (GraphPad Prism,
version 5.0.0.288). Differences were considered statistically
significant for P < 0.05.
3. Results

3.1. OEGCM increases the numerical density of CNPase-positive cells in
neonatal hippocampal cultures

Previous studies employing cultures generated from the embry-
onic rat spinal cord plated on OEG showed that oligodendrocyte
process extension was rather poor, perhaps due to a lack of
secreted factors [10]. Since some growth factors, such as BDNF,
have a regionally specific effect on oligodendrocytes [34], we
approached this question by employing a different culture system
and using conditioned medium to determine whether putative
OEG-secreted trophic factors changed the differentiation potential
of early postnatal hippocampal OPCs. First, we evaluated whether
OEGCM was able to increase the number of cells reactive for
CNPase, a marker of oligodendroglial lineage cells from the progen-
itor stage up to the mature oligodendrocyte [25,24,35,36]. As
shown in Fig. 1, the addition of OEGCM from 1:10 to 1:3 increased
significantly the ND of CNPase-positive cells, with a peak at 1:5 (9
times the ND of NB27 medium only).
lture conditions in A–C, fluorophores, and as in Fig. 1. Observe in D a similar trend of
1.8� baseline) and a significance level reached only at 1:5 OEGCM. Statistics and
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3.2. OEGCM increases the numerical density of O4-positive cells in
neonatal hippocampal cultures

The majority of oligodendrocytes (OLs) are generated postna-
tally and pass through a series of phenotypic stages from immature
to mature myelin-forming cells [36]. The progression along the OL-
specific lineage can be characterized by the appearance of the O4
antigen [37]. Therefore, we investigated whether trophic activities
secreted by OEG were able to increase the number of cells reactive
for O4 antibody. As shown in Fig. 2, the addition of 1:5 OEGCM (in
Fig. 3. The augmenting effect of OEGCM on CNPase + cells depends on the PI3K, and m
OEGCM for 2 days; (B and C) as in A plus 10 lM (B) or 50 lM (C) LY 294002; (E and F) as i
(I) SB203580; (D, G and J) quantification of ND after use of signaling inhibitors. Observe th
smaller processes than cells in the untreated culture. Statistics and abbreviations as in F
NB27 medium) increased the ND of O4-positive cells by 2.4 times
(Fig. 2B and D); One-way ANOVA (Fig. 2A and D).

3.3. OEGCM effects on CNPase-positive OPCs/OLs are mediated through
PI3K, ERK1 and p38MAPK signaling pathways in neonatal neural
hippocampal cultures

Several trophic factors have been reported to induce differenti-
ation and survival through activation of signaling transduction
pathways, such as the PI3-K and/or the mitogen-activated protein
ore markedly on the ERK1 and p38MAPK pathways. (A) Culture treated with 1:5
n A plus 10 lM (E) or 50 lM (F) PD98059; (H and I) as in A plus 10 lM (H) or 50 lM
at cultures treated with inhibitors (small panels, arrows) show cells with apparently
ig. 1. Scale bar = 50 lm.
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kinases, including the ERK1/MEK1 and the p38MAPK. In order to
evaluate if these pathways are activated by OEGCM, the hippocam-
pal cells were cultured for 2 days in the presence of LY294002, a
PI3K inhibitor; or in the presence of PD98059, a known inhibitor
for the ERK1/MEK1; or in the presence of SB203580, a p38MAPK
inhibitor; and then reacted with an anti-CNPase antibody. Fig. 3
shows that addition of 10 lM (68 ± 9, Fig. 3B and D) or 50 lM
LY294002 (61 ± 5, Fig. 3C and D) decreased the ND of CNPase-posi-
tive cells from differentiated hippocampal progenitors maintained
in the presence of OEGCM for 48 h when compared to differenti-
ated oligodendrocyte lineage cells in the absence of the inhibitor
(105 ± 3; Fig. 3A). The same phenomena were observed after addi-
tion of 10 lM (38 ± 2, Fig. 3E and G) or 50 lM PD98059 (23 ± 9,
Fig. 3F and G); or after the addition of 10 lM (38 ± 8, Fig. 3E and
G) or 50 lM SB203580 (36 ± 11, Fig. 3F and G), showing a reduction
of the ND of CNPase-positive cells from hippocampal progenitors
after 48 h when compared to differentiated oligodendrocyte-line-
age cells in NB27 + 1:5 OEG (105 ± 3; Fig. 3A).
4. Discussion

In this study we demonstrated for the first time that OEGCM
can influence early postnatal hippocampal progenitor cells toward
an oligodendroglial phenotype.

Although young neurons, as judged by bIII-tubulin immunore-
activity, were about 15 times more numerous in NB27 medium
(not shown) than cells labeled with the general oligodendroglial
marker, CNPase, the change in CNPase+ cells after OEGCM treat-
ment at optimal dilution for only 2 days was marked.

This could not be attributed to exhaustion of neuron generation
in early postnatal life in the hippocampus. Indeed, the behavior of
progenitors in the CA1 and CA3 subfields changes with age. In fact,
the percentages of neurons and oligodendrocytes differentiated
from cultured neurospheres are about equal from both of these
subfields at P4, although oligodendrocytes exceed neurons by 4
to 8-fold at P12 [38]. Additionally, our results from the use of
specific inhibitors indicate that the effects of OEGCM on oligoden-
drocyte progenitors are mediated by the PI3K, ERK1, and p38MAPK
pathways.

Several soluble factors affect oligodendrocyte differentiation,
such as Neurotrophin 3 (NT3) [39], BDNF [40], and ciliary neurotro-
phic factor (CNTF) [41]. Other factors, implicated predominantly in
myelination proper, are fibroblast growth factor (FGF) [42] and
insulin-like growth factor 1 (IGF-1) [43]. However, this proposed
specialization is not absolute, since, for instance, FGF-2 is a mito-
gen for OPCs in the pro-oligodendrocyte or late progenitor stage
(O4+, galactocerebroside-negative) [44]. Furthermore, IGF-1 can
promote proliferation, survival and differentiation of OPCs [45].

PI3K is a master regulator that can be activated by growth fac-
tors and cytokines, which have been extensively studied by Vanha-
esebroech’s group [46] in a variety of animal models and cell
systems, but not including oligodendrocytes or involving their
more important growth factors, with the possible exception of a
PDGF. Our use of LY294002, an inhibitor of PI3K, resulted in
reduction of the number of CNPase+ cells in vitro. There is evidence
indicating that PI3K/Akt is a crucial pathway for the proliferation,
differentiation and survival of OPCs [45,47]. Furthermore, inhibi-
tion of the lipid phosphatase PTEN (phosphatase and tensin homo-
log deleted on chromosome 10), an inhibitor of the PI3K/Akt
pathway, potentiates IGF-1 effects by increasing proliferation of
OLPs in a concentration-dependent manner [48]. Nevertheless,
we have no information on the presence of IGF-1 in OEGCM,
although this factor has been reported to be present in OEG by
immunocytochemistry [49].
The kinase p38MAPK was initially described as involved in the
regulation of inflammatory cytokine biosynthesis [50]. However,
its description as colocalized with CNPase in normal brain white
matter provided a clue to its involvement in cell growth and sur-
vival [51]. The participation of p38 MAPK in Schwann myelination
[52] and in morphological differentiation of OPCs [22,53] has been
clearly demonstrated. Therefore, we can attribute the reduction of
CNPase+ cells that we observed, and an apparent shrinkage of their
processes, to the use of SB 203580, an inhibitor of p38MAPK a and
b [54].

The role of the ERK1 signaling pathway in the oligodendrocyte
lineage was described in proliferation, process extension [55,56],
and cytokine-induced oligodendrocyte death [57]. Thus, it is rea-
sonable to consider that the use of the ERK1 inhibitor may have
contributed to the reduction of the number of CNPase+ cells, coun-
teracting the beneficial effects of OEGCM addition. It has been
shown that ERK1/2 are important regulators of oligodendroglial
preprogenitor and early progenitor stages, and can mediate specific
stimulatory effects of BDNF on myelin protein expression in the
basal forebrain oligodendrocytes [20]. In addition, inhibition of
ERK1 in cultures of OPC was accompanied by the inhibition of their
differentiation [58] and process extension [59].

To conclude, the importance of this study resides in raising the
possibility that a factor or, most probably, multiple factors secreted
by OEG might be used in order to counteract demyelination
induced by trauma, neurodegenerative diseases, and advanced
age. Additionally, because OEG is located in relatively accessible
route to the brain, our results may stimulate the development of
novel methods to deliver these factors and/or potentiating
chemicals.
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